JP4782314B2 - Plasma source and compound thin film forming apparatus - Google Patents

Plasma source and compound thin film forming apparatus Download PDF

Info

Publication number
JP4782314B2
JP4782314B2 JP2001187953A JP2001187953A JP4782314B2 JP 4782314 B2 JP4782314 B2 JP 4782314B2 JP 2001187953 A JP2001187953 A JP 2001187953A JP 2001187953 A JP2001187953 A JP 2001187953A JP 4782314 B2 JP4782314 B2 JP 4782314B2
Authority
JP
Japan
Prior art keywords
plasma
thin film
substrate
plasma source
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001187953A
Other languages
Japanese (ja)
Other versions
JP2003003255A (en
Inventor
三郎 清水
早紀 園田
康正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001187953A priority Critical patent/JP4782314B2/en
Publication of JP2003003255A publication Critical patent/JP2003003255A/en
Application granted granted Critical
Publication of JP4782314B2 publication Critical patent/JP4782314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、分子線エピタキシー(以下、「MBE」と称す。)により酸化物膜や窒化物膜等の化合物薄膜を作成する際に用いられる高周波プラズマ源及びそのプラズマ源を備えた化合物薄膜作成装置に関する。
【0002】
【従来の技術】
従来、真空排気された真空室内に、固体の金属からなる成膜物質を加熱して真空室内へ蒸発させるための蒸発源と、酸素ガスや窒素ガスのような反応ガスを高周波等で励起することによりプラズマ化して真空室内に噴出せしめるように構成されたプラズマ源と、薄膜形成用基板とを設けた化合物薄膜作成装置が知られている。この装置は、基板上に成膜物質の蒸気を供給し、基板上で成膜物質と反応ガスのプラズマとを反応させることにより、酸化物薄膜や窒化物薄膜を形成するように構成されている。
【0003】
上記従来の薄膜作成装置に設けた高周波プラズマ源においては、例えば、図1に示すように、金属製のシールド板1で囲った絶縁体からなる1個の放電用容器2の下部に酸素ガスや窒素ガスの反応ガスを導入するガス導入口3が設けられ、放電用容器2の周囲には高周波コイル4が設けられている。この高周波コイル4により、ガス導入口3から放電用容器2内に導入された反応ガスを励起してプラズマ化し、得られたプラズマを放電用容器2の蓋5に形成した噴出口6から真空室内の基板に向けて噴出せしめ、基板上で蒸発源から供給された成膜物質と反応させ成膜する。噴出口6の口径は0.1mm〜2.5mm程度の小さなものであり、高品質の薄膜を作成するために、真空室内を10−6Torr以下の高真空に保ったままで、放電用容器2内の圧力を放電に必要な10−2〜10−3Torrの低真空に維持できるようになっている。
【0004】
高品質の酸化物薄膜あるいは窒化物薄膜を基板上に成膜するためには、高密度のプラズマが不可欠である。通常、高周波コイルに投入する電力は500W程度が用いられていることから、500W程度の投入電力で高密度プラズマを得るために、10cc程度の小さな放電用容器が用いられている。しかし、10cc程度の放電用容器の蓋に形成された口径0.1mm〜2.5mm程度の噴出口から噴出するプラズマの発散角は小さく、基板−プラズマ噴出口間を20cmとした場合、プラズマは基板上の直径5cm程度の面積にしか照射されない。このため、大面積基板上に酸化物薄膜あるいは窒化物薄膜を作成するためには、図1に示したようなプラズマ源を電源とともに複数個設置しなければならなかった。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決することにあり、大面積基板上に均一な酸化物薄膜や窒化物薄膜を簡単な装置を用いて作成できるようにするため、大面積照射が可能な高周波プラズマ源、及びこのプラズマ源を備えた化合物薄膜作成装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の高周波プラズマ源は、MBEによる化合物薄膜作成用の高周波プラズマ源であって、一つの高周波コイル内に複数個の放電用容器を配置してなり、該一つの高周波コイルによって複数個の放電用容器の各容器内に反応ガスのプラズマを生成して、このプラズマが各放電用容器に設けられたプラズマ噴出口から基板に照射されるように構成されている。このように、複数の放電用容器の周囲に一つのコイルを設けるように構成されたプラズマ源を用いれば、基板に対するプラズマの大面積照射が可能になり、その結果、MBEにより大面積基板に均一な化合物薄膜を作成することが可能になる。
