JPH0529378B2 - - Google Patents

Info

Publication number
JPH0529378B2
JPH0529378B2 JP1217066A JP21706689A JPH0529378B2 JP H0529378 B2 JPH0529378 B2 JP H0529378B2 JP 1217066 A JP1217066 A JP 1217066A JP 21706689 A JP21706689 A JP 21706689A JP H0529378 B2 JPH0529378 B2 JP H0529378B2
Authority
JP
Japan
Prior art keywords
reaction
amines
oximes
solvent
dmhba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1217066A
Other languages
Japanese (ja)
Other versions
JPH0381241A (en
Inventor
Katsuomi Takehira
Yoshito Watanabe
Masao Shimizu
Takashi Hayakawa
Hideo Orita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1217066A priority Critical patent/JPH0381241A/en
Publication of JPH0381241A publication Critical patent/JPH0381241A/en
Publication of JPH0529378B2 publication Critical patent/JPH0529378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、銙料、蟲薬、医薬品等の合成䞭間䜓
ずしお有甚な−ゞメチル−−ヒドロキシ
ベンズアルデヒドの補造方法に関するものであ
る。 さらに詳しくは、本発明は、液盞で銅化合物お
よび皮々の窒玠化合物、即ちアミン類たたはアミ
ン類ず無機酞ずの塩もしくはそれらの混合物、ヒ
ドロキシルアミン類たたはヒドロキシルアミン類
ず無機酞ずの塩もしくはそれらの混合物あるいは
オキシム類たたはオキシム類ず無機酞ずの混合物
の組合せよりなる觊媒を甚い、溶媒ずしお脂肪族
アルコヌルもしくは芳銙族炭化氎玠ず䜎玚脂肪族
アルコヌルの混合物を甚いお、−トリ
メチルプノヌル以䞋TMPず略すを効率よ
く酞玠酞化しお−ゞメチル−−ヒドロキ
シベンズアルデヒド以䞋DMHBAず略すを
補造する方法に関するものである。 〔埓来技術〕 DMHBAは、銙料、蟲薬あるいは医薬品等の
原料ずなる重芁な物質であるが、珟圚のずころ高
率な合成法は未だ確立されおいない。䞀般に、芳
銙族アルデヒド類は銙料、蟲薬、医薬品等の原料
ずなるものが倚く、皮々の方法でそれらの合成法
が怜蚎されおいるがR.A.Sheldon”The Role
of Oxygen in Chemistry and Biochemistry”
p243ElsevierAmsterdam1988、いずれの
方法にも実甚的には問題がある。䟋えば、ヒドロ
キシベンズアルデヒドはプノヌルのフオルミル
化により合成され、これにはラむマヌ・チヌマン
法あるいはロヌヌ・プヌラン法があるがいずれも
副原料を芁するうえ、反応の遞択性が䜎く、トル
゚ンをハロゲン化しおベンズアルヒデドを埗る方
法では、副反応が起こり易いうえ、装眮の腐食を
䌎うずいう欠点を有する。近幎、酞化反応を利甚
する方法が倚く怜蚎されるようにな぀たが、未だ
に詊薬を酞化剀ずしお甚いる方法が倚く、䟋え
ば、塩化クロミル、クロム酞、二酞化マンガン等
の酞化剀を甚いる方法では産業廃棄物の凊理の問
題があり、比范的クリヌンな過酞化氎玠あるいは
有機過酞化物を甚いる堎合でも補造コストが嵩む
うえに、クロム、セリりム等の有害な金属化合物
を觊媒ずしお䜿甚せねばならないずいし欠点を有
する。たた、電解酞化法の適甚も怜蚎されおいる
がS.Torii”Electro−organic Synthesis
Part Oxidations”Monograph in Modern
Chemistry SeriesKodanshaTokyo1985、
電極の耐久性に問題があ぀たり、電力コストが嵩
むために必ずしも工業的補造法ずしお成立しがた
い。空気䞭の酞玠を酞化剀ずしお甚いるこずがで
きれば、実甚的に極めお有利であるが、酞玠酞化
反応では生成したベンズアルデヒドが逐次酞化を
受けお酞を生成し易く、反応の制埡が困難であ
る。この型の酞化反応で䟋倖的な成功䟋ずしお
は、−クレゟヌルをメタノヌル溶媒䞭で倚量の
アルカリの存圚䞋で、塩化コバルト觊媒を甚いお
酞玠酞化しお−ヒドロキシベンズアルデヒドを
合成するこずが出来るがEur.Pat.Appl.
0129391979、この堎合も溶媒のメタノヌル
および加えたアルカリが倚量に消費されるずいう
欠点がある。 〔発明が解決しようずする問題点〕 そこで、本発明者は、TMPを酞玠酞化しお
DMHBAを補造する際の酞化觊媒ならびに酞化
反応溶媒に関しお鋭意研究を重ねた結果、銅化合
物および皮々の窒玠化合物、即ちアミン類たたは
アミン類ず無機酞ずの塩もしくはそれらの混合
物、ヒドロキシルアミン類たたはヒドロキシルア
ミン類ず無機酞ずの塩もしくはそれらの混合物あ
るいはオキシム類たたはオキシム類ず無機酞ずの
混合物の組合せよりなる觊媒を甚い、溶媒ずしお
炭玠数〜の䜎玚脂肪族アルコヌルもしくは芳
銙族炭化氎玠および炭玠数〜の䜎玚脂肪族ア
ルコヌルの混合液を甚いるこずにより、高収率で
目的ずするDMHBAを補造し埗るこずを芋出し、
この知芋に基づいお本発明をなすに至぀た。 〔問題点を解決するための手段〕 すなわち、本発明は、TMPを酞玠酞化しお
DMHBAを補造するにあたり、銅化合物および
皮々の窒玠化合物、即ちアミン類たたはアミン類
ず無機酞ずの塩もしくはそれらの混合物、ヒドロ
キシルアミン類たたはヒドロキシルアミン類ず無
機酞ずの塩もしくはそれらの混合物あるいはオキ
シム類たたはオキシム類ず無機酞ずの混合物の組
合せよりなる觊媒を䜿甚し、溶媒ずしお炭玠数
〜の䜎玚脂肪族アルコヌルもしくは芳銙族炭化
氎玠および炭玠数〜の䜎玚脂肪族アルコヌル
の混合液を䜿甚するこずを特城ずするDMHBA
の補造方法を提䟛するものである。 本発明は、TMPを炭玠数〜の䜎玚脂肪族
アルコヌルもしくは芳銙炭化氎玠および炭玠数
〜の䜎玚脂肪族アルコヌルの混合溶媒䞭に溶解
し、分子状酞玠ず觊媒量の銅化合物および皮々の
窒玠化合物、即ちアミン類たたはアミン類ず無機
酞ずの塩もしくはそれらの混合物、ヒドロキシル
アミン類たたはヒドロキシルアミン類ず無機酞ず
の塩もしくはそれらの混合物あるいはオキシム類
たたはオキシム類ず無機酞ずの混合物の存圚䞋、
宀枩〜200℃で単に攪拌するだけで容易に達成さ
れ極めお簡䟿䞔぀安党な酞化方法である。 本発明においお、TMPを酞化するために酞化
剀ずしお分子状酞玠ならびに觊媒ずしお銅化合物
および皮々の窒玠化合物、即ちアミン類たたはア
ミン類ず無機酞ずの塩もしくはそれらの混合物、
ヒドロキシルアミン類たたはヒドロキシルアミン
類ず無機酞ずの塩もしくはそれらの混合物あるい
はオキシム類たたはオキシム類ず無機酞ずの混合
物の組合せが甚いられる。分子状酞玠源ずしおは
玔酞玠ガスあるいは空気のいずれかを甚いおもよ
く、垞圧〜30Kgcm2の範囲で有効である。觊媒の
䞀成分ずしお甚いられる銅化合物は無機塩、有機
塩等が䜿甚可胜で特に制限は無いが、なかんずく
塩化第䞀銅、塩化第二銅等の塩化物が良奜な反応
成瞟を瀺す。觊媒の他の成分ずしお甚いられる窒
玠化合物であるアミン類に぀いおは、䞀玚、二
玚、および䞉玚の劂䜕を問わず、たた環状アミ
ン、アミノアルコヌル、アミノ酞等の皮々の誘導
䜓が䜿甚可胜で特に制限は無いが、比范的䜎分子
量の化合物が良奜な反応成瞟を䞎える。ヒドロキ
シルアミン類に぀いおはヒドロキシルアミンその
ものの他に、−ゞメチルヒドロキシルアミ
ン等の−ゞアルキルヒドロキシルアミン
類、−メチルヒドロキシルアミン等の−アル
キルヒドロキシルアミン類、−メチルヒドロキ
シルアミン等の−アルキルヒドロキシルアミン
等の皮々のヒドロキシルアミン誘導䜓が䜿甚可胜
であるが、なかんずくヒドロキシルアミン、ヒド
ロキシ尿玠あるいは䜎分子量の−ゞアルキ
ルヒドロキシルアミン類が良奜な反応成瞟を瀺
す。オキシム類に぀いおはアセトン、メチル゚チ
ルケトン、ゞ゚チルケトン等のゞアルキルケトン
類、シクロヘキサノン、シクロオクタノン等の環
状ケトン類、アセトプノン、プロピオプノン
等の芳銙族ケトン類、ゞアセチル、アセチルアセ
トン等のゞケトン類、ゞメドン等の環状ゞケトン
類等のいずれのケトン類、あるいはホルムアルデ
ヒド、アセトアルデヒド、プロピオンアルデヒド
等の脂肪族アルデヒド、ベンズアルデヒド、プ
ニルアセトアルデヒド等の芳銙族アルデヒド類の
いずれのアルデヒド類のオキシムでも䜿甚が可胜
であるが、なかんずくアセトアルドキシム、ベン
ズアルドキシム、アセトンオキシム、−ブタノ
ンオキシム等の比范的䜎分子量のオキシム類が良
奜な反応成瞟を䞎える。たた、それらの無機酞ず
の塩を甚いるに圓぀おの無機酞ずしおは硫酞、ハ
ロゲン酞等の皮々の無機酞が䜿甚可胜であり特に
制限は無いが、塩酞あるいは硫酞が比范的良奜な
結果を䞎える。この無機酞の添加は必須ではな
く、銅化合物ずオキシム類の系でも充分な觊媒掻
性が埗られるが、さらに無機酞を加えた方が觊媒
掻性が向䞊する堎合が倚い。さらに、ヒドロキシ
ルアミン類、オキシム類およびアミン類ず無機酞
ずは必ずしも前も぀お混合物を調補しお甚いる必
芁は無く、別々に添加しおもよく、いずれの堎合
もそれぞれの組成比は特に制限は無いが、ヒドロ
キシルアミン類およびオキシム類モルに察し無
æ©Ÿé…ž0.2〜モルの範囲が良奜な反応結果を䞎え
る。銅化合物に察するアミン類の䜿甚量に぀いお
は、アミンを無機酞ずの塩もしくは混合物ずしお
加える堎合には特に制限は無いが、少なくおも倚
すぎおも反応速床が䜎くなるので、銅化合物モ
ルに぀き0.3〜モルの範囲が奜たしい。アミン
を単独で加える堎合には銅化合物モルに察しお
0.5〜モルの範囲が奜たしく、過剰のアミンの
添加は副反応を促進し、目的化合物である−ヒ
ドロキシベンズアルデヒドを生成を阻害する。銅
化合物に察するヒドロキシルアミン類およびオキ
シム類の䜿甚量に぀いおは特に制限は無いが、少
なくおも倚すぎおも反応速床が䜎くなるので、銅
化合物モルに぀きいずれの堎合も0.3〜モル
の範囲が奜たしい。かくしお埗られる觊媒の䜿甚
量に぀いおは特に制限は無いが、少ないず反応速
床が小さく、倚すぎるず反応埌の分離等で問題が
出おくるので、銅化合物の量にしおTMP1モルに
察しお0.01〜0.1モル量の䜿甚が奜たしい反応結
果を䞎える。 本発明の方法においお、反応に際しお甚いられ
る溶媒に぀いおは、炭玠数〜の䜎玚脂肪族ア
ルコヌルずしおはメタノヌル、゚タノヌル、−
プロパノヌル、む゜プロパノヌル、−ブタノヌ
ル、−ブタノヌル、tert−ブタノヌル、−ア
ミルアルコヌル、−アミルアルコヌル、−ア
ミルアルコヌル、sec−アミルアルコヌル、tert
−アミルアルコヌル、−ヘキサノヌル、−オ
クタノヌル、−オクタノヌル等をあげるこずが
でき、特に制限は無いが、tert−ブタノヌル、
tert−アミルアルコヌルのような䞉玚アルコヌル
が奜たしい結果を䞎える。芳銙族炭化氎玠および
炭玠数〜の䜎玚脂肪族アルコヌルの混合溶媒
を甚いる堎合の芳銙族炭化氎玠ずしおは特に制限
は無いが、ベンれン、トル゚ン、キシレン、クロ
ルベンれン等の比范的䜎沞点で䞔぀酞化に察しお
安定であるものが奜たしい。この際、䞊蚘の炭玠
数〜の䜎玚脂肪族アルコヌル䞀皮以䞊ず芳銙
族炭化氎玠皮以䞊ず芳銙族炭化氎玠皮以䞊ず
を組合せた混合液を溶媒ずしお甚いる。これらの
溶媒は觊媒である銅化合物ならびにアミン類、ヒ
ドロキシルアミン類、オキシム類、およびたた
は無機酞、原料であるTMP、ならびに酞玠の溶
解に優れた効果を瀺し、これらを接觊させるだけ
で目的ずするDMHBAの生成を極めお有効に行
う。芳銙族炭化氎玠ず䜎玚脂肪族アルコヌルずの
組成比に぀いおは、それらの組合せによ぀お異な
るため䞀抂には決められないが、芳銙族炭化氎玠
に察する䜎玚脂肪族アルコヌルの容量比は0.2〜
1.5が奜たしく、特に奜たしくは0.25〜0.8である。 䞊蚘の觊媒はこれらの混合液溶媒䞭に盎接溶解
しお䜿甚するこずもできるが、たた觊媒を氎溶液
ずしお䜿甚するこずもできる。たたこの堎合に甚
いる炭玠数〜の脂肪族アルコヌルずしおは氎
溶液の小さいものであれば特に問題はなく、皮々
の異性䜓を含むブタノヌル、ペンタノヌル、ヘキ
