JPH05290850A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH05290850A
JPH05290850A JP4115395A JP11539592A JPH05290850A JP H05290850 A JPH05290850 A JP H05290850A JP 4115395 A JP4115395 A JP 4115395A JP 11539592 A JP11539592 A JP 11539592A JP H05290850 A JPH05290850 A JP H05290850A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4115395A
Other languages
Japanese (ja)
Inventor
Kazunobu Matsumoto
和伸 松本
Hideaki Yumiba
秀章 弓場
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4115395A priority Critical patent/JPH05290850A/en
Publication of JPH05290850A publication Critical patent/JPH05290850A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium battery having an excellent evenness in discharge voltages by adding positive electrode active material for a lithium secondary battery having a specified potential range to lithium to positive electrode active material. CONSTITUTION:To Cu4O(PO4)2. to be used for positive electrode active material, positive electrode active material for a lithium secondary battery having a potential range of 2V or more to lithium is added. When a lithium battery manufactured this way is discharged, the added positive electrode active material discharges where a discharge voltage of Cu4O(PO4)2 is reduced, and reduction of the voltage can be restricted. When the discharge voltage of Cu4O(PO4)2 is restored to a voltage even part, the added positive electrode active material is charged again. As a result, if the battery is discharged again after stoppage of discharge, because the voltage reduction is restricted, almost even discharge characteristics can be obtained. The positive electrode active material for a lithium secondary battery to be added shall preferably be chalcogenide such as TiS2, MoS2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極活物質としてCu
4 O(PO4 2 を用い、負極にリチウムまたはリチウ
ムを含む物質を用い、電解液として有機電解液を用いる
リチウム電池に係わり、さらに詳しくはその正極の改良
に関する。
FIELD OF THE INVENTION The present invention relates to Cu as a positive electrode active material.
The present invention relates to a lithium battery which uses 4 O (PO 4 ) 2 and uses lithium or a substance containing lithium for the negative electrode and an organic electrolytic solution as an electrolytic solution, and more particularly to improvement of the positive electrode.

【0002】[0002]

【従来の技術】Cu4 O(PO4 2 を正極活物質とし
て用い、負極にリチウムまたはリチウムを含む物質を用
い、電解液として有機電解液を用いるリチウム電池は、
正極活物質のCu4 O(PO4 2 が単位重量当りの容
量が大きいことから、放電容量が大きいという優れた特
徴を有している。
2. Description of the Related Art A lithium battery using Cu 4 O (PO 4 ) 2 as a positive electrode active material, a negative electrode containing lithium or a material containing lithium, and an organic electrolytic solution as an electrolytic solution is
Since the positive electrode active material Cu 4 O (PO 4 ) 2 has a large capacity per unit weight, it has an excellent feature that the discharge capacity is large.

【0003】しかしながら、このCu4 O(PO4 2
を正極活物質として用いたリチウム電池は、M.BRO
USSELYらが報告しているように〔たとえば、M.
BROUSSELY etal.,J.Power S
ources,20,111(1987)〕、放電初期
において電圧(閉路電圧)が低くなるという現象が見ら
れる。そして、放電容量の約10%程度を放電した時点
で電圧が回復する。
However, this Cu 4 O (PO 4 ) 2
Lithium batteries using M. BRO
As reported by USSELY et al. [Eg M.
BROUSSELY et al. , J. Power S
ours, 20 , 111 (1987)], the phenomenon that the voltage (closed circuit voltage) becomes low at the initial stage of discharge is observed. The voltage recovers when about 10% of the discharge capacity is discharged.

【0004】上記のようにCu4 O(PO4 2 を正極
活物質として用いたリチウム電池が放電初期において電
圧低下を生じる理由は、現在のところ必ずしも明確では
ないが、正極活物質のCu4 O(PO4 2 と有機電解
液との反応によって電極表面に被膜が形成されたり、C
4 O(PO4 2 に電子伝導性がないことなどがその
原因であると考えられる。
[0004] reason to cause the voltage drop lithium battery in a discharge initial using Cu 4 O (PO 4) 2 as described above as the positive electrode active material is not necessarily clear at present, Cu 4 of the positive electrode active material A film is formed on the surface of the electrode by the reaction of O (PO 4 ) 2 and the organic electrolyte, or C
It is considered that this is because u 4 O (PO 4 ) 2 has no electron conductivity.