【0007】
また、本発明の薄膜作成装置は、真空室内に、成膜物質の蒸発源と、反応ガスのプラズマを生成する高周波プラズマ源と、薄膜形成用基板とが設けられたMBEによる化合物薄膜作成装置であって、該プラズマ源が、一つの高周波コイル内に複数個の放電用容器を配置してなり、該一つの高周波コイルによって複数個の放電用容器の各容器内に反応ガスのプラズマを生成して、このプラズマが各放電用容器に設けられたプラズマ噴出口から基板に照射されるように構成されている。上記したように構成された複数個の放電用容器からなるプラズマ源を用いているので、基板に対して大面積照射が可能であり、MBEにより大面積基板に均一な化合物薄膜を作成することが可能になる。放電用容器の個数、位置及びプラズマ噴出口の向き等を調節することにより、基板上のプラズマの分布を簡単に制御して、均一な膜厚の薄膜を容易に作成することができる。また、一つの高周波コイルによって複数個の放電用容器の各容器内にプラズマを生成させるため、装置の簡素化が可能になる。さらにまた、電源及び関連機器の節約にもなり経済的である。
【0008】
放電用容器の数は、2個以上であれば特に制限されないが、好ましくは2〜10個であれば良い。その個数は、基板の大きさ、該容器を配置するプラズマ源の大きさ、基板とプラズマ噴出口との間の距離等に応じて適宜選択され得る。基板とプラズマ噴出口との間の距離は均一性に関係し、その距離が大きいほど均一性は良くなるが、20〜30cmが現実的である。
また、放電用容器の口径は2〜5cmであることが好ましい。放電用容器の口径が2cm未満であると、プラズマ噴出口から噴出するプラズマの発散角が小さく、基板上で大面積に均一なビームを得にくく、また、5cmを超えると、放電用容器の容積が大きくなり高密度のプラズマを得にくい。該容器に設けられた噴出口の口径は、真空室内を高真空に保ったままで該容器内の圧力を放電に必要な低真空に維持できるようにするために、通常、0.1〜2.5mm程度であればよい。
【0009】
本発明の薄膜作成装置では、均一な大面積照射が可能な高周波プラズマ源を用いているので、大面積基板(例えば、円盤状基板の場合、φ=20〜50cm)上に均一な薄膜を作成することができる。本発明で大面積基板と言うときは、面積の大きい1枚の基板の場合も、面積が小さくとも複数枚を並べて総面積が大きくなった場合も含まれる。基板としては、通常のMBEで用いるものであれば特に制限されず、例えばサファイア基板等を使用することができる。本発明の装置は、MBEによる各種薄膜の作成に用いることができ、例えば、酸化物膜や窒化物膜等の薄膜の作成に用いることができる。
また、本発明の薄膜作成装置のプラズマ源にはこのプラズマ源用の調節手段としてシャッターを設けるが、このシャッターは、発明の目的を達成できるものであれば特に制限されるわけではなく、例えば、特開平11−256313号公報記載のシャッターを用いることもできる。
【0010】
【実施例】
以下、本発明の実施例を図2を参照して説明する。図2は、4個の放電用容器からなる高周波プラズマ源を備えた化合物薄膜作成装置の概略構成例を示す。
図2に示すように、薄膜作成装置は真空容器11からなり、該真空容器内には、大面積基板ホルダー(直径:20cm)12、基板加熱用ヒータ13、大面積のサファイア基板(直径:2インチ、7枚)14が設けられており、また、該基板ホルダー上に載置された基板に対向して蒸発源15、プラズマ源17が設けられている。蒸発源には蒸発源用シャッター16が設けられている。プラズマ源17は、4個の放電用容器18、各放電用容器に設けられたプラズマ噴出口19、4個の放電用容器を取り囲むように設けられた一つの高周波コイル20からなっており、さらに、各放電用容器に反応ガスを導入するためのガス導入パイプ21、反応ガス流量を調整するためのマスフローコントローラ22が設けられている。4個の放電用容器18はコイル20内に配置されている。プラズマ源にはプラズマ源用シャッター23が設けられている。放電用容器18としては、口径2cmのものが4個設けられている。
【0011】
まず、上記プラズマ源17内に生成される窒素プラズマの励起状態を観察するため、高周波コイル20に1.5kWの電力を投入して、4個の放電用容器18内にプラズマを生成させた。比較のために、口径6cmの放電用容器を1個用い、その周囲に設けられた高周波コイルに1.5kWの電力を投入して、プラズマを生成させた。生成した各プラズマについて、分光光度計を用いて励起窒素分子からの発光に対するスペクトル測定を行った。図3に、本発明のプラズマ源を用いた場合のスペクトルを、また、図4に、比較のためのプラズマ源を用いた場合のスペクトルを示す。