サノヌル、ヘプタノヌル、オクタノヌル等が䜿甚
可胜である。いずれの堎合も、溶媒䞭に溶存する
TMPず氎盞に溶存する觊媒ならびに気盞の酞玠
を効率良く接觊させるために、効率的な攪拌装眮
ならびに通気装眮を備える必芁がある。 本発明の方法における反応の枩床は宀枩〜200
℃付近の枩床で行うこずができるが、あたり䜎枩
すぎるず反応速床が遅くなり、䞀方、高すぎるず
溶媒の損倱あるいは副反応が倚くなるので宀枩〜
80℃の範囲で実斜するのが奜たしい。反応時間
は、反応枩床、酞玠圧力、觊媒の䜿甚量により巊
右されるが、通垞は〜10時間で充分である。 〔発明の効果〕 本発明方法に埓うず、安䟡な垂販の䞀般詊薬で
ある塩化第二銅等の銅化合物およびアミン、ヒド
ロキシルアミン、アセトンオキシム等の窒玠化合
物を觊媒ずしお甚い、炭玠数〜の䜎玚脂肪族
アルコヌルあるいは芳銙族炭化氎玠ず炭玠数〜
の䜎玚脂肪族アルコヌルの奜たしい組成で圢成
される混合液を溶媒ずしお、たた觊媒を氎溶液ず
しお反応に䟛するずきは前蚘の混合液もしくは炭
玠数〜の脂肪族アルコヌル䞭で比范的氎溶性
の䜎いものをを溶媒ずしお、TMPを分子状酞玠
で酞化しお段階で、しかも極めお高い反応速床
ならびに収率でDMHBAを埗るこずができる䞊
に、埓来法の欠陥であ぀た倧量の觊媒を埪環させ
る必芁が無くなるので、工業的なDMHBAの補
造法ずしお奜適である。 本発明においお䜿甚する觊媒の掻性は極めお高
いので、小量の觊媒の䜿甚で充分であり、觊媒を
埪環再䜿甚する必然性は必ずしも無いが、これが
必芁な堎合には觊媒を氎溶液ずしお甚いるこずに
より觊媒の埪環䜿甚が可胜である。この堎合は、
反応䞭は攪拌䞋においお、混合溶媒系では芳銙族
炭化氎玠の芪油性ず䜎玚脂肪族アルコヌルの芪氎
性ずのために、難氎溶性の脂肪族アルコヌルを溶
媒では長鎖のアルキル基の芪油性ず氎酞基の芪氎
性ずのために、氎盞の觊媒ず良奜な懞濁状態ずな
り、氎盞−有機盞−気盞の䞉盞反応を円滑に進行
させるが、反応終了埌、攪拌を停止するず有機盞
ず氎盞ずに急速に分離し、氎盞の觊媒を分離回収
しお再䜿甚するこずができ、同時に有機盞からは
溶媒を蒞留等の手段により陀去しお生成物
DMHBAの単離を容易に行うこずができる。 〔実斜䟋〕 次に本発明を実斜䟋によりさらに詳现に説明す
る。尚、本発明の実斜䟋は本発明の理解をより容
易にするために代衚的なものを揚げたものであ
り、本発明はこれらに限定されるものではない。 尚、䞋蚘の実斜䟋ならびに比范䟋に瀺すTMP
の転化率ならびにDMHBAの収率は−ゞクロ
ロベンれンを内郚暙準ずするガスクロ分析により
求めた。 実斜䟋 〜 内容積10mlのガラス補容噚䞭にTMP2mmol、觊
媒ずしお塩化第二銅二氎塩0.2mmolず各皮の添加
剀を所定量、ならびに−ヘキサノヌルmlを溶
媒ずしお仕蟌み、反応枩床60℃で酞玠圧を860mm
Hgに保ちながら反応させ、酞玠吞収量をガスビ
ナレツトで枬定した。酞玠吞収量がほが停止した
のち、さらに玄〜時間反応させお反応を完結
させ、反応溶液䞭の生成物を分析した。TMPの
転化率ならびに生成したDMHBAの収率を衚
に瀺す。
[Industrial Application Field] The present invention relates to a method for producing 3,5-dimethyl-4-hydroxybenzaldehyde, which is useful as a synthetic intermediate for perfumes, agricultural chemicals, pharmaceuticals, and the like. More specifically, the present invention provides a method for combining copper compounds and various nitrogen compounds in the liquid phase, namely amines or salts of amines and inorganic acids or mixtures thereof, hydroxylamines or salts of hydroxylamines and inorganic acids, or 2,4,6- The present invention relates to a method for efficiently oxidizing trimethylphenol (hereinafter referred to as TMP) with oxygen to produce 3,5-dimethyl-4-hydroxybenzaldehyde (hereinafter referred to as DMHBA). [Prior Art] DMHBA is an important substance that is a raw material for fragrances, agricultural chemicals, medicines, etc., but a high-efficiency synthesis method has not yet been established. In general, aromatic aldehydes are often used as raw materials for fragrances, agricultural chemicals, pharmaceuticals, etc., and various methods of synthesizing them are being investigated (RASheldon, “The Role
of Oxygen in Chemistry and Biochemistry”,
p243, Elsevier, Amsterdam, 1988), both methods have practical problems. For example, hydroxybenzaldehyde is synthesized by formylation of phenol, and the Reimer-Tiemann method or the RhÃŽne-Poulenc method both require auxiliary raw materials and have low reaction selectivity. This method has disadvantages in that side reactions are likely to occur and equipment is corroded. In recent years, many methods using oxidation reactions have been studied, but there are still many methods that use reagents as oxidizing agents. There are problems with the processing of materials, and even if relatively clean hydrogen peroxide or organic peroxide is used, the production cost increases and harmful metal compounds such as chromium and cerium must be used as catalysts. has. Also, the application of electrolytic oxidation method is being considered (S. Torii, “Electro-organic Synthesis,”
Part 1, Oxidations, “Monograph in Modern
Chemistry Series, Kodansha, Tokyo, 1985),
This method is not necessarily viable as an industrial manufacturing method because of problems with the durability of the electrodes and increased power costs. If oxygen in the air could be used as an oxidizing agent, it would be extremely advantageous in practical terms, but in the oxygen oxidation reaction, the generated benzaldehyde is likely to undergo sequential oxidation to produce an acid, making it difficult to control the reaction. An exceptionally successful example of this type of oxidation reaction is the oxygen oxidation of p-cresol using a cobalt chloride catalyst in the presence of a large amount of alkali in a methanol solvent to synthesize p-hydroxybenzaldehyde. is (Eur.Pat.Appl., 0,
012, 939 (1979)), but this case also has the disadvantage that a large amount of the solvent methanol and the added alkali are consumed. [Problems to be solved by the invention] Therefore, the present inventors oxidized TMP with oxygen.
As a result of intensive research on oxidation catalysts and oxidation reaction solvents for producing DMHBA, we have found that copper compounds and various nitrogen compounds, such as amines or salts of amines and inorganic acids, or mixtures thereof, hydroxylamines or hydroxyl A catalyst consisting of a salt of an amine and an inorganic acid or a mixture thereof or a combination of oximes or a mixture of an oxime and an inorganic acid is used, and a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a solvent are used. We have discovered that the desired DMHBA can be produced in high yield by using a mixture of lower aliphatic alcohols having 1 to 8 carbon atoms,
Based on this knowledge, the present invention was accomplished. [Means for solving the problem] That is, the present invention oxidizes TMP with oxygen.
In producing DMHBA, copper compounds and various nitrogen compounds, such as amines or salts of amines and inorganic acids or mixtures thereof, hydroxylamines or salts of hydroxylamines and inorganic acids or mixtures thereof, or oximes are used. A catalyst consisting of a mixture of oximes or oximes and an inorganic acid is used, and the solvent has 1 carbon number.