【0005】いずれにせよ、放電初期に電圧が低下する
と、使用する機器によってはその機器の作動電圧以下に
なり、放電初期において機器が停止してしまうという問
題がある。
In any case, if the voltage drops at the initial stage of discharge, it may become lower than the operating voltage of the device depending on the device used, and the device may stop at the initial stage of discharge.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
リチウム電池が持っていた放電初期に電圧が低下すると
いう問題点を解決し、放電電圧の平坦性が優れたリチウ
ム電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problem of the conventional lithium battery that the voltage drops at the initial stage of discharge, and provides a lithium battery having excellent discharge voltage flatness. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明は、Cu4 O(P
4 2 にTiS2 、MoS2 などのリチウムに対して
2V以上の電位域を持つリチウム二次電池用正極活物質
を添加することによって、上記目的を達成したものであ
る。
The present invention is directed to Cu 4 O (P
O 4) by adding the positive electrode active material for a lithium secondary battery having 2 to TiS 2, MoS 2V or more potential region of the lithium, such as 2, is obtained by achieving the above object.

【0008】Cu4 O(PO4 2 に上記のようなリチ
ウム二次電池用正極活物質を添加することによって放電
初期の電圧低下を抑制し得る理由を、負極にリチウムを
用い、リチウム二次電池用正極活物質としてTiS
2 (二硫化チタン)を用いた場合を例にあげて説明する
と、次の通りである。
The reason why the voltage drop at the initial stage of discharge can be suppressed by adding the above-mentioned positive electrode active material for a lithium secondary battery to Cu 4 O (PO 4 ) 2 is that lithium is used as a negative electrode for the lithium secondary battery. TiS as a positive electrode active material for batteries
An example of using 2 (titanium disulfide) is as follows.

【0009】すなわち、負極にリチウムを用い、正極活
物質としてCu4 O(PO4 2 を用い、電解液として
有機電解液を用いたリチウム電池を作製し、このリチウ
ム電池をある条件下で放電させると、電圧が平坦になる
ところでは2.3V程度の電圧を示すが、放電初期には
2.0V近くまで電圧が低下する。また、この電圧低下
は、電圧が平坦となった領域でさえも放電を一旦休止す
ると再び現れる。
That is, a lithium battery was prepared using lithium as the negative electrode, Cu 4 O (PO 4 ) 2 as the positive electrode active material, and an organic electrolytic solution as the electrolytic solution, and discharging the lithium battery under certain conditions. By doing so, a voltage of about 2.3 V is shown at a flat voltage, but the voltage drops to near 2.0 V at the initial stage of discharge. Also, this voltage drop reappears when the discharge is paused even in a region where the voltage becomes flat.

【0010】そこで、リチウムに対して2.5V〜1.
8Vの電位域を持つTiS2 をCu4 O(PO4 2
添加して、それ以外は上記と同様にリチウム電池を作製
し、この電池を放電すると、Cu4 O(PO4 2 の放
電電圧が低下したところではTiS2 が放電するので、
電圧低下が抑制される。また、Cu4 O(PO4 2
放電電圧が2.3V程度の電圧平坦部まで回復すれば、
一旦放電したTiS2が再び2.3V程度まで充電され
る。
Therefore, 2.5 V to 1.
When TiS 2 having a potential range of 8 V was added to Cu 4 O (PO 4 ) 2 and a lithium battery was prepared in the same manner as above except that TiS 2 was discharged and the battery was discharged, Cu 4 O (PO 4 ) 2 Since TiS 2 discharges when the discharge voltage drops,
The voltage drop is suppressed. Also, if the discharge voltage of Cu 4 O (PO 4 ) 2 recovers to a voltage flat portion of about 2.3 V,
The once discharged TiS 2 is charged again to about 2.3V.

【0011】その結果、放電休止後に再放電しても、C
4 O(PO4 2 の放電電圧が低下すると先に充電さ
れたTiS2 が再び放電するので、電圧低下が抑制され
るようになる。
As a result, the C
When the discharge voltage of u 4 O (PO 4 ) 2 decreases, the previously charged TiS 2 is discharged again, so that the voltage decrease is suppressed.

【0012】本発明において、Cu4 O(PO4 2
添加するためのリチウムに対して2V以上の電位域を持
つリチウム二次電池用正極活物質としては、上記のTi
2以外にも、たとえばMoS2 、VSe、MoS3
Fe0.250.752 、NbSe3 などのカルコゲナイド
やLi2 MoO3 、V6 13、アモルファスV2 5
LiMn3 6 などのリチウム複合酸化物などを用いる
ことができる。特にカルコゲナイドは電子伝導性が高い
ことから好適に使用される。
In the present invention, as the positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium to be added to Cu 4 O (PO 4 ) 2 , the above-mentioned Ti is used.
In addition to S 2 , for example, MoS 2 , VSe, MoS 3 ,
Fe 0.25 V 0.75 S 2 , chalcogenide such as NbSe 3 , Li 2 MoO 3 , V 6 O 13 , amorphous V 2 O 5 ,
A lithium composite oxide such as LiMn 3 O 6 can be used. In particular, chalcogenide is preferably used because it has high electron conductivity.

【0013】また、これらのリチウム二次電池用正極活
物質において、そのリチウムに対する電位域が2V以上
であることを要件にしているのは、放電条件により若干
の相違があるものの、放電初期の電圧低下が2.0V近
くにまでなり、この2.0Vから平坦部の電圧(2.3
V)までを補う必要があるという理由によるものであ
る。また、この理由からも明らかであるように、リチウ
ム二次電池用正極活物質としては、2.0〜2.3V間
で大きな容量を持つものが特に好ましい。
Further, in these positive electrode active materials for lithium secondary batteries, the requirement that the potential range with respect to lithium is 2 V or more is that the voltage at the initial stage of discharge is slightly different depending on the discharge conditions. The drop becomes close to 2.0V, and from this 2.0V, the voltage of the flat part (2.3
This is because it is necessary to compensate up to V). Further, as is clear from this reason, as the positive electrode active material for a lithium secondary battery, one having a large capacity between 2.0 and 2.3 V is particularly preferable.

【0014】これらのリチウムに対して2V以上の電位
域を持つリチウム二次電池用正極活物質のCu4 O(P
4 2 に対する添加量は、特に限定されるものではな
いが、リチウムに対して2V以上の電位域を持つリチウ
ム二次電池用正極活物質がCu4 O(PO4 2 との総
量中において2〜30重量%になるようにするのが好ま
しい。
Cu 4 O (P) which is a positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to these lithium
The addition amount to O 4 ) 2 is not particularly limited, but the positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium is Cu 4 O (PO 4 ) 2 in the total amount. It is preferable that the amount is 2 to 30% by weight.

【0015】すなわち、リチウムに対して2V以上の電
位域を持つリチウム二次電池用正極活物質の添加量が2
重量%より少ない場合は、放電初期における電圧低下を
充分に抑制することができない。一方、リチウムに対し
て2V以上の電位域を持つリチウム二次電池用正極活物
質の添加量が多くなっても格別の欠点は生じないが、リ
チウムに対して2V以上の電位域を持つリチウム二次電
池用正極活物質の添加量が多くなりすぎるとCu4
(PO4 2 の利点である放電容量の大きさが充分に発
揮できなくなるので、前記のように、リチウムに対して
2V以上の電位域を持つリチウム二次電池用正極活物質
がCu4 O(PO4 2 との総量中で30重量%を超え
ないようにするのが好ましい。ちなみに、放電容量につ
いて説明すると、Cu4 O(PO4 2 の理論放電容量
は470mAh/gであるが、前述のTiS2 の理論放
電容量は240mAh/gであり、Cu4 O(PO4
2 の単位重量当りの放電容量はTiS2 に比べて2倍近
く大きい。
That is, the addition amount of the positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium is 2
If the amount is less than weight%, the voltage drop at the initial stage of discharge cannot be sufficiently suppressed. On the other hand, even if the amount of the positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium increases, no particular drawback occurs, but the lithium secondary battery having a potential range of 2 V or more with respect to lithium does not occur. If the amount of the positive electrode active material for the secondary battery added is too large, Cu 4 O
Since the magnitude of the discharge capacity, which is an advantage of (PO 4 ) 2 , cannot be fully exhibited, as described above, the positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium is Cu 4 O. It is preferable not to exceed 30% by weight in the total amount with (PO 4 ) 2 . By the way, to explain the discharge capacity, the theoretical discharge capacity of Cu 4 O (PO 4 ) 2 is 470 mAh / g, but the theoretical discharge capacity of TiS 2 is 240 mAh / g, and Cu 4 O (PO 4 ) 2
Discharge capacity per unit weight of 2 nearly double larger than that of TiS 2.

【0016】負極にはリチウムまたはリチウムを含む物
質が用いられるが、そのリチウムを含む物質としてはリ
チウム合金やリチウム・カーボンなどがあげられる。そ
して、上記リチウム合金としては、たとえばリチウム−
アルミニウム、リチウム−鉛、リチウム−インジウム、
リチウム−ガリウム、リチウム−インジウム−ガリウム
などがあげられる。
Lithium or a substance containing lithium is used for the negative electrode, and examples of the substance containing lithium include lithium alloys and lithium-carbon. And, as the lithium alloy, for example, lithium-
Aluminum, lithium-lead, lithium-indium,
Examples thereof include lithium-gallium and lithium-indium-gallium.

【0017】電解液には、たとえばLiCF3 SO3
LiClO4 、LiPF6 、LiBF4 、LiC4 9
SO3 などの電解質の1種または2種以上を、たとえば
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、プロピレンカーボネート、エチレンカーボネート、
γ−ブチロラクトン、テトラヒドロフラン、1,3−ジ
オキソランなどの単独または2種以上の混合溶媒に溶解
した有機電解液が用いられる。
The electrolytic solution may be, for example, LiCF 3 SO 3 ,
LiClO 4 , LiPF 6 , LiBF 4 , LiC 4 F 9
One or more electrolytes such as SO 3 may be used, for example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate,
An organic electrolytic solution, such as γ-butyrolactone, tetrahydrofuran, or 1,3-dioxolane, may be used alone or in a mixed solvent of two or more kinds.

【0018】[0018]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。
EXAMPLES Next, the present invention will be described more specifically by way of examples.

【0019】実施例1 まず、正極活物質として用いるCu4 O(PO4 2
以下に示すようにして合成した。
Example 1 First, Cu 4 O (PO 4 ) 2 used as a positive electrode active material was synthesized as follows.

【0020】CuOにH3 PO4 水溶液を加え、攪拌し
ながら、100℃で6時間反応させてCu2 (OH)P
4 を合成した。H3 PO4 濃度は3.9重量%から1
1重量%で純粋なものが得られた。得られたCu(O
H)PO4 を大気中で加熱して脱水し、目的とするCu
4 O(PO4 2 を得た。加熱温度は700〜900℃
でCu4 O(PO4 2 が得られた。
An aqueous solution of H 3 PO 4 was added to CuO, and the mixture was reacted at 100 ° C. for 6 hours while stirring to form Cu 2 (OH) P.
O 4 was synthesized. H 3 PO 4 concentration is 3.9% by weight to 1
Pure was obtained at 1% by weight. Obtained Cu (O
H) PO 4 is heated in the atmosphere to be dehydrated, and the target Cu
4 O (PO 4 ) 2 was obtained. The heating temperature is 700-900 ℃
Thus, Cu 4 O (PO 4 ) 2 was obtained.

【0021】得られたCu4 O(PO4 2 にTiS2
を両者の総量中15重量%になるように添加して混合
し、得られた混合物に電子伝導助剤としてアセチレンブ
ラックと結着剤としてポリテトラフルオロエチレンを8
0:18:2(重量比)の割合で混合して正極合剤を調
製した。
[0021] The obtained Cu 4 O (PO 4) 2 to TiS 2
Is added so as to be 15% by weight in the total amount of both, and mixed, and to the resulting mixture is added acetylene black as an electron conduction aid and polytetrafluoroethylene as a binder.
The positive electrode mixture was prepared by mixing at a ratio of 0: 18: 2 (weight ratio).

【0022】得られた正極合剤を金型内に充填し、1t
/cm2 で直径10mmの円板状に加圧成形したのち、
250℃で熱処理して正極とした。得られた正極1個当
りの重量は60mgであった。
The obtained positive electrode mixture was filled in a mold and 1 t
After pressure molding into a disk shape with a diameter of 10 cm / cm 2 and a diameter of 10 mm,
It heat-processed at 250 degreeC and it was set as the positive electrode. The weight of the obtained positive electrode was 60 mg.

【0023】この正極を用い、図1に示すボタン形のリ
チウム電池を作製した。
Using this positive electrode, a button type lithium battery shown in FIG. 1 was produced.

【0024】図1において、1は上記の正極であり、2
は直径14mmの円板状のリチウムからなる負極であ
る。3はポリプロピレン不織布からなるセパレータであ
り、4はステンレス鋼製の正極缶である。5はステンレ
ス鋼製網からなる正極集電体で、上記正極1の加圧成形
時にその一方の面に配設したものであり、6はステンレ
ス鋼製で表面にニッケルメッキを施した負極缶である。
In FIG. 1, 1 is the above positive electrode, and 2
Is a disk-shaped negative electrode made of lithium having a diameter of 14 mm. 3 is a separator made of polypropylene non-woven fabric, and 4 is a positive electrode can made of stainless steel. Reference numeral 5 denotes a positive electrode current collector made of a stainless steel net, which is disposed on one surface of the positive electrode 1 at the time of pressure molding, and 6 denotes a negative electrode can made of stainless steel and having a surface plated with nickel. is there.

【0025】7はステンレス鋼製網からなる負極集電体
で、上記負極缶6の内面にスポット溶接されていて、前
記の負極2はこのステンレス鋼製網からなる負極集電体
7に圧着されている。8はポリプロピレン製の環状ガス
ケットであり、この電池にはエチレンカーボネートと
1,2−ジメトキシエタンとの容量比1:1の混合溶媒
にLiCF3 SO3 を0.6mol/l溶解した電解液
が注入されている。
Reference numeral 7 denotes a negative electrode current collector made of stainless steel net, which is spot-welded to the inner surface of the negative electrode can 6. The negative electrode 2 is pressure-bonded to the negative electrode current collector 7 made of stainless steel net. ing. 8 is a polypropylene annular gasket, and the battery is injected with an electrolyte solution in which 0.6 mol / l of LiCF 3 SO 3 is dissolved in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1. Has been done.

【0026】比較例1 Cu4 O(PO4 2 にTiS2 を添加しなかったほか
は、実施例1と同様にしてリチウム電池を作製した。
Comparative Example 1 A lithium battery was prepared in the same manner as in Example 1 except that TiS 2 was not added to Cu 4 O (PO 4 ) 2 .

【0027】上記実施例1の電池および比較例1の電池
を0.785mAの電流で連続放電させた。その結果を
図2に示す。なお、図2において、横軸は正極の重量あ
たりの容量(mAh/g)である。
The battery of Example 1 and the battery of Comparative Example 1 were continuously discharged at a current of 0.785 mA. The result is shown in FIG. In FIG. 2, the horizontal axis represents the capacity per unit weight of the positive electrode (mAh / g).

【0028】図2に示す結果から明らかなように、Cu
4 O(PO4 2 を単独で用いた比較例1の電池では、
放電開始時から放電容量の約10%に相当する部分まで
の領域において電圧の低下が認められた。特に放電開始
時では2V近くにまで電圧が低下した。これに対し、C
4 O(PO4 2 にTiS2 を添加した実施例1の電
池では、比較例1の電池にみられたような電圧低下は認
められず、ほぼ平坦に近い放電特性を示した。
As is clear from the results shown in FIG.
In the battery of Comparative Example 1 using 4 O (PO 4 ) 2 alone,
A voltage drop was observed in the region from the start of discharge to the portion corresponding to about 10% of the discharge capacity. In particular, at the start of discharge, the voltage dropped to nearly 2V. On the other hand, C
In the battery of Example 1 in which TiS 2 was added to u 4 O (PO 4 ) 2 , the voltage drop observed in the battery of Comparative Example 1 was not observed, and the discharge characteristics were almost flat.

【0029】なお、本発明では、Cu4 O(PO4 2
にリチウムに対して2V以上の電位域を持つリチウム二
次電池用正極活物質を添加するが、それに代えて一次電
池用の正極活物質、たとえば二酸化マンガンなどを添加
してもよい。ただし、その場合は、Cu4 O(PO4
2 の電位が2.3V付近に回復しても二酸化マンガンな
どが充電されることがないので、一旦放電して休止した
後に再放電した時にその放電初期の電圧低下を防止する
ことができず、本発明のような効果を奏し得ない。ま
た、本発明はCu4 O(PO4 2 の特性を改善した
が、それ以外にも、CuO−P2 5 系の化合物、たと
えばCu3 (PO4 2 、Cu5 2 (PO4 2 を正
極活物質として用いる場合に、TiS2 などのリチウム
二次電池用正極活物質を添加しても放電初期の電圧低下
を抑制し得る。
In the present invention, Cu 4 O (PO 4 ) 2
In addition, a positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium is added, but a positive electrode active material for a primary battery, such as manganese dioxide, may be added instead. However, in that case, Cu 4 O (PO 4 )
Even if the potential of 2 is restored to around 2.3V, manganese dioxide and the like are not charged, so it is impossible to prevent the voltage drop at the initial stage of discharge when the battery is once discharged and then re-discharged. The effect of the present invention cannot be obtained. Further, although the present invention has improved the characteristics of Cu 4 O (PO 4 ) 2 , other than that, CuO-P 2 O 5 based compounds such as Cu 3 (PO 4 ) 2 and Cu 5 O 2 (PO 4 ) When 2 is used as the positive electrode active material, even if a positive electrode active material for lithium secondary batteries such as TiS 2 is added, the voltage drop at the initial stage of discharge can be suppressed.

【0030】[0030]

【発明の効果】以上説明したように、本発明では、Cu
4 O(PO4 2 にTiS2 などのリチウムに対して2
V以上の電位域を持つリチウム二次電池用正極活物質を
添加することによって、Cu4 O(PO4 2 を単独で
使用した場合にみられたような放電初期の電圧低下を抑
制することができた。
As described above, according to the present invention, Cu
4 O (PO 4) 2 2 in the lithium such as TiS 2
By adding a positive electrode active material for a lithium secondary battery having a potential range of V or higher, it is possible to suppress the voltage drop at the initial stage of discharge as seen when Cu 4 O (PO 4 ) 2 is used alone. I was able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るリチウム電池の一例を示す断面図
である。
FIG. 1 is a cross-sectional view showing an example of a lithium battery according to the present invention.

【図2】実施例1の電池および比較例1の電池の放電特
性を示す図である。
2 is a diagram showing discharge characteristics of the battery of Example 1 and the battery of Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 Positive electrode 2 Negative electrode 3 Separator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質としてCu4 O(PO4 2
を用い、負極にリチウムまたはリチウムを含む物質を用
い、電解液として有機電解液を用いるリチウム電池にお
いて、リチウムに対して2V以上の電位域を持つリチウ
ム二次電池用正極活物質をCu4 O(PO4 2 に添加
したことを特徴とするリチウム電池。
1. A positive electrode active material comprising Cu 4 O (PO 4 ) 2
In a lithium battery in which lithium or a substance containing lithium is used for the negative electrode and an organic electrolytic solution is used as the electrolytic solution, a positive electrode active material for a lithium secondary battery having a potential range of 2 V or more with respect to lithium is Cu 4 O ( A lithium battery characterized by being added to PO 4 ) 2 .
【請求項2】 上記リチウム二次電池用正極活物質がT
iS2 、MoS2 などのカルコゲナイドであることを特
徴とする請求項1記載のリチウム電池。
2. The positive electrode active material for a lithium secondary battery is T
The lithium battery according to claim 1, which is a chalcogenide such as iS 2 or MoS 2 .
JP4115395A 1992-04-07 1992-04-07 Lithium battery Withdrawn JPH05290850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4115395A JPH05290850A (en) 1992-04-07 1992-04-07 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115395A JPH05290850A (en) 1992-04-07 1992-04-07 Lithium battery

Publications (1)

Publication Number Publication Date
JPH05290850A true JPH05290850A (en) 1993-11-05

Family

ID=14661500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115395A Withdrawn JPH05290850A (en) 1992-04-07 1992-04-07 Lithium battery

Country Status (1)

Country Link
JP (1) JPH05290850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242981A (en) * 2002-02-14 2003-08-29 Hitachi Maxell Ltd Non-aqueous electrolyte battery and its manufacturing method
JP2006344395A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2007214147A (en) * 1996-04-23 2007-08-23 Board Of Regents Univ Of Texas System Positive electrode material for secondary (rechargeable) lithium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214147A (en) * 1996-04-23 2007-08-23 Board Of Regents Univ Of Texas System Positive electrode material for secondary (rechargeable) lithium battery
JP2007294463A (en) * 1996-04-23 2007-11-08 Board Of Regents Univ Of Texas System Positive electrode material for secondary (recharging) lithium battery
JP2003242981A (en) * 2002-02-14 2003-08-29 Hitachi Maxell Ltd Non-aqueous electrolyte battery and its manufacturing method
JP2006344395A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cathode for lithium secondary battery and utilization and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
US5620812A (en) Non-aqueous electrolyte secondary battery
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
KR100593772B1 (en) Nonaqueous Electrolyte Secondary Battery
JP3197779B2 (en) Lithium battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH08321326A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
US6589689B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
KR100555972B1 (en) Cathode active material and lithium secondary battery employing the same
JPH05290850A (en) Lithium battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH01304664A (en) Nonaqueous electrolyte secondary battery
JP2963452B1 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2000106188A (en) Nonaqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP2000106217A (en) Nonaqueous electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery
JPH0350385B2 (en)
JP2000353523A (en) Positive electrode active material for nonaqueous secondary battery, its manufacture, and nonaqueous secondary battery
JPH10334917A (en) Nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608