【0012】
一つの高周波コイル内に、口径が小さくとも複数個の放電用容器を用いた場合には、図3から明らかなように、励起状態が高く原子状窒素からの発光が観察された。これに対し、一つの高周波コイル内に、口径が大きくとも1個だけの放電用容器を用いた場合には、図4から明らかなように、本発明のプラズマ源と異なり、励起状態が高くないために原子状窒素からの発光は観察されず、窒素イオンからの発光や励起窒素分子からの発光が観察されたに過ぎなかった。これは、放電用容器の容積が小さい方が単位体積当たりの投入電力が大きくなるためである。従って、GaN薄膜を作成する場合には、Ga原子と原子状窒素とが反応して基板上に成長するため、プラズマ源から原子状窒素が供給されないとGaNは成長しない。すなわち、1コイルで口径6cmの放電用容器を1個だけ用いた場合には、GaNを成長させることができない。
【0013】
次に、図2に示す化合物薄膜作成装置を用いて、MBE法により、直径20cmの基板ホルダー12上に載置された7枚の直径2インチのサファイア(0001)基板14上に、GaN(0001)膜をエピタキシャル成長させる場合について述べる。
まず、大面積基板ホルダー12にサファイア基板14を7枚取り付けた後、この基板をMBE装置の成長室にセットした。次に、蒸発源用シャッター16を閉じた状態で成膜物質Gaを950℃に加熱すると共に、プラズマ源用シャッター23を閉じた状態で高周波コイル20に1.5kWの電力を投入した。この後、マスフローコントローラ22を通して放電用容器内に20sccmの窒素ガスを流し、プラズマ源17内に窒素プラズマを生成させた。この状態で2分間プラズマ源17を作動させた後、マスフローコントローラ22の流量を5sccmに下げ、プラズマ源内の窒素圧力を低下させることより、高密度の窒素プラズマを生成させた。
【0014】
次に、サファイア基板14を850℃に約30分加熱し、清浄化を行った。この後、サアァイア基板14の温度を500℃に下げ、蒸発源用シャッター16及びプラズマ源用シャッター23を開け、基板上にGaN低温バッファ層を約100Å堆積させた。低温バッファ層の堆積後、蒸発源用シャッター16及びプラズマ源用シャッター23を閉じ、基板温度を700℃に上げ、低温バッフア層を5分間アニールした。その後、蒸発源用シャッター16及びプラズマ源用シャッター23を開け、基板温度700℃において、GaN(0001)膜を1時間エピタキシャル成長させた。成長後、基板ホルダー12を取り出し、7枚のウェーハー上に成長したGaN膜の膜厚を測定したところ約3200Åであり、ウェーハー間の膜厚のバラツキは2%以内であった。
【0015】
上記実施例では、4個の放電用容器を用いた場合について述べたが、上記したように、照射面積が大きくかつ励起状態の高いプラズマを生成することができれば、4個でなくとも良い。
また、上記実施例では、Ga成膜物質及び窒素プラズマを用いてGaN膜を作成する場合、すなわちプラズマ源から供給されるプラズマを成膜物質のホスト原子として用いて薄膜を作成する場合について述べたが、このプラズマ源をドーピングの際に用いても良い。さらに、上記構成を有する薄膜作成装置は、GaN膜以外にも、他の窒化物膜や酸化物膜等の作成に用いることもできる。
上記実施例では4個の放電用容器に対して一つのマスフローコントローラを用いたが、各放電用容器の反応ガス導入パイプにそれぞれマスフローコントローラを設置し、各放電用容器内の圧力を調整することにより、各放電用容器から噴出するプラズマの密度を制御して、基板上に均一な膜厚分布が得られるようにしても良い。
【0016】
【発明の効果】
本発明のプラズマ源を備えた化合物薄膜作成装置によれば、複数個の放電用容器を一つの高周波コイル内に配置したプラズマ源を用いて基板に対して大面積照射を行っているため、放電用容器の個数、位置及びプラズマ噴出口の向き等を調節することにより、基板上のプラズマの分布を簡単に制御して、均一な膜厚の薄膜を容易に作成することができる。また、一つの高周波コイルによって複数個の放電用容器の各容器内にプラズマを生成させるため、装置の簡素化が可能になる。さらにまた、電源及び関連機器の節約にもなり経済的である。
【図面の簡単な説明】
【図1】 従来の高周波プラズマ源の概略構成図。
【図2】 本発明の高周波プラズマ源を用いた化合物薄膜作成装置の概略構成図。
【図3】 本発明の高周波プラズマ源内に生成される窒素プラズマの励起状態を示すスペクトル。
【図4】 従来の高周波プラズマ源内に生成される窒素プラズマの励起状態を示すスペクトル。
【符号の説明】
1 シールド板 2 放電用容器
3 ガス導入口 4 高周波コイル
5 蓋 6 噴出口
11 真空容器 12 基板ホルダー
13 基板加熱用ヒータ 14 基板
15 蒸発源 16 蒸発源用シャッター