A DMHBA characterized by using a mixture of a lower aliphatic alcohol having ~8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms.
The present invention provides a method for manufacturing. The present invention uses TMP as a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and 1 to 8 carbon atoms.
~8 dissolved in a mixed solvent of lower aliphatic alcohols, containing molecular oxygen and a catalytic amount of a copper compound and various nitrogen compounds, namely amines or salts of amines and inorganic acids, or mixtures thereof, hydroxylamines. or in the presence of salts of hydroxylamines and inorganic acids or mixtures thereof, or oximes or mixtures of oximes and inorganic acids,
It is an extremely simple and safe oxidation method that can be easily achieved by simply stirring at room temperature to 200°C. In the present invention, in order to oxidize TMP, molecular oxygen as an oxidizing agent and a copper compound and various nitrogen compounds as catalysts, namely amines or salts of amines and inorganic acids, or mixtures thereof,
Hydroxylamines or salts of hydroxylamines and inorganic acids, or mixtures thereof, or combinations of oximes or mixtures of oximes and inorganic acids are used. As the molecular oxygen source, either pure oxygen gas or air may be used, and is effective in the range of normal pressure to 30 kg/cm 2 . As the copper compound used as a component of the catalyst, inorganic salts, organic salts, etc. can be used and there are no particular restrictions, but chlorides such as cuprous chloride and cupric chloride show particularly good reaction results. Regarding amines, which are nitrogen compounds used as other components of the catalyst, various derivatives such as cyclic amines, amino alcohols, and amino acids can be used regardless of whether they are primary, secondary, or tertiary, and there are no particular restrictions. However, relatively low molecular weight compounds give good reaction results. Regarding hydroxylamines, in addition to hydroxylamine itself, N,N-dialkylhydroxylamines such as N,N-dimethylhydroxylamine, N-alkylhydroxylamines such as N-methylhydroxylamine, O-methylhydroxylamine, etc. Although various hydroxylamine derivatives such as O-alkylhydroxylamines can be used, hydroxylamine, hydroxyurea or low molecular weight N,N-dialkylhydroxylamines show particularly good reaction results. Oximes include dialkyl ketones such as acetone, methyl ethyl ketone, and diethyl ketone, cyclic ketones such as cyclohexanone and cyclooctanone, aromatic ketones such as acetophenone and propiophenone, diketones such as diacetyl and acetylacetone, and dimedone. Oximes of any ketones such as cyclic diketones, aliphatic aldehydes such as formaldehyde, acetaldehyde, and propionaldehyde, and aromatic aldehydes such as benzaldehyde and phenylacetaldehyde can be used, but above all, oximes of aldehydes can be used. Relatively low molecular weight oximes such as acetaldoxime, benzaldoxime, acetone oxime, and 2-butanone oxime give good reaction results. In addition, when using salts with these inorganic acids, various inorganic acids such as sulfuric acid and halogen acids can be used, and there are no particular restrictions, but hydrochloric acid or sulfuric acid has yielded relatively good results. give. Addition of this inorganic acid is not essential, and sufficient catalytic activity can be obtained with a system of copper compound and oximes, but catalytic activity is often improved by further adding an inorganic acid. Furthermore, it is not necessary to prepare and use a mixture of hydroxylamines, oximes, amines, and inorganic acids in advance, and they may be added separately, and in either case, there are no particular restrictions on the composition ratio of each. However, a range of 0.2 to 5 moles of inorganic acid per mole of hydroxylamines and oximes gives good reaction results. There is no particular restriction on the amount of amines used in the copper compound when the amine is added as a salt or mixture with an inorganic acid, but if it is too little or too much, the reaction rate will be low, so A range of 0.3 to 3 moles is preferred. When adding amine alone, it is added per mole of copper compound.
The amount is preferably in the range of 0.5 to 1 mole, and addition of excess amine promotes side reactions and inhibits the production of p-hydroxybenzaldehyde, which is the target compound. There is no particular restriction on the amount of hydroxylamines and oximes to be used with respect to the copper compound, but if it is too little or too much, the reaction rate will be low, so in any case, it should be in the range of 0.3 to 3 mol per 1 mol of the copper compound. preferable. There is no particular restriction on the amount of the catalyst obtained in this way, but if it is too small, the reaction rate will be low, and if it is too large, problems will arise with separation after the reaction, etc. Therefore, the amount of copper compound should be 0.01 per mole of TMP. The use of ˜0.1 molar amounts gives favorable reaction results. In the method of the present invention, as for the solvent used in the reaction, lower aliphatic alcohols having 1 to 8 carbon atoms include methanol, ethanol, 1-
Propanol, isopropanol, 1-butanol, 2-butanol, tert-butanol, 1-amyl alcohol, 2-amyl alcohol, 3-amyl alcohol, sec-amyl alcohol, tert
-amyl alcohol, 1-hexanol, 1-octanol, 2-octanol, etc., including but not limited to, tert-butanol,
