JPH05290779A - Preparation of sample for transmission type electron microscope - Google Patents

Preparation of sample for transmission type electron microscope

Info

Publication number
JPH05290779A
JPH05290779A JP8853692A JP8853692A JPH05290779A JP H05290779 A JPH05290779 A JP H05290779A JP 8853692 A JP8853692 A JP 8853692A JP 8853692 A JP8853692 A JP 8853692A JP H05290779 A JPH05290779 A JP H05290779A
Authority
JP
Japan
Prior art keywords
sample
etching solution
electron microscope
chemical etching
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8853692A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8853692A priority Critical patent/JPH05290779A/en
Publication of JPH05290779A publication Critical patent/JPH05290779A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the of sample for transmission type electron microscope by adhering the specified chemical etching solution to a part of the surface of a sample, which is polished to about 30mum of thickness by the mechanical polishing, to form a groove or a hole. CONSTITUTION:A wafer having the AlGaInP group semi-conductor laser structure, which is obtained by forming crystals on a GaAs substrate, is pinched by dummy glass plates, and is fixed to a reinforcing ring 27, and after the mechanical polishing, a drop of the chemical etching solution 32 is dropped to a desired position and adhered to the surface of the sample for etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超薄膜を作製して層構造
や結晶欠陥等を観察する透過電子顕微鏡観察において所
望の位置でのエッチングもしくは極めて迅速なエッチン
グを行うことのできる透過電子顕微鏡用試料の作製方法
を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for a transmission electron microscope capable of performing an etching at a desired position or an extremely rapid etching in a transmission electron microscope observation for producing an ultrathin film and observing a layer structure and crystal defects. A method for preparing a sample is provided.

【0002】[0002]

【従来の方法】最近の半導体結晶成長技術の著しい進歩
により単原子層レベルでの結晶成長が可能となった。特
に、有機金属気相成長法(MOVPE法)や分子線エピ
タキシ−法(MBE法)により、組成の異なる極めて薄
い層を積層した超格子構造を作製したり、これらの超格
子を活性領域に用いた半導体レーザや光検出器等の光デ
バイスやヘテロ構造を利用したHEMTなどの高速電子
デバイスなどが次々と開発されている。
2. Description of the Related Art Recent remarkable progress in semiconductor crystal growth technology has enabled crystal growth at the monoatomic layer level. In particular, a metal-organic vapor phase epitaxy method (MOVPE method) or a molecular beam epitaxy method (MBE method) is used to fabricate a superlattice structure in which extremely thin layers having different compositions are laminated, or these superlattices are used as an active region. Optical devices such as semiconductor lasers and photodetectors, and high-speed electronic devices such as HEMTs using a heterostructure have been developed one after another.

【0003】従来、これらデバイスに用いるウエハ−の
評価方法として透過電子顕微鏡が用いられている。透過
電子顕微鏡観察用試料の作製方法として図2に示すよう
に観察すべき試料をダミーガラス21、26で挟んで接
着して1mm以下の厚みに機械的に切断し、その後、補
強リング27に固定して機械的研磨により30μm以下
の厚みにしてイオンミリング装置内に入れる。図6に示
すようにイオンビ−ム61を試料31表面すれすれに照
射して表面を少しづつスパッタ−エッチングして数Å以
下もしくは被観察領域でない領域に小さな穴があくまで
スパッタ−エッチングを行って透過電子顕微鏡用試料を
作製していた。
Conventionally, a transmission electron microscope has been used as a method for evaluating wafers used in these devices. As a method for preparing a sample for observation with a transmission electron microscope, as shown in FIG. 2, a sample to be observed is sandwiched between dummy glasses 21 and 26, adhered and mechanically cut to a thickness of 1 mm or less, and then fixed to a reinforcing ring 27. Then, it is mechanically polished to a thickness of 30 μm or less and put in an ion milling device. As shown in FIG. 6, the ion beam 61 is radiated to the surface of the sample 31 so that the surface is sputter-etched little by little, and a small hole is sputter-etched in a region less than a few Å or the observed region. A sample for a microscope was prepared.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このイ
オンミリングにはかなりの時間を要するものもあり、2
〜3日かけて透過電子顕微鏡用試料を作製しても被観察
領域がすべてエッチング除去されて観察できない領域だ
けが残っていて結局観察用試料ができない場合が多い。
特に、InP系の混晶などは試料作製が困難である。さ
らに、所定の領域を観察するために所定の位置でエッチ
ングを停止するのはほとんど不可能であり、少しエッチ
ングしては観察できるかどうかを透過電子顕微鏡で確認
しながら観察用試料を作製しているのが現状である。こ
の場合も試料作製に時間を要する割には観察したい領域
を薄膜化するのは難しい。
However, this ion milling sometimes takes a considerable amount of time.
Even if a sample for a transmission electron microscope is manufactured for 3 days, the observed region is often completely removed by etching, leaving only an unobservable region.
In particular, it is difficult to prepare a sample for InP-based mixed crystals. Furthermore, it is almost impossible to stop etching at a predetermined position in order to observe a predetermined region, and while observing with a transmission electron microscope it is possible to prepare an observation sample while observing whether it can be observed with a little etching. It is the current situation. Even in this case, it is difficult to thin the region to be observed, although it takes time to prepare the sample.

【0005】そこで本発明では、機械的研磨により30
μm程度までの厚さに研磨された試料表面の一部に所定
の化学エッチング溶液を付着して溝あるいは穴を形成す
ることにより透過電子顕微鏡用試料の作製方法を提供す
ることを目的とする。
Therefore, in the present invention, 30 is obtained by mechanical polishing.
An object of the present invention is to provide a method for producing a sample for a transmission electron microscope by forming a groove or a hole by adhering a predetermined chemical etching solution to a part of the surface of the sample that has been polished to a thickness of up to about μm.

【0006】[0006]

【課題を解決するための手段】この発明の要旨とすると
ころは、化学エッチング溶液を用いて所望の微小領域を
エッチングして透過電子顕微鏡観察用にまで薄膜化した
りあるいは極めて迅速にエッチングをして観察までに要
する時間の飛躍的な短縮を行う方法を提供するものであ
る。化学エッチング溶液を一滴づつ落下させて試料表面
に付着させたり小型噴霧器を用いて霧状にしたり煮沸し
て蒸気状にして非常に小さな球形状の化学エッチング溶
液を試料表面に付着させて透過電子顕微鏡用試料の作製
方法を提供する。
The gist of the present invention is to etch a desired minute region with a chemical etching solution to form a thin film for observation with a transmission electron microscope, or to perform etching very quickly. It is intended to provide a method for dramatically reducing the time required for observation. The chemical etching solution is dropped drop by drop to adhere to the sample surface, or it is atomized using a small atomizer or boiled into a vapor form and a very small spherical chemical etching solution is adhered to the sample surface, and a transmission electron microscope is used. A method for producing a sample for use is provided.

【0007】[0007]

【作用】半導体のデバイスは通常300μm以上の厚み
を有する基板の上に結晶成長して表面から高々10μm
の厚みの領域を活性領域として使用するので、エピ膜の
みをエッチングする場合とエピ膜と基板の両方をエッチ
ングする場合の2通りある。組成の異なる積層構造から
なる半導体素子において断面を観察する場合選択的化学
エッチング溶液を用いるとエピ膜あるいは基板のみをエ
ッチングして一方の様子が分かるし非選択性化学エッチ
ング溶液を用いてエピ膜と基板を同時にエッチングする
とエピ膜と基板界面の様子が観察できる。従って、これ
らは必要に応じて使い分ければ極めて迅速に透過電子顕
微鏡観察ができる。
A semiconductor device usually has a crystal growth on a substrate having a thickness of 300 μm or more and a maximum of 10 μm from the surface.
Since the region having the same thickness is used as the active region, there are two cases, that is, the case of etching only the epi film and the case of etching both the epi film and the substrate. When observing a cross section in a semiconductor device having a laminated structure with different compositions, if a selective chemical etching solution is used, only the epi film or the substrate can be etched and one state can be seen. When the substrate is etched at the same time, the state of the epi film and the substrate interface can be observed. Therefore, these can be extremely rapidly observed by a transmission electron microscope if they are used properly.

【0008】[0008]

【実施例】【Example】

(実施例1)以下に実施例を用いて本発明を説明する。
たとえば半導体デバイスの構造はGaAs基板上に結晶
成長されたAlGaInP系の半導体レーザの場合につ
いて説明する。図1はn型GaAs基板1上にSeドー
プn型GaAsバッファー層2が0.5μm、Seドー
プN型AlGaInPクラッド層3が1μm、非ドープ
GaInP活性層4が0.06μm、ZnドープP型A
lGaInPクラッド層5が1μm、Znドープp型G
aInP層6が0.2μmおよびZnドープp型GaA
sキャップ層7が0.5μm積層された赤色半導体レ−
ザ構造のウエハ−である。これを適当な大きさに分割し
て図2に示すようにダミ−ガラス20、26で挟んで接
着する(a)。これを機械的切断で1mm以下の厚みの
試料を作製(b)し、ステンレス製補強リング27に接
着固定して機械的研磨で30μm以下の厚みにまで研磨
する(c)。
(Example 1) The present invention will be described below with reference to examples.
For example, the structure of a semiconductor device will be described in the case of an AlGaInP-based semiconductor laser crystal-grown on a GaAs substrate. FIG. 1 shows that an Se-doped n-type GaAs buffer layer 2 is 0.5 μm, an Se-doped N-type AlGaInP clad layer 3 is 1 μm, an undoped GaInP active layer 4 is 0.06 μm, and a Zn-doped P-type A on an n-type GaAs substrate 1.
lGaInP clad layer 5 is 1 μm, Zn-doped p-type G
aInP layer 6 is 0.2 μm and Zn-doped p-type GaA
A red semiconductor layer in which the s cap layer 7 is laminated in a thickness of 0.5 μm.
The structure of the wafer. This is divided into appropriate sizes, and sandwiched between dummy glasses 20 and 26 as shown in FIG. 2 for adhesion (a). A sample having a thickness of 1 mm or less is produced by mechanical cutting (b), and the sample is bonded and fixed to a stainless steel reinforcing ring 27 and mechanically polished to a thickness of 30 μm or less (c).

【0009】これを図3(a)に示すようにまず管33
の先端は斜めにカットしてあり、その先端部は実体顕微
鏡等(図示せず)を用いて試料表面31の所望の位置に
セットし、密封容器34に入れた化学エッチング溶液3
2(例えばHCl:H 2O=1:50)を管33の中を
伝って試料表面31上に一滴落下するように風船状のゴ
ム製容器36をゆっくりと摘みながら空気を密封容器3
4に送り込む。AlGaInP系混晶はHCl系のエッ
チング溶液で混晶比にほとんど依存せずにエッチングさ
れるがGaAs基板1とGaAsキャップ層7はほとん
どエッチングされずに残るため、このままでは基板とエ
ピ層界面の観察はできないが、エッチング停止のために
水洗するときなどやまたエピ膜がエッチングされている
ときなどの補強材としての役目を果たし良好な透過電子
顕微鏡観察試料を作製することができる。さらにGaA
sをエッチングするために硫酸系のエッチング溶液を準
備して同様に一滴落下してエッチングすると基板とエピ
膜との界面も観察できるようになる。図2(b)に示す
ように化学エッチング溶液が付着した部分はかなりの速
度でエッチングされ溝もしくは穴が形成され、透過電子
顕微鏡用試料が作製される。
First, as shown in FIG.
Of the chemical etching solution 3 placed in a hermetically sealed container 34 is set at a desired position on the sample surface 31 by using a stereomicroscope or the like (not shown).
2 (for example, HCl: H 2 O = 1: 50) is passed through the tube 33 and slowly drops the balloon-shaped rubber container 36 so as to drop a drop on the sample surface 31.
Send to 4. The AlGaInP-based mixed crystal is etched with an HCl-based etching solution with almost no dependence on the mixed crystal ratio, but the GaAs substrate 1 and the GaAs cap layer 7 remain almost unetched. Although not possible, a good transmission electron microscope observation sample can be prepared which serves as a reinforcing material when washed with water to stop etching or when the epi film is being etched. Further GaA
If a sulfuric acid-based etching solution is prepared for etching s and one drop is similarly dropped to perform etching, the interface between the substrate and the epi film can be observed. As shown in FIG. 2B, the portion to which the chemical etching solution is attached is etched at a considerable rate to form a groove or a hole, and a sample for a transmission electron microscope is prepared.

【0010】(実施例2)次に、前述の実施例に比べて
エッチングには少し時間がかかるがかなり狭い溝もしく
は穴を形成するのに適した方法を説明する。用いた試料
は実施例1で述べたものと同じ半導体レーザ構造を有す
るウエハ−である。図4に示すように霧吹き容器42に
化学エッチング溶液32を入れ、予め霧粒の大きさは数
10μm以下になるように条件を見いだして、数10c
m離れた位置から試料表面31に向かって化学エッチン
グ溶液32を霧状にして吹き付ける。試料表面31には
何カ所か化学エッチング溶液粒が付着して、エッチング
が開始される。エッチング溶液粒自身があまり大きくな
いのでエッチングによって形成される溝もしくは穴は実
施例1に比べてはるかに小さく、またエッチングには時
間がかかるが何カ所かに溝もしくは穴が形成されるため
広範囲にわたって観察が可能となる。
(Embodiment 2) Next, an explanation will be given of a method suitable for forming a considerably narrow groove or hole although etching takes a little time as compared with the above-mentioned embodiment. The sample used is a wafer having the same semiconductor laser structure as that described in Example 1. As shown in FIG. 4, the chemical etching solution 32 is put in the mist blowing container 42, and the conditions are found in advance so that the size of the mist particles is several tens of μm or less.
The chemical etching solution 32 is atomized and sprayed toward the sample surface 31 from a position separated by m. Chemical etching solution particles are attached to the sample surface 31 at several places, and etching is started. Since the etching solution grains themselves are not so large, the grooves or holes formed by etching are much smaller than those in Example 1. Also, although etching takes time, grooves or holes are formed in several places, so that they are spread over a wide area. Observation becomes possible.

【0011】これまでのイオンミリングでは何カ所にも
小さな穴を開けることは不可能であるとともに小さな穴
を形成することは困難であり測定範囲は極めて限定され
た領域のみであったが、本発明で複数個の非常に小さな
溝もしくは穴が形成されるため広範囲にわたって観察が
可能となった。
In the conventional ion milling, it was impossible to form small holes in many places, and it was difficult to form small holes, and the measurement range was only a very limited region. As a result, multiple very small grooves or holes are formed, which allows observation over a wide area.

【0012】(実施例3)これも実施例2と同様に複数
個の非常に小さな溝もしくは穴が形成して透過電子顕微
鏡用試料を作製ための方法である。図5に示すようにビ
−カ42に化学エッチング溶液32をいれてヒ−タ41
を使って化学エッチング溶液32を煮沸させて蒸気状の
化学エッチング溶液をつくり試料表面31上に付着させ
る。実施例2と同様に複数個の非常に小さな溝もしくは
穴が形成されるため広範囲にわたって観察が可能となっ
た。実施例2との違いは蒸気状の化学エッチング容液3
2がかなり活性な状態にあるのと雰囲気の温度が室温よ
りも幾分高いので試料のエッチング速度がかなり速くな
り、透過電子顕微鏡用試料が速く作製できる。この方法
でAlGaInP系の結晶は問題ないが、雰囲気の温度
が高いと変形する材料や煮沸して蒸気状にするとエッチ
ング能力が低下するエッチング溶液を用いなければなら
ない場合は実施例1もしくは実施例2で透過電子顕微鏡
用試料を作製する方が取られる。
(Embodiment 3) This is also a method for producing a sample for a transmission electron microscope by forming a plurality of very small grooves or holes as in Embodiment 2. As shown in FIG. 5, the chemical etching solution 32 is put in the beaker 42 and the heater 41 is put therein.
Is used to boil the chemical etching solution 32 to form a vapor-like chemical etching solution and deposit it on the sample surface 31. Since a plurality of very small grooves or holes are formed as in the case of Example 2, it is possible to observe over a wide range. The difference from Example 2 is that the chemical etching solution 3 in vapor form is used.
Since 2 is in a considerably active state and the temperature of the atmosphere is somewhat higher than room temperature, the etching rate of the sample is considerably high, and a sample for a transmission electron microscope can be produced quickly. In this method, AlGaInP-based crystals are not a problem, but when a material that deforms when the temperature of the atmosphere is high or an etching solution that reduces the etching ability when boiled into a vapor state must be used in Example 1 or Example 2 The method of preparing a sample for a transmission electron microscope is adopted.

【0013】[0013]

【発明の効果】このように本発明によれば、所望の領域
あるいは複数個の非常に小さな溝もしくは穴の形成が可
能であるため、特定の層構造やの結晶欠陥の観察が可能
であるとともに、観察試料の作製方法として、ほぼ10
0%の不留まりで作製できるため、試料作製が無駄にな
ることがほとんどなく観察までの時間短縮に大いに効果
がある。
As described above, according to the present invention, it is possible to form a desired region or a plurality of very small grooves or holes, so that it is possible to observe a specific layer structure and crystal defects. As a method for preparing an observation sample, about 10
Since the sample can be prepared with 0% non-retention, the sample preparation is hardly wasted and it is very effective in shortening the time until observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いた半導体素子の構造の斜視図FIG. 1 is a perspective view of the structure of a semiconductor device used in the present invention.

【図2】機械的切断および機械的研磨までの工程を示す
FIG. 2 is a diagram showing steps up to mechanical cutting and mechanical polishing.

【図3】本発明の化学エッチング溶液を一滴落下させる
ための方法および試料表面でのエッチングによって形成
されて溝もしくは穴の断面図
FIG. 3 is a cross-sectional view of a groove or hole formed by a method for dropping a drop of the chemical etching solution of the present invention and etching on a sample surface.

【図4】本発明の化学エッチング容液を試料表面に吹き
付けた状態を示す説明図
FIG. 4 is an explanatory view showing a state in which the chemical etching solution of the present invention is sprayed on the sample surface.

【図5】本発明の化学エッチング溶液を煮沸して蒸気状
にし試料表面に付着させた状態を示す説明図
FIG. 5 is an explanatory view showing a state in which the chemical etching solution of the present invention is boiled into a vapor state and attached to the sample surface.

【図6】従来の試料作製方法を示す説明図FIG. 6 is an explanatory view showing a conventional sample preparation method.

【符号の説明】[Explanation of symbols]

1 n−GaAs基板 2 n−GaAsバッファ−層 3 N−AlGaInPクラッド層 4 GaInP活性層 5 P−AlGaInPクラッド層 6 p−GaInP層 7 p−GaAsキャップ層 21 ダミーガラス 26 ダミ−ガラス 22 接着材 25 接着材 23 エピ膜 24 GaAs基板 27 補強リング 31 試料 32 化学エッチング溶液 33 管 34 密封容器 35 溝もしくは穴 35 風船状のゴム製容器 42 噴霧器 51 ヒ−タ 52 ビ−カ 61 イオンビ−ム 1 n-GaAs substrate 2 n-GaAs buffer layer 3 N-AlGaInP clad layer 4 GaInP active layer 5 P-AlGaInP clad layer 6 p-GaInP layer 7 p-GaAs cap layer 21 dummy glass 26 dummy glass 22 adhesive 25 Adhesive 23 Epi film 24 GaAs substrate 27 Reinforcement ring 31 Sample 32 Chemical etching solution 33 Tube 34 Sealed container 35 Groove or hole 35 Balloon-shaped rubber container 42 Sprayer 51 Heater 52 Beaker 61 Ion beam

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】補強リングに固定した試料を機械的研磨に
より30μm程度の厚さに研磨した後、前記試料表面の
一部に所定の化学エッチング溶液を落下して付着して付
着面積よりも狭い溝もしくは穴を形成することを特徴と
する透過電子顕微鏡用試料の作製方法。
1. A sample fixed on a reinforcing ring is polished by mechanical polishing to a thickness of about 30 μm, and then a predetermined chemical etching solution is dropped onto and adhered to a part of the surface of the sample, which is narrower than the adhesion area. A method for producing a sample for a transmission electron microscope, which comprises forming a groove or a hole.
【請求項2】補強リングに固定した試料を機械的研磨に
より30μm程度の厚さに研磨した後、前記試料表面に
所定の化学エッチング溶液を霧状にして吹き付けて付着
して付着面積よりも狭い溝もしくは穴を形成することを
特徴とする透過電子顕微鏡用試料の作製方法。
2. A sample fixed to a reinforcing ring is mechanically polished to a thickness of about 30 μm, and then a predetermined chemical etching solution is atomized and sprayed onto the surface of the sample to adhere to the sample, and the area is smaller than the adhesion area. A method for producing a sample for a transmission electron microscope, which comprises forming a groove or a hole.
【請求項3】補強リングに固定した試料を機械的研磨に
より30μm程度の厚さに研磨した後、所定の化学エッ
チング溶液を煮沸させて蒸気にした中に前記試料を挿入
して前記試料表面に前記化学エッチング溶液を付着して
付着面積よりも狭い溝もしくは穴を形成することを特徴
とする透過電子顕微鏡用試料の作製方法。
3. A sample fixed to a reinforcing ring is polished by mechanical polishing to a thickness of about 30 μm, and then the predetermined chemical etching solution is boiled into steam to insert the sample into the surface of the sample. A method for producing a sample for a transmission electron microscope, which comprises depositing the chemical etching solution to form a groove or a hole narrower than an attachment area.
【請求項4】化学エッチング溶液は硫酸もしくは塩酸も
しくはその他の酸性物質を含む溶液からなることを特徴
とする請求項1〜3のいずれか1項記載の透過電子顕微
鏡用試料の作製方法。
4. The method for producing a sample for a transmission electron microscope according to claim 1, wherein the chemical etching solution is a solution containing sulfuric acid, hydrochloric acid or another acidic substance.
JP8853692A 1992-04-09 1992-04-09 Preparation of sample for transmission type electron microscope Pending JPH05290779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8853692A JPH05290779A (en) 1992-04-09 1992-04-09 Preparation of sample for transmission type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8853692A JPH05290779A (en) 1992-04-09 1992-04-09 Preparation of sample for transmission type electron microscope

Publications (1)

Publication Number Publication Date
JPH05290779A true JPH05290779A (en) 1993-11-05

Family

ID=13945566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8853692A Pending JPH05290779A (en) 1992-04-09 1992-04-09 Preparation of sample for transmission type electron microscope

Country Status (1)

Country Link
JP (1) JPH05290779A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186332A (en) * 2008-02-06 2009-08-20 Hamamatsu Photonics Kk Observation sample preparation device and preparation method of nano-material
CN109387390A (en) * 2018-11-23 2019-02-26 江苏大学 A kind of deposit anaerobically incubating device
CN111572053A (en) * 2020-05-29 2020-08-25 常州达姆斯检测技术有限公司 Processing method of composite material test sample strip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186332A (en) * 2008-02-06 2009-08-20 Hamamatsu Photonics Kk Observation sample preparation device and preparation method of nano-material
US8276539B2 (en) 2008-02-06 2012-10-02 Hamamatsu-Photonics K.K. Nanomaterial observation sample preparation apparatus and preparation method
CN109387390A (en) * 2018-11-23 2019-02-26 江苏大学 A kind of deposit anaerobically incubating device
CN109387390B (en) * 2018-11-23 2022-04-15 江苏大学 Sediment anaerobic incubator
CN111572053A (en) * 2020-05-29 2020-08-25 常州达姆斯检测技术有限公司 Processing method of composite material test sample strip
CN111572053B (en) * 2020-05-29 2021-12-14 常州达姆斯检测技术有限公司 Processing method of composite material test sample strip

Similar Documents

Publication Publication Date Title
JPS5951700B2 (en) Method for manufacturing Group 3-5 devices
JPH04311080A (en) Manufactuer of visible laser diode
JP3734849B2 (en) Manufacturing method of semiconductor laser device
JP2752423B2 (en) Method for diffusing Zn into compound semiconductor
CN112154533A (en) Method for dividing one or more strips of devices
JPH05290779A (en) Preparation of sample for transmission type electron microscope
JP2009190918A (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor device
JP2005150673A (en) Etching method and element isolation method
JP2607239B2 (en) Molecular beam epitaxy equipment
KR101969401B1 (en) Etchant and method of fabricating semiconductor device using the same
TWI755529B (en) Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
JPS63179590A (en) Algainp semiconductor light emitting element
WO2022165899A1 (en) Semiconductor manufacturing method
JP2001102355A (en) Method of manufacturing semiconductor laminate, semiconductor, and laser and manufacturing method therefor
JP3689733B2 (en) Manufacturing method of semiconductor device
US20110018105A1 (en) Nitride-based compound semiconductor device, compound semiconductor device, and method of producing the devices
Andreyev et al. Liquid‐phase epitaxy of AlGaAs heterostructures on profiled substrates
JPH0534250A (en) Method for preparing sample for transmission electron microscope
JP4041887B2 (en) Method for forming antimony quantum dots
JPH035051B2 (en)
Postigo et al. Solid-source molecular-beam epitaxy for monolithic integration of laser emitters and photodetectors on GaAs chips
JP3030932B2 (en) Manufacturing method of semiconductor fine structure
JP2567066B2 (en) Method for manufacturing semiconductor light emitting device
JPH09213639A (en) Method for epitaxial growth of gallium nitrogen compound semiconductor
JPH0715081A (en) Semiconductor laser and fabrication thereof