17 プラズマ源 18 放電用容器
19 プラズマ噴出口 20 反応ガス導入パイプ
21 マスフローコントローラ 22 高周波コイル
23 プラズマ源用シャッター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency plasma source used when a compound thin film such as an oxide film or a nitride film is formed by molecular beam epitaxy (hereinafter referred to as “MBE”) and a compound thin film forming apparatus including the plasma source. About.
[0002]
[Prior art]
Conventionally, an evaporation source for heating and evaporating a solid metal deposition material into a vacuum chamber and a reactive gas such as oxygen gas or nitrogen gas are excited at a high frequency in an evacuated vacuum chamber. There has been known a compound thin film forming apparatus provided with a plasma source configured to be converted into plasma and ejected into a vacuum chamber and a thin film forming substrate. This apparatus is configured to form an oxide thin film or a nitride thin film by supplying vapor of a film forming material onto the substrate and reacting the film forming material with the plasma of the reactive gas on the substrate. .
[0003]
In the high-frequency plasma source provided in the conventional thin film forming apparatus, for example, as shown in FIG. 1, oxygen gas or the like is formed below one discharge vessel 2 made of an insulator surrounded by a metal shield plate 1. A gas inlet 3 for introducing a reactive gas of nitrogen gas is provided, and a high frequency coil 4 is provided around the discharge vessel 2. The high-frequency coil 4 excites the reaction gas introduced into the discharge vessel 2 from the gas inlet 3 into plasma, and the resulting plasma is discharged from the jet 6 formed in the lid 5 of the discharge vessel 2 into the vacuum chamber. The film is ejected toward the substrate and reacted with the film forming material supplied from the evaporation source on the substrate to form a film. The diameter of the jet nozzle 6 is as small as about 0.1 mm to 2.5 mm, and in order to produce a high-quality thin film, the discharge chamber 2 is maintained while keeping the vacuum chamber at a high vacuum of 10 −6 Torr or less. The internal pressure can be maintained at a low vacuum of 10 −2 to 10 −3 Torr necessary for discharge.