Tertiary alcohols such as tert-amyl alcohol give favorable results. When using a mixed solvent of aromatic hydrocarbons and lower aliphatic alcohols having 1 to 8 carbon atoms, there are no particular restrictions on the aromatic hydrocarbons; Those that are stable against oxidation are preferred. At this time, a mixture of one or more of the above-mentioned lower aliphatic alcohols having 1 to 8 carbon atoms, one or more aromatic hydrocarbons, and one or more aromatic hydrocarbons is used as a solvent. These solvents are highly effective in dissolving copper compounds as catalysts, amines, hydroxylamines, oximes, and/or inorganic acids, TMP as raw materials, and oxygen, and can be used to achieve the desired purpose simply by bringing them into contact. The production of DMHBA is extremely effective. The composition ratio of aromatic hydrocarbons and lower aliphatic alcohols cannot be determined unconditionally as it varies depending on the combination, but the volume ratio of lower aliphatic alcohols to aromatic hydrocarbons is 0.2 to 0.2.
1.5 is preferred, particularly preferably 0.25-0.8. The above catalysts can be used by directly dissolving them in a mixed solvent, but they can also be used as an aqueous solution. In addition, as the aliphatic alcohol having 1 to 8 carbon atoms used in this case, there is no particular problem as long as the aqueous solution is small, and butanol, pentanol, hexanol, heptanol, octanol, etc. containing various isomers can be used. . In either case, dissolved in the solvent
In order to efficiently bring TMP into contact with the catalyst dissolved in the aqueous phase and oxygen in the gas phase, it is necessary to provide an efficient stirring device and aeration device. The temperature of the reaction in the method of the invention is room temperature to 200 ℃
It can be carried out at a temperature around ℃, but if the temperature is too low, the reaction rate will be slow, while if it is too high, there will be a lot of solvent loss or side reactions.
Preferably, the temperature is 80°C. The reaction time depends on the reaction temperature, oxygen pressure, and amount of catalyst used, but 1 to 10 hours is usually sufficient. [Effects of the Invention] According to the method of the present invention, copper compounds such as cupric chloride, which are inexpensive commercially available general reagents, and nitrogen compounds such as amines, hydroxylamine, acetone oxime, etc. are used as catalysts, and Lower aliphatic alcohol or aromatic hydrocarbon with 1 or more carbon atoms
When a mixed solution formed with a preferable composition of lower aliphatic alcohols of 8 is used as a solvent and a catalyst is subjected to the reaction as an aqueous solution, a comparatively water-soluble aliphatic alcohol in the above-mentioned mixed solution or aliphatic alcohol having 1 to 8 carbon atoms is used as a solvent. It is possible to obtain DMHBA in one step by oxidizing TMP with molecular oxygen using a low-carbon solvent as a solvent, and with an extremely high reaction rate and yield.In addition, it is possible to circulate a large amount of catalyst, which was a drawback of the conventional method. This method is suitable as an industrial method for producing DMHBA because it eliminates the need for additional steps. Since the activity of the catalyst used in the present invention is extremely high, it is sufficient to use a small amount of the catalyst, and it is not necessarily necessary to recycle the catalyst. However, if this is necessary, the catalyst can be used as an aqueous solution. can be used repeatedly. in this case,
During the reaction, under stirring, in a mixed solvent system, due to the lipophilicity of aromatic hydrocarbons and the hydrophilicity of lower aliphatic alcohols, aliphatic alcohols, which are poorly water-soluble, are mixed with the lipophilicity of long-chain alkyl groups in the solvent. Due to the hydrophilic nature of the hydroxyl group, it forms a good suspension state with the catalyst in the aqueous phase, allowing the three-phase reaction of aqueous phase - organic phase - gas phase to proceed smoothly. However, when stirring is stopped after the reaction is completed, the organic phase The catalyst in the aqueous phase can be separated and recovered for reuse, and at the same time, the solvent can be removed from the organic phase by means such as distillation to produce the product.
DMHBA can be easily isolated. [Example] Next, the present invention will be explained in more detail with reference to Examples. Note that the examples of the present invention are representative examples for easier understanding of the present invention, and the present invention is not limited to these examples. In addition, the TMP shown in the following examples and comparative examples
The conversion rate of and the yield of DMHBA were determined by gas chromatography using o-dichlorobenzene as an internal standard. Examples 1 to 5 In a glass container with an internal volume of 10 ml, 2 mmol of TMP, 0.2 mmol of cupric chloride dihydrate as a catalyst, and predetermined amounts of various additives, and 2 ml of n-hexanol as a solvent were charged, and the reaction temperature was 60°C. to increase the oxygen pressure to 860mm
The reaction was carried out while maintaining the Hg level, and the amount of oxygen absorbed was measured using a gas filter. After the amount of oxygen absorption had almost stopped, the reaction was continued for about 1 to 2 hours to complete the reaction, and the products in the reaction solution were analyzed. Table 1 shows the conversion rate of TMP and the yield of DMHBA produced.
Shown below.

【衚】 尚、衚においお添加剀に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 AOアセトンオキシムCH32NOH
およびHC1ずしおは36塩酞氎溶液を甚いた。 実斜䟋 〜 実斜䟋においお、塩化第二銅二氎塩を0.1mm
ol、添加剀ずしおヒドロキシルアミン塩酞塩0.2
mmol、溶媒ずしお−ペンタノヌルあるいは−
ブタノヌルmlを甚いお、実斜䟋ず同様に反応
を行぀た。TMPの転化率ならびに生成した
DMHBAの収率を衚に瀺す。
[Table] The abbreviations used for additives in Table 1 indicate the following compounds. AO=acetone oxime ((CH 3 ) 2 C=NOH)
And 36% hydrochloric acid aqueous solution was used as HC1. Examples 6-7 In Example 1, cupric chloride dihydrate was added to 0.1 mm
ol, hydroxylamine hydrochloride 0.2 as additive
mmol, 2-pentanol or n- as solvent
A reaction was carried out in the same manner as in Example 1 using 2 ml of butanol. Conversion rate of TMP and produced
The yield of DMHBA is shown in Table 2.

【衚】 尚、衚においお、溶媒に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 −PeOH−ペンタノヌルおよび−
BuOH−ブタノヌル。 実斜䟋 〜 実斜䟋および実斜䟋においお、転化剀ずし
おヒドロキシルアミン塩酞塩のかわりにヒドロキ
シルアミン硫酞塩0.1mmolを甚いお、実斜䟋お
よびず同様に反応を行぀た。TMPの転化率な
らびに生成したDMHBAの収率を衚に瀺す。
[Table] In Table 2, the abbreviations used for solvents indicate the following compounds. 2-PeOH=2-pentanol and n-
BuOH = n-butanol. Examples 8 to 9 In Examples 4 and 5, reactions were carried out in the same manner as in Examples 4 and 5, except that 0.1 mmol of hydroxylamine sulfate was used instead of hydroxylamine hydrochloride as a converting agent. Table 3 shows the conversion rate of TMP and the yield of DMHBA produced.

【衚】 実斜䟋 10〜11 実斜䟋においお、塩化第二銅氎塩を0.1mmol、
溶媒ずしお−ヘキサノヌルの代わりに第䞉玚ブ
タノヌルをml、添加剀ずしおヒドロキシルアミ
ン塩酞塩0.2mmolあるいはヒドロキシルアミン硫
é…žå¡©0.1mmolを甚いお、反応枩床40℃で実斜䟋
ず同様に反応を行぀た。TMPの転化率ならびに
生成したDMHBAの収率を衚に瀺す。 比范䟋 〜 実斜䟋10においお、添加剀ずしお塩化リチりム
0.1mmolあるいはゞ゚チルアミン塩酞塩0.2mmolを
甚いお、実斜䟋10ず同様な方法で反応を行぀た。
TMPの添加率ならびに生成したDMHBAの収率
を衚に瀺す。
[Table] Examples 10 to 11 In Example 1, 0.1 mmol of cupric chloride hydrate,
Example 1 Using 2 ml of tertiary butanol instead of n-hexanol as a solvent and 0.2 mmol of hydroxylamine hydrochloride or 0.1 mmol of hydroxylamine sulfate as an additive, the reaction temperature was 40°C.
The reaction was carried out in the same manner. Table 4 shows the conversion rate of TMP and the yield of DMHBA produced. Comparative Examples 1-2 In Example 10, lithium chloride was used as an additive.
The reaction was carried out in the same manner as in Example 10 using 0.1 mmol or 0.2 mmol of diethylamine hydrochloride.
Table 4 shows the addition rate of TMP and the yield of DMHBA produced.

【衚】 尚、衚においお、添加剀に関しお䜿甚した略
号は䞋蚘の化合物を瀺す。 HAHヒドロキシルアミン塩酞塩NH2
OH・HC1およびHASヒドロキシルアミン
硫酞塩NH2OH2・H2SO4。 実斜䟋 12〜21 実斜䟋10においお、溶媒ずしお第䞉玚ブタノヌ
ルの代わりに皮々の脂肪族アルコヌルを甚いお、
実斜䟋10ず同様に反応を行぀た。TMP転化率な
らびに生成したDMHBA収率を衚に瀺す。 比范䟋  実斜䟋17においお、ヒドロキシルアミン塩酞塩
を添加しないで、実斜䟋17ず同様に反応を行぀
た。TMPの転化率ならびに生成したDMHBAの
収率を衚に瀺す。
[Table] In Table 4, the abbreviations used for additives indicate the following compounds. HAH=Hydroxylamine hydrochloride ( NH2
OH・HC1) and HAS=hydroxylamine sulfate ((NH 2 OH) 2・H 2 SO 4 ). Examples 12-21 In Example 10, using various aliphatic alcohols instead of tertiary butanol as the solvent,
The reaction was carried out in the same manner as in Example 10. The TMP conversion rate and the yield of DMHBA produced are shown in Table 5. Comparative Example 3 In Example 17, the reaction was carried out in the same manner as in Example 17 without adding hydroxylamine hydrochloride. Table 5 shows the conversion rate of TMP and the yield of DMHBA produced.

【衚】【table】

【衚】 尚、衚においお、溶媒に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 EtOH゚タノヌル、−プロパノヌル、−
PrOHむ゜プロパノヌル、−BuOH−ブ
タノヌル、−AmOH−アミルアルコヌル、
−AmOH−アミルアルコヌル、−
AmOH−アミルアルコヌルおよび−
HeOH−ヘキサノヌル。 実斜䟋 22 実斜䟋20においお、ヒドロキシルアミン塩酞塩
を0.4mmol甚いお、実斜䟋20ず同様に時間反応
を行぀たずころ、TMPの転化率98.6、
DMHBA58.6の倀が埗られた。 実斜䟋 23〜24 実斜䟋10においお、溶媒ずしお第䞉玚ブタノヌ
ルmlの代わりにむ゜プロパノヌルずトル゚ン
Tolずの混合溶媒を甚いお、実斜䟋10ず同様
に反応を行぀た。TMPの転化率ならびに生成し
たDMHBAの収率を衚に瀺す。
[Table] In Table 5, the abbreviations used for solvents indicate the following compounds. EtOH = ethanol, n-propanol, i-
PrOH=isopropanol, i-BuOH=i-butanol, n-AmOH=n-amyl alcohol,
s-AmOH=s-amyl alcohol, t-
AmOH = t-amyl alcohol and n-
HeOH=n-hexanol. Example 22 In Example 20, a reaction was carried out for 3 hours in the same manner as in Example 20 using 0.4 mmol of hydroxylamine hydrochloride, and the conversion rate of TMP was 98.6%.
A value of 58.6% DMHBA was obtained. Examples 23 to 24 In Example 10, the reaction was carried out in the same manner as in Example 10, using a mixed solvent of isopropanol and toluene (Tol) instead of 2 ml of tertiary butanol as the solvent. Table 6 shows the conversion rate of TMP and the yield of DMHBA produced.

【衚】 実斜䟋 25〜32 実斜䟋11においお、第䞉玚ブタノヌルの代わり
に皮々の脂肪族アルコヌルを溶媒ずしお甚いお、
実斜䟋11ず同様に反応を行぀た。TMPの転化率
ならびに生成したDMHBAの収率を衚に瀺す。
[Table] Examples 25-32 In Example 11, using various aliphatic alcohols as solvents instead of tertiary butanol,
The reaction was carried out in the same manner as in Example 11. Table 7 shows the conversion rate of TMP and the yield of DMHBA produced.

【衚】【table】

【衚】 尚、衚においお、溶媒に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 −OcOH−オクタノヌル。 実斜䟋 33 実斜䟋11においお、第䞉玚ブタノヌルのかわり
にトル゚ン1.0mlずむ゜プロパノヌル1.0mlずの混
合溶媒を甚いお、実斜䟋11ず同様に時間反応を
行぀たずころ、TMPの転化率100ならびに生成
したDMHBAの収率78.0の倀が埗られた。 実斜䟋 34〜37 実斜䟋においお添加剀ずしおゞ゚チルアミン
Et2NH、ゞ−−プロピルアミンPr2NH
あるいはゞ−−ブチルアミンBu2NHを甚
いお、実斜䟋ず同様に反応を行぀た。TMP転
化率ならびに生成したDMHBA収率を衚に瀺
す。
[Table] In Table 7, the abbreviations used for solvents indicate the following compounds. 2-OcOH=2-octanol. Example 33 In Example 11, when a mixed solvent of 1.0 ml of toluene and 1.0 ml of isopropanol was used instead of tertiary butanol and the reaction was carried out for 1 hour in the same manner as in Example 11, the conversion rate of TMP was 100%. In addition, a value of 78.0% yield of DMHBA was obtained. Examples 34 to 37 In Example 1, diethylamine (Et 2 NH) and di-n-propylamine (Pr 2 NH) were used as additives.
Alternatively, the reaction was carried out in the same manner as in Example 1 using di-n-butylamine (Bu 2 NH). The TMP conversion rate and the yield of DMHBA produced are shown in Table 8.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  −トリメチルプノヌルを酞玠酞
化しお−ゞメチル−−ヒドロキシベンズ
アルデヒドを補造するにあたり、銅化合物および
皮々の窒玠化合物、即ちアミン類たたはアミン類
ず無機酞ずの塩もしくはそれらの混合物、ヒドロ
キシルアミン類たたはヒドロキシルアミン類ず無
機酞ずの塩もしくはそれらの混合物、あるいはオ
キシム類たたはオキシム類ず無機酞ずの混合物の
組合せよりなる觊媒を甚いるこずを特城ずする −ゞメチル−−ヒドロキシベンズアル
デヒドの補造方法。  −トリメチルプノヌルを銅化合
物および皮々の窒玠化合物、即ちアミン類たたは
アミン類ず無機酞ずの塩もしくはそれらの混合
物、ヒドロキシルアミン類たたはヒドロキシルア
ミン類ず無機酞ずの塩もしくはそれらの混合物、
あるいはオキシム類たたはオキシム類ず無機酞ず
の混合物の組合せよりなる觊媒により、酞玠酞化
しお−ゞメチル−−ヒドロキシベンズア
ルデヒドを補造する方法においお、溶媒ずしお炭
玠数〜の䜎玚脂肪族アルコヌルもしくは芳銙
族炭化氎玠および炭玠数〜の䜎玚脂肪族アル
コヌルの混合液を䜿甚するこずを特城ずする
−ゞメチル−−ヒドロキシベンズアルデヒド
の補造方法。
[Claims] 1. In producing 3,5-dimethyl-4-hydroxybenzaldehyde by oxidizing 2,4,6-trimethylphenol with oxygen, a copper compound and various nitrogen compounds, namely amines or amines, and A catalyst consisting of a salt with an inorganic acid or a mixture thereof, a hydroxylamine or a salt of a hydroxylamine with an inorganic acid or a mixture thereof, or a combination of oximes or a mixture of an oxime and an inorganic acid is used. A method for producing 3,5-dimethyl-4-hydroxybenzaldehyde. 2 2,4,6-trimethylphenol is combined with a copper compound and various nitrogen compounds, namely amines or salts of amines and inorganic acids, or mixtures thereof, hydroxylamines or salts of hydroxylamines and inorganic acids, or the like. a mixture of
Alternatively, in a method for producing 3,5-dimethyl-4-hydroxybenzaldehyde by oxygen oxidation using a catalyst consisting of oximes or a combination of oximes and an inorganic acid, lower aliphatic compounds having 1 to 8 carbon atoms are used as the solvent. 3, characterized in that a mixture of alcohol or aromatic hydrocarbon and lower aliphatic alcohol having 1 to 8 carbon atoms is used;
A method for producing 5-dimethyl-4-hydroxybenzaldehyde.
JP1217066A 1989-08-23 1989-08-23 Production of 3,5-dimethyl-4-hydroxybenzaldehyde Granted JPH0381241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217066A JPH0381241A (en) 1989-08-23 1989-08-23 Production of 3,5-dimethyl-4-hydroxybenzaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217066A JPH0381241A (en) 1989-08-23 1989-08-23 Production of 3,5-dimethyl-4-hydroxybenzaldehyde

Publications (2)

Publication Number Publication Date
JPH0381241A JPH0381241A (en) 1991-04-05
JPH0529378B2 true JPH0529378B2 (en) 1993-04-30

Family

ID=16698301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217066A Granted JPH0381241A (en) 1989-08-23 1989-08-23 Production of 3,5-dimethyl-4-hydroxybenzaldehyde

Country Status (1)

Country Link
JP (1) JPH0381241A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475156A (en) * 1994-06-06 1995-12-12 General Electric Company Method for making a 2,6-dialkylphenol
DE19723890A1 (en) * 1997-06-06 1998-12-10 Consortium Elektrochem Ind Process for the preparation of aromatic and heteroaromatic aldehydes and ketones
JP4315548B2 (en) 1999-11-19 2009-08-19 株匏䌚瀟ブリヂストン Tire carcass forming apparatus and forming method
JP3574844B2 (en) * 2000-07-19 2004-10-06 倧阪倧孊長 Method for oxidizing a compound using an aldehyde in the presence of a copper catalyst comprising a copper salt and a nitrogen-containing compound

Also Published As

Publication number Publication date
JPH0381241A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US6566555B2 (en) Process for preparing oximes
EP2130583A1 (en) Method for producing carbonyl compound
JP2002226447A (en) Method for producing oxime
US6664423B2 (en) Two-phase ammoximation
JPS6151571B2 (en)
KR20040045457A (en) Catalysts Comprised of N-Substituted Cyclic Imides and Processes for Preparing Organic Compounds with The Catalysts
GB1567607A (en) Process for the preparation of azines
US6680385B2 (en) Catalytic preparation of aryl methyl ketones using a molecular oxygen-containing gas as the oxidant
JPH0529378B2 (en)
JPH11240847A (en) Oxidation of aromatic compound to hydroxy aromatic compound
JP4112877B2 (en) Catalyst composed of cyclic imide compound and method for producing organic compound using the catalyst
EP0369823B1 (en) Method for the preparation of 2,3,5-trimethylbenzoquinone
CN112028774B (en) Synthetic method of benzoate ketone compound
WO2005110962A1 (en) Process for producing adipic acid
JPH0529384B2 (en)
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
JPH05310632A (en) Production of m-phenoxybenzaldehyde
JP2000202297A (en) Novel oxidation catalyst and production of p- benzoquinones using same
EP1027327A1 (en) Formation of quinonediimines from phenylenediamines by catalytic oxidation
JP2003261493A (en) Method for oxidizing alcohol
JP2000072737A (en) Production of oxime
JP2003128614A (en) Production method of carbonyl compound
JPH0529382B2 (en)
JP3526345B2 (en) Method for producing arylalkyl hydroperoxides
JP2002275116A (en) Method for producing aldehyde or ketone using palladium-immobilized hydroxyapatite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term