JPH0528495B2 - - Google Patents

Info

Publication number
JPH0528495B2
JPH0528495B2 JP60199569A JP19956985A JPH0528495B2 JP H0528495 B2 JPH0528495 B2 JP H0528495B2 JP 60199569 A JP60199569 A JP 60199569A JP 19956985 A JP19956985 A JP 19956985A JP H0528495 B2 JPH0528495 B2 JP H0528495B2
Authority
JP
Japan
Prior art keywords
resin
epoxy
modified resin
modified
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60199569A
Other languages
Japanese (ja)
Other versions
JPS6261336A (en
Inventor
Teru Okunoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP19956985A priority Critical patent/JPS6261336A/en
Publication of JPS6261336A publication Critical patent/JPS6261336A/en
Publication of JPH0528495B2 publication Critical patent/JPH0528495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To obtain a highly reliable semiconductor element which is superior in moisture resistance, hydrolyzing resistance and adhesive properties and is speedy in a cure rate by bonding together a semiconductor chip and a lead frame using a modified resin composition. CONSTITUTION:A semiconductor chip and a lead frame are bonded together using a modified resin consisting of poly-para-hydroxystyrene and epoxy resin, an epoxy silane monofunctional monomer, a resin having a norbornene ring and a modified resin composition containing conductive powder as bonding and a modified resin composition containing conductive powder as bonding agents. The poly-para-hydroxystyrene is a resin represented by a formula (a) and is one consisting of a molecular weight of 3,000-8,000 and a hydroxyl group equivalent of about 120. As the epoxy silane monofunctional monomer, beta-(3, 4 epoxy cyclohexyl) ethyl trimethoxylane and the like are exemplified and as the resin having a norbornene resin, an oil resin and the like are illustrated.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、大型ICチツプを樹脂で封止した半
導体素子に係り、特に、耐湿性、耐加水分解性、
接着性に優れた半導体素子に関する。 [発明の技術的背景とその問題点] 金属薄板(リードフレーム)上の所定部分に
IC、LSI等の半導体チツプを接続する工程は、素
子の長期信頼性に影響を与える重要な工程の1つ
である。従来からこの接続方法としてチツプのシ
リコン面をリードフレーム上の金メツキ面に加熱
圧着するというAu−Si共晶法が主流であつた。
しかし、近年の貴金属、特に金の高騰を契機とし
て、樹脂封止型半導体装置では、Au−Si共晶法
から、半田を使用する方法、導電性接着剤を使用
する方法等に急速に移行しつつある。 しかし、半田を使用する方法は、一部実用化さ
れているが半田や半田ボールが飛散して電極等に
付着し、腐食断線の原因となることが指摘されて
いる。一方、導電性接着剤を使用する方法では、
通常、銀粉末を配合したエポキシ樹脂が用いら
れ、約10年程前から一部実用化されてきたが、信
頼性の面でAAu−Si共晶法に比較して満足すべ
きものが得られなかつた。導電性接着剤を使用す
る場合は、半田法に比べて耐熱性に優れる等の長
所を有しているが、その反面、樹脂や硬化剤が半
導体素子接着用として作られたものでないため、
ボイドの発生や、耐湿性、耐加水分解性に劣り、
アルミニウム電極の腐食を促進し断線不良の原因
となる場合が多く、素子の信頼性はAu−Si共晶
法に比べて劣つていた。また近年、IC/LSIや
LED等の半導体チツプの大型化に伴い、ペレツ
トクラツクの発生や接着力の低下が起こり問題と
なつてきた。更にアツセンブリ工程の短縮化に対
応できる硬化速度の速い接着剤を使用することが
要求されるようになつてきた。 [発明の目的] 本発明の目的は、上記の事情、欠点に鑑みてな
されたもので、半導体チツプの大型化に対応し
た、耐湿性、耐加水分解性、接着性に優れ、硬化
速度の速い信頼性の高い半導体素子を提供しよう
とするものである。 [発明の概要] 本発明者は、上記の目的を達成しようと鋭意研
究を重ねた結果、後述の樹脂組成物を用いること
によつて、耐湿性、耐加水分解性、接着性に優れ
た、ボイドの発生がなく硬化速度の速い信頼性の
高い半導体素子を得ることを見いだし、本発明を
完成したものである。即ち、本発明は、 (A) ポリパラヒドロキシスチレンとエポキシ樹脂
からなる変性樹脂、 (B) エポキシシラン系単官能モノマー、 (C) ノルボネン環を有する樹脂および (D) 導電性粉末 を含む変性樹脂組成物を接着剤として、半導体チ
ツプとリードフレームとを接着したことを特徴と
する半導体素子である。 本発明に用いる(A)ポリパラヒドロキシスチレン
とエポキシ樹脂からなる変性樹脂の一成分である
ポリパラヒドロキシスチレンは次式で示される樹
脂である。 このような樹脂としては、例えばマルゼンレジ
ンM(丸善石油社製、商品名)が挙げられ、分子
量が3000〜8000で水酸基当量が約120のものであ
る。また変性樹脂に用いる他の成分であるエポキ
シ樹脂としては、工業生産されており、かつ本発
明に効果的に使用し得るものとして、例えば次の
ようなビスフエノール類のジエポキシドがある。
シエル化学社製エピコート827,828,834,1001,
1002,1004,1007,1009、ダウケミカル社製
DER330,331,332,334,335,336,337,660,
661,662,667,668,669、チバガイギー社製ア
ラルダイトGY250,260,280,6071,6084,
6097,6099、JONES DABNEY社製EPI−
REZ510,5101、大日本インキ化学工業社製エピ
クロン810,1000,1010,3010、旭電化社製EPシ
リーズ(いずれも商品名)。さらにエポキシ樹脂
として、平均エポキシ基数3以上の例えばノボラ
ツク・エポキシ樹脂を使用することにより、熱時
(350℃)の接着強度を更に向上させることができ
る。これらのノボラツク・エポキシ樹脂として
は、分子量500以上のものが適している。このよ
うなノボラツク・エポキシ樹脂で工業生産されて
いるものとしては、例えば次のようなものがあ
る。チバガイギー社製アラルダイトEPN1138,
1139、ECN1273,1280,1299、ダウケミカル社
製DEN431,438、シエル化学社製エピコート
152,154、ユニオンカーバイト社製ERR−0100、
ERRB−0447、ERLB−0488、日本工業社製
EOCNシリーズ等がある。これらのエポキシ樹脂
は単独又は2種以上選択して用いることができ
る。 本発明に用いる(B)エポキシシラン系単官能モノ
マーとしては、例えばβ−(3,4−エポキシシ
クロヘキシル)エチルトリメトキシシラン、γ−
グリシドキシプロピルトリメトキシシラン、γ−
グリシドキシプロピルメチルジエトキシシラン等
が挙げられ、これらは単独又は2種以上選択して
用いる。ポリパラヒドロキシスチレンとエポキシ
樹脂およびエポキシシラン系単官能モノマーとは
当量付近で配合する。配合割合が当量付近を大き
くはずれると、いずれかが硬化時に未反応となつ
て熱時の接着強度や加熱減量が多くなり好ましく
ない。 本発明に用いる(C)ノルボネン環を有する樹脂と
しては石油樹脂等があり、石油のC5〜C9留分か
ら得られる汎用の樹脂である。例えば市販されて
いるセロキサイド4000(ダイセル社製、商品名)、
タツキロール1000(住友化学工業社製、商品名)、
クイントン1500,1000,1300(日本ゼオン社製、
商品名)等が挙げられ、これらは単独又は2種以
上混合して用いる。ノルボネン環を有する樹脂の
配合割合は、ポリパラヒドロキシスチレンとエポ
キシ樹脂とからなる変性樹脂とエポキシシラン系
単官能モノマーの合計量に対して0.5〜15重量%
配合することが望ましい。配合量が0.5重量%未
満の場合は、接着強度の向上に効果がなく、また
15重量%を超えると反応性が劣る傾向にあり好ま
しくない。 本発明に用いる(A)ポリパラヒドロキシスチレン
とエポキシ樹脂とからなる変性樹脂、(B)エポキシ
シラン系単官能モノマー、(C)ノルボネン環を有す
る樹脂を配合する場合は、単に各成分と溶剤を加
えて溶解混合させてもよいが、始めに変性樹脂を
エポキシシラン系単官能モノマーに溶解させた
後、ノルボネン環を有する樹脂を混合させること
が好ましい。また変性樹脂は、ポリパラヒドロキ
シスチレンとエポキシ樹脂とを単に溶解混合して
もよいし、必要に応じて加熱反応させて相互に部
分的な結合をさせたものでもよい。これらは変性
樹脂の共通の溶剤に溶解することにより作業粘度
を改善することができる。また必要であれば硬化
触媒を使用してもよい。作業粘度調整用の溶剤と
しては、ジオキサン、ヘキサノン、ベンゼン、ト
ルエン、ソルベントナフサ、工業用ガソリン、酢
酸セロソルブ、エチルセロソルブ、ブチルセロソ
ルブアセテート、ブチルカルビトールアセテー
ト、ジメチルホルムアミド、ジメチルアセトアミ
ド、N−メチルピロリドン等が挙げられ、これら
は単独又は2種以上混合して用いる。 本発明に用いる(D)導電性粉末としては、例えば
銀粉末等が用いられる。 本発明に用いる変性樹脂組成物は、ポリパラヒ
ドロキシスチレンとエポキシ樹脂からなる変性樹
脂、エポキシシラン系単官能モノマー、ノルボネ
ン環を有する樹脂を含むが、必要に応じて消泡
剤、カツプリング剤、その他の添加剤を加えるこ
とができる。 本発明に用いる変性樹脂組成物は、常法に従い
上述した変性樹脂、エポキシシラン系単官能モノ
マー、ノルボネン環を有する樹脂および導電性粉
末、その他を加えて十分混合した後、更に例えば
三本ロールによる混練処理をし、その後減圧脱泡
して製造する。こうして得た変性樹脂組成物を用
いて半導体チツプとリードフレームを接着し、そ
の後ワイヤボンデイングを行い、これを樹脂で封
止して半導体素子を製造する。こうして得られた
半導体素子は、200℃で変性樹脂組成物を加熱硬
化させてもリードフレーム面上に汚染がなく、接
着力は半導体チツプ接着の場合に必要な0.5Kg/
mm2以上の強度、ワイヤボンデイングの強度も4〜
5g以上の強度を得ることができる。 [発明の実施例] 次に本発明を実施例によつて説明するが、本発
明はこれらの実施例によつて限定されるものでは
ない。実施例及び比較例において「部」とは特に
説明のない限り「重量部」を意味する。 実施例 1 エポキシ樹脂EP4400(旭電化社製、商品名)
7.6部、パラヒドロキシスチレンのマルゼンレジ
ンM(丸善石油社製、商品名)5.6部、ノルボネン
環を有する樹脂のセロキサイド4000(ダイセル社
製、商品名)0.2部、γ−グリシドキシプロピル
トリメトキシシラン10.4部、およびジエチレング
リコールジエチルエーテル4.0部を100℃で1時間
溶解反応を行い、粘調な褐色の樹脂を得た。この
樹脂27.8部に触媒として2PHZ−CN(四国化成工
業社製、商品名)0.006部と銀粉末70部とを混合
して変性樹脂組成物(A)を製造した。 実施例 2 エポキシ樹脂のEP4400(前出)7.6部、パラヒ
ドロキシスチレンのマルゼンレジンM(前出)5.6
部、ノルボネン環を有する樹脂のセロキサイド
4000(前出)1.0部、β−(3,4−エポキシシク
ロヘキシル)エチルトリメトキシシラン10.4部、
ジエチレングリコールジエチルエーテル4.0部を
100℃で1時間溶解反応を行い、粘稠な褐色の樹
脂を得た。この樹脂27.8部に触媒として2PHZ−
CN(前出)0.006部と銀粉末70部とを混合して変
性樹脂組成物(B)を製造した。 実施例 3 エポキシ樹脂のEP4400(前出)7.6部、パラヒ
ドロキシスチレンのマルゼンレジンM(前出)5.6
部、ノルボネン環を有する樹脂のセロキサイド
4000(前出)1.5部、γ−グリシドキシプロピルメ
チルジエトキシシラン10.4部、およびジエチレン
グリコールジエチルエーテル4.0部を100℃で1時
間溶解反応を行い、黄色の粘稠な樹脂を得た。こ
の樹脂27.8部に触媒として、2PHZ−CN(前出)
0.006部と銀粉末70部とを加えて十分混合して変
性樹脂組成物(C)を製造した。 比較例 市販のエポキシ樹脂ベースの溶剤型半導体用導
電性接着剤(D)を入手した。 実施例1〜3および比較例で得た変性樹脂組成
物(A),(B),(C)および導電性接着剤(D)を用いて半導
体チツプとリードフレームとを接着硬化して半導
体素子を製造した。これらの半導体素子について
接着強度、引張強度、加水分解性、耐湿性の試験
を行つた。その結果を第1表に示した。 接着強度は、150μm厚のリードフレーム
(NSD)上に4mm×4mmのシリコンチツプを接着
し、それぞれの温度でプツシユプルゲージを用い
て測定した。加水分解性Clイオンは、半導体素子
接着条件で硬化させた後、100メツシユに粉砕し
て、180℃で2時間加熱抽出を行つたClイオンの
量を測定した。耐湿性試験は、温度121℃、圧力
2気圧の水蒸気中における耐湿試験(PCT)お
よび温度120℃、圧力2気圧の水蒸気中印加電圧
直流15Vを通電して耐湿試験(バイアス−PCT)
を各半導体素子について行い評価した。この試験
に供した半導体素子数は各々60個で、時間の経過
に伴う不良発生数を第1表中に示した。なお、評
価の方法は半導体素子を構成するアルミニウム電
極の腐食によるオープン又はリーク電流が許容値
の500%以上への上昇をもつて不良と判定した。
[Technical Field of the Invention] The present invention relates to a semiconductor device in which a large IC chip is sealed with a resin, and in particular, it has excellent moisture resistance, hydrolysis resistance,
This invention relates to a semiconductor element with excellent adhesive properties. [Technical background of the invention and its problems]
The process of connecting semiconductor chips such as ICs and LSIs is one of the important processes that affects the long-term reliability of devices. Conventionally, the mainstream connection method has been the Au-Si eutectic method, in which the silicon surface of the chip is heat-pressed to the gold-plated surface of the lead frame.
However, with the rise in the price of precious metals, especially gold, in recent years, resin-encapsulated semiconductor devices have rapidly shifted from the Au-Si eutectic method to methods that use solder, conductive adhesives, etc. It's coming. However, although some methods using solder have been put into practical use, it has been pointed out that the solder and solder balls scatter and adhere to electrodes and the like, causing corrosion and disconnection. On the other hand, in the method using conductive adhesive,
Usually, epoxy resin mixed with silver powder is used, and some of it has been put into practical use for about 10 years, but it is not as satisfactory as the AAu-Si eutectic method in terms of reliability. Ta. When using a conductive adhesive, it has advantages such as superior heat resistance compared to the soldering method, but on the other hand, the resin and curing agent are not made for bonding semiconductor elements, so
Occurrence of voids and poor moisture resistance and hydrolysis resistance.
This often accelerates corrosion of the aluminum electrode and causes disconnection, and the reliability of the device was inferior to that of the Au-Si eutectic method. In recent years, IC/LSI
As semiconductor chips such as LEDs become larger, the occurrence of pellet cracks and a decrease in adhesive strength have become problems. Furthermore, there is a growing demand for the use of adhesives that have a fast curing speed and can be used to shorten the assembly process. [Objective of the Invention] The object of the present invention has been made in view of the above-mentioned circumstances and shortcomings. The aim is to provide a highly reliable semiconductor element. [Summary of the Invention] As a result of intensive research aimed at achieving the above object, the present inventor has developed a resin composition that has excellent moisture resistance, hydrolysis resistance, and adhesiveness by using the resin composition described below. The present invention has been completed by discovering that a highly reliable semiconductor element with no voids and a fast curing speed can be obtained. That is, the present invention provides (A) a modified resin comprising polyparahydroxystyrene and an epoxy resin, (B) an epoxysilane monofunctional monomer, (C) a resin having a norbornene ring, and (D) a modified resin comprising conductive powder. This semiconductor device is characterized in that a semiconductor chip and a lead frame are bonded together using a composition as an adhesive. Polyparahydroxystyrene, which is one component of the modified resin (A) consisting of polyparahydroxystyrene and an epoxy resin, used in the present invention is a resin represented by the following formula. Examples of such resins include Maruzen Resin M (manufactured by Maruzen Sekiyu Co., Ltd., trade name), which has a molecular weight of 3,000 to 8,000 and a hydroxyl equivalent of about 120. Epoxy resins, which are other components used in the modified resin, are industrially produced and can be effectively used in the present invention, such as the following bisphenol diepoxides.
Epicoat 827, 828, 834, 1001 manufactured by Ciel Chemical Co., Ltd.
1002, 1004, 1007, 1009, manufactured by Dow Chemical Company
DER330, 331, 332, 334, 335, 336, 337, 660,
661, 662, 667, 668, 669, Ciba Geigy Araldite GY250, 260, 280, 6071, 6084,
6097, 6099, JONES DABNEY EPI-
REZ510, 5101, Epicron 810, 1000, 1010, 3010 manufactured by Dainippon Ink and Chemicals, EP series manufactured by Asahi Denka (all product names). Furthermore, by using, for example, a novolac epoxy resin having an average number of epoxy groups of 3 or more as the epoxy resin, the adhesive strength under heat (350° C.) can be further improved. As these novolak epoxy resins, those having a molecular weight of 500 or more are suitable. Examples of industrially produced novolak epoxy resins include the following: Ciba Geigy Araldite EPN1138,
1139, ECN1273, 1280, 1299, DEN431, 438 manufactured by Dow Chemical Company, Epicote manufactured by Ciel Chemical Company
152, 154, Union Carbide ERR−0100,
ERRB−0447, ERLB−0488, manufactured by Nippon Kogyo Co., Ltd.
There are EOCN series etc. These epoxy resins can be used alone or in combination of two or more. Examples of the epoxysilane monofunctional monomer (B) used in the present invention include β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-
Glycidoxypropyltrimethoxysilane, γ-
Examples include glycidoxypropylmethyldiethoxysilane, which may be used alone or in combination of two or more. Polyparahydroxystyrene, epoxy resin, and epoxysilane monofunctional monomer are blended in approximately equivalent amounts. If the blending ratio deviates significantly from the equivalent range, some of the components will remain unreacted during curing, resulting in increased adhesive strength and loss on heating, which is not preferable. The (C) norbornene ring-containing resin used in the present invention includes petroleum resins, which are general-purpose resins obtained from C5 to C9 fractions of petroleum. For example, commercially available Celoxide 4000 (manufactured by Daicel, trade name),
Tatsuki Roll 1000 (manufactured by Sumitomo Chemical Co., Ltd., product name),
Quinton 1500, 1000, 1300 (manufactured by Nippon Zeon Co., Ltd.)
(trade name), and these may be used alone or in combination of two or more. The blending ratio of the resin having a norbornene ring is 0.5 to 15% by weight based on the total amount of the modified resin consisting of polyparahydroxystyrene and epoxy resin and the epoxysilane monofunctional monomer.
It is desirable to mix them. If the blending amount is less than 0.5% by weight, it will not be effective in improving adhesive strength, and
If it exceeds 15% by weight, the reactivity tends to be poor, which is not preferable. When blending (A) a modified resin consisting of polyparahydroxystyrene and an epoxy resin, (B) an epoxysilane monofunctional monomer, and (C) a resin having a norbornene ring used in the present invention, simply add each component and a solvent. Although the modified resin may be dissolved and mixed in addition, it is preferable to first dissolve the modified resin in the epoxysilane monofunctional monomer and then mix the resin having a norbornene ring. The modified resin may be obtained by simply dissolving and mixing polyparahydroxystyrene and epoxy resin, or may be obtained by partially bonding each other by heating reaction as necessary. These can improve the working viscosity by dissolving them in a common solvent for modified resins. A curing catalyst may also be used if necessary. Solvents for adjusting working viscosity include dioxane, hexanone, benzene, toluene, solvent naphtha, industrial gasoline, cellosolve acetate, ethyl cellosolve, butyl cellosolve acetate, butyl carbitol acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. These can be used alone or in combination of two or more. As the conductive powder (D) used in the present invention, for example, silver powder or the like is used. The modified resin composition used in the present invention contains a modified resin made of polyparahydroxystyrene and an epoxy resin, an epoxysilane monofunctional monomer, and a resin having a norbornene ring. Additives can be added. The modified resin composition used in the present invention is prepared by adding the above-mentioned modified resin, an epoxy silane monofunctional monomer, a resin having a norbornene ring, a conductive powder, and others in a conventional manner and mixing thoroughly, and then using a three-roll mill, for example. It is manufactured by kneading and then defoaming under reduced pressure. A semiconductor chip and a lead frame are bonded using the modified resin composition obtained in this way, and then wire bonding is performed and this is sealed with resin to produce a semiconductor element. The thus obtained semiconductor element has no contamination on the lead frame surface even when the modified resin composition is heated and cured at 200°C, and the adhesive strength is 0.5 kg/kg, which is required for semiconductor chip adhesion.
Strength of mm 2 or more, wire bonding strength of 4~
A strength of 5g or more can be obtained. [Examples of the Invention] Next, the present invention will be explained using Examples, but the present invention is not limited to these Examples. In Examples and Comparative Examples, "parts" means "parts by weight" unless otherwise specified. Example 1 Epoxy resin EP4400 (manufactured by Asahi Denka Co., Ltd., trade name)
7.6 parts, parahydroxystyrene Maruzen Resin M (Maruzen Sekiyu Co., Ltd., trade name) 5.6 parts, norbornene ring-containing resin Celoxide 4000 (Daicel Co., Ltd., trade name) 0.2 parts, γ-glycidoxypropyltrimethoxysilane 10.4 parts of diethylene glycol diethyl ether and 4.0 parts of diethylene glycol diethyl ether were subjected to a dissolution reaction at 100° C. for 1 hour to obtain a viscous brown resin. A modified resin composition (A) was prepared by mixing 27.8 parts of this resin with 0.006 parts of 2PHZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a catalyst and 70 parts of silver powder. Example 2 7.6 parts of epoxy resin EP4400 (mentioned above), 5.6 parts of parahydroxystyrene Maruzen Resin M (mentioned above)
Celoxide, a resin with a norbornene ring
4000 (mentioned above) 1.0 parts, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 10.4 parts,
4.0 parts of diethylene glycol diethyl ether
A dissolution reaction was carried out at 100°C for 1 hour to obtain a viscous brown resin. 2PHZ− as a catalyst in 