[0004]
In order to form a high quality oxide thin film or nitride thin film on a substrate, a high density plasma is indispensable. Usually, about 500 W is used as the electric power supplied to the high-frequency coil, so that a small discharge container of about 10 cc is used in order to obtain high-density plasma with an input electric power of about 500 W. However, when the divergence angle of the plasma ejected from the nozzle having a diameter of about 0.1 mm to 2.5 mm formed on the lid of the discharge vessel of about 10 cc is small and the distance between the substrate and the plasma nozzle is 20 cm, the plasma is Only an area of about 5 cm in diameter on the substrate is irradiated. Therefore, in order to produce an oxide thin film or a nitride thin film on a large area substrate, a plurality of plasma sources as shown in FIG. 1 must be installed together with a power source.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and in order to be able to produce a uniform oxide thin film or nitride thin film on a large area substrate using a simple apparatus, a large area irradiation is performed. It is an object of the present invention to provide a high-frequency plasma source capable of performing the above and a compound thin film forming apparatus including the plasma source.
[0006]
[Means for Solving the Problems]
The high-frequency plasma source of the present invention is a high-frequency plasma source for forming a compound thin film by MBE, and a plurality of discharge containers are arranged in one high-frequency coil, and a plurality of discharges are generated by the one high-frequency coil. Plasma of a reactive gas is generated in each container of the discharge container, and the plasma is irradiated to the substrate from a plasma outlet provided in each discharge container. In this way, if a plasma source configured to provide one coil around a plurality of discharge vessels is used, it is possible to irradiate the substrate with a large area of plasma, and as a result, the MBE can uniformly apply to a large area substrate. It is possible to create a simple compound thin film.
[0007]
The thin film forming apparatus of the present invention is an MBE compound thin film forming apparatus in which a deposition material evaporation source, a high-frequency plasma source for generating reactive gas plasma, and a thin film forming substrate are provided in a vacuum chamber. The plasma source includes a plurality of discharge containers arranged in one high-frequency coil, and generates a reactive gas plasma in each container of the plurality of discharge containers by the one high-frequency coil. Thus, the substrate is irradiated with the plasma from a plasma outlet provided in each discharge vessel. Since a plasma source composed of a plurality of discharge vessels constructed as described above is used, the substrate can be irradiated with a large area, and a uniform compound thin film can be formed on a large area substrate by MBE. It becomes possible. By adjusting the number and position of the discharge vessel, the direction of the plasma outlet, and the like, the plasma distribution on the substrate can be easily controlled, and a thin film having a uniform thickness can be easily formed. In addition, since the plasma is generated in each of the plurality of discharge containers by one high-frequency coil, the apparatus can be simplified. Furthermore, it is economical because it saves power and related equipment.
[0008]
The number of discharge vessels is not particularly limited as long as it is 2 or more, but preferably 2-10. The number can be appropriately selected according to the size of the substrate, the size of the plasma source in which the container is disposed, the distance between the substrate and the plasma jet port, and the like. The distance between the substrate and the plasma outlet is related to uniformity, and the greater the distance, the better the uniformity, but 20-30 cm is realistic.
The diameter of the discharge vessel is preferably 2 to 5 cm. When the diameter of the discharge vessel is less than 2 cm, the divergence angle of the plasma ejected from the plasma outlet is small, and it is difficult to obtain a uniform beam over a large area on the substrate. When the diameter exceeds 5 cm, the volume of the discharge vessel It becomes difficult to obtain high density plasma. The diameter of the jet port provided in the vessel is usually 0.1 to 2 in order to keep the pressure in the vessel at a low vacuum necessary for discharge while keeping the vacuum chamber at a high vacuum. What is necessary is just about 5 mm.
[0009]
In the thin film forming apparatus of the present invention, a high frequency plasma source capable of uniform large area irradiation is used, so a uniform thin film is formed on a large area substrate (for example, φ = 20 to 50 cm in the case of a disk-shaped substrate). can do. In the present invention, a large-area substrate includes a single substrate having a large area and a case where a total area is increased by arranging a plurality of substrates even if the area is small. The substrate is not particularly limited as long as it is used in ordinary MBE, and for example, a sapphire substrate or the like can be used. The apparatus of the present invention can be used for producing various thin films by MBE, and for example, can be used for producing thin films such as oxide films and nitride films.
Further, the plasma source of the thin film forming apparatus of the present invention is provided with a shutter as an adjustment means for the plasma source, but this shutter is not particularly limited as long as the object of the invention can be achieved. A shutter described in JP-A-11-256313 can also be used.
[0010]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a schematic configuration example of a compound thin film forming apparatus provided with a high-frequency plasma source composed of four discharge containers.
As shown in FIG. 2, the thin film forming apparatus includes a vacuum vessel 11, in which a large area substrate holder (diameter: 20 cm) 12, a substrate heating heater 13, a large area sapphire substrate (diameter: 2). (7 inches) 14 is provided, and an evaporation source 15 and a plasma source 17 are provided to face the substrate placed on the substrate holder. The evaporation source is provided with an evaporation source shutter 16. The plasma source 17 includes four discharge containers 18, a plasma jet 19 provided in each discharge container, and one high-frequency coil 20 provided so as to surround the four discharge containers. A gas introduction pipe 21 for introducing the reaction gas into each discharge vessel and a mass flow controller 22 for adjusting the reaction gas flow rate are provided. Four discharge vessels 18 are arranged in the coil 20. A plasma source shutter 23 is provided in the plasma source. As the discharge container 18, four containers having a diameter of 2 cm are provided.
[0011]
First, in order to observe the excited state of the nitrogen plasma generated in the plasma source 17, power of 1.5 kW was applied to the high frequency coil 20 to generate plasma in the four discharge vessels 18. For comparison, one discharge vessel having a diameter of 6 cm was used, and 1.5 kW of electric power was supplied to a high-frequency coil provided around the discharge vessel to generate plasma. About each produced | generated plasma, the spectrum measurement with respect to light emission from an excited nitrogen molecule was performed using the spectrophotometer. FIG. 3 shows a spectrum when the plasma source of the present invention is used, and FIG. 4 shows a spectrum when a plasma source for comparison is used.
[0012]
When a plurality of discharge vessels were used in one high-frequency coil even though the diameter was small, emission from atomic nitrogen was observed with a high excited state, as is apparent from FIG. On the other hand, when only one discharge vessel having a large diameter is used in one high-frequency coil, the excited state is not high unlike the plasma source of the present invention, as is apparent from FIG. Therefore, light emission from atomic nitrogen was not observed, and light emission from nitrogen ions and light emission from excited nitrogen molecules were only observed. This is because the input power per unit volume increases when the volume of the discharge vessel is small. Therefore, when forming a GaN thin film, Ga atoms and atomic nitrogen react to grow on the substrate, and therefore GaN does not grow unless atomic nitrogen is supplied from the plasma source. That is, when only one discharge vessel having a diameter of 6 cm is used with one coil, GaN cannot be grown.
[0013]
Next, on the seven sapphire (0001) substrates 14 having a diameter of 2 and placed on the substrate holder 12 having a diameter of 20 cm by the MBE method using the compound thin film forming apparatus shown in FIG. ) The case where the film is epitaxially grown will be described.
First, after attaching seven sapphire substrates 14 to the large-area substrate holder 12, the substrates were set in the growth chamber of the MBE apparatus. Next, the film forming material Ga was heated to 950 ° C. with the evaporation source shutter 16 closed, and 1.5 kW of electric power was applied to the high-frequency coil 20 with the plasma source shutter 23 closed. Thereafter, 20 sccm of nitrogen gas was passed through the mass flow controller 22 into the discharge vessel, and nitrogen plasma was generated in the plasma source 17. After operating the plasma source 17 in this state for 2 minutes, the flow rate of the mass flow controller 22 was lowered to 5 sccm, and the nitrogen pressure in the plasma source was reduced to generate high-density nitrogen plasma.
[0014]
Next, the sapphire substrate 14 was heated to 850 ° C. for about 30 minutes for cleaning. Thereafter, the temperature of the sire substrate 14 was lowered to 500 ° C., the evaporation source shutter 16 and the plasma source shutter 23 were opened, and about 100 GaN low-temperature buffer layer was deposited on the substrate. After deposition of the low temperature buffer layer, the evaporation source shutter 16 and the plasma source shutter 23 were closed, the substrate temperature was raised to 700 ° C., and the low temperature buffer layer was annealed for 5 minutes. Thereafter, the evaporation source shutter 16 and the plasma source shutter 23 were opened, and a GaN (0001) film was epitaxially grown at a substrate temperature of 700 ° C. for 1 hour. After the growth, the substrate holder 12 was taken out, and the film thickness of the GaN film grown on the seven wafers was measured. As a result, it was about 3200 mm, and the film thickness variation between the wafers was within 2%.
[0015]
In the above-described embodiment, the case where four discharge vessels are used has been described. However, as described above, the number of discharge vessels is not limited to four as long as plasma having a large irradiation area and a high excited state can be generated.
In the above embodiment, a case where a GaN film is formed using a Ga film forming material and nitrogen plasma, that is, a case where a thin film is formed using plasma supplied from a plasma source as a host atom of the film forming material has been described. However, this plasma source may be used for doping. Furthermore, the thin film forming apparatus having the above configuration can be used for forming other nitride films, oxide films, and the like in addition to the GaN film.
In the above embodiment, one mass flow controller is used for four discharge containers, but a mass flow controller is installed in each reaction gas introduction pipe of each discharge container to adjust the pressure in each discharge container. Thus, the density of the plasma ejected from each discharge vessel may be controlled to obtain a uniform film thickness distribution on the substrate.
[0016]
【The invention's effect】
According to the compound thin film forming apparatus provided with the plasma source of the present invention, since the substrate is irradiated with a large area using a plasma source in which a plurality of discharge containers are arranged in one high-frequency coil, By adjusting the number of containers, the position, the direction of the plasma outlet, and the like, the plasma distribution on the substrate can be easily controlled to easily form a thin film with a uniform film thickness. In addition, since the plasma is generated in each of the plurality of discharge containers by one high-frequency coil, the apparatus can be simplified. Furthermore, it is economical because it saves power and related equipment.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a conventional high-frequency plasma source.
FIG. 2 is a schematic configuration diagram of an apparatus for forming a compound thin film using the high-frequency plasma source of the present invention.
FIG. 3 is a spectrum showing an excited state of nitrogen plasma generated in the high-frequency plasma source of the present invention.
FIG. 4 is a spectrum showing an excited state of nitrogen plasma generated in a conventional high-frequency plasma source.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shield plate 2 Discharge vessel 3 Gas inlet 4 High frequency coil 5 Lid 6 Spout 11 Vacuum vessel 12 Substrate holder 13 Substrate heating heater 14 Substrate 15 Evaporation source 16 Evaporation source shutter 17 Plasma source 18 Discharge vessel 19 Plasma jet Outlet 20 Reaction gas introduction pipe 21 Mass flow controller 22 High frequency coil 23 Shutter for plasma source

Claims (2)

分子線エピタキシーによる化合物薄膜作成用の高周波プラズマ源であって、一つの高周波コイル内に複数個の放電用容器を配置してなり、該一つの高周波コイルによって複数個の放電用容器の各容器内に反応ガスのプラズマを生成して、このプラズマが各放電用容器に設けられたプラズマ噴出口から基板に照射されるように構成されていることを特徴とする化合物薄膜作成用高周波プラズマ源。A high-frequency plasma source for preparing a compound thin film by molecular beam epitaxy, wherein a plurality of discharge containers are arranged in one high-frequency coil, and each of the plurality of discharge containers is disposed in each container by the one high-frequency coil. A high-frequency plasma source for forming a compound thin film, wherein a plasma of a reactive gas is generated and the substrate is irradiated with the plasma from a plasma outlet provided in each discharge vessel. 真空室内に、成膜物質の蒸発源と、反応ガスのプラズマを生成する高周波プラズマ源と、薄膜形成用基板とが設けられた分子線エピタキシーによる化合物薄膜作成装置であって、該プラズマ源が、一つの高周波コイル内に複数個の放電用容器を配置してなり、該一つの高周波コイルによって複数個の放電用容器の各容器内に反応ガスのプラズマを生成して、このプラズマが各放電用容器に設けられたプラズマ噴出口から基板に照射されるように構成されていることを特徴とする化合物薄膜作成装置。An apparatus for forming a thin film of compounds by molecular beam epitaxy, in which a deposition material evaporation source, a high-frequency plasma source for generating reactive gas plasma, and a thin film forming substrate are provided in a vacuum chamber, the plasma source comprising: A plurality of discharge containers are arranged in one high-frequency coil, and a plasma of a reactive gas is generated in each container of the plurality of discharge containers by the one high-frequency coil. A compound thin film forming apparatus configured to irradiate a substrate from a plasma jet port provided in a container.
JP2001187953A 2001-06-21 2001-06-21 Plasma source and compound thin film forming apparatus Expired - Lifetime JP4782314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187953A JP4782314B2 (en) 2001-06-21 2001-06-21 Plasma source and compound thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187953A JP4782314B2 (en) 2001-06-21 2001-06-21 Plasma source and compound thin film forming apparatus

Publications (2)

Publication Number Publication Date
JP2003003255A JP2003003255A (en) 2003-01-08
JP4782314B2 true JP4782314B2 (en) 2011-09-28

Family

ID=19027162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187953A Expired - Lifetime JP4782314B2 (en) 2001-06-21 2001-06-21 Plasma source and compound thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP4782314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004439A1 (en) * 2011-07-01 2013-01-10 Reinhausen Plasma Gmbh Device and method for plasma treatment of surfaces

Also Published As

Publication number Publication date
JP2003003255A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
US5096740A (en) Production of cubic boron nitride films by laser deposition
JP2970654B1 (en) Thin film forming equipment
JP4741060B2 (en) Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPS6223450B2 (en)
JPS6050169A (en) Formation of thin film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JP2009035780A (en) Method for producing hydrogenated amorphous silicon and apparatus for forming film thereof
JP2726149B2 (en) Thin film forming equipment
JPH0555194A (en) Apparatus for forming thin film
JP2723053B2 (en) Method and apparatus for forming thin film
JPS61236691A (en) Vapor phase synthesis of diamond
JP2985472B2 (en) Method of forming silicon film
JPH05311429A (en) Thin film forming device
RU2769751C1 (en) Device for deposition of ultra-thick layers of polycrystalline silicon
JP2608957B2 (en) Method for manufacturing substrate for diamond thin film deposition
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH05255859A (en) Thin film forming equipment
JPH01246357A (en) Production of cubic boron nitride film
JPH07240379A (en) Method and device for forming thin film
JPS6293366A (en) Manufacture of boron nitride film
JPS61201694A (en) Vapor phase synthesis method for diamond
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
JPH06252054A (en) Manufacture of p-type cubis-system boron nitride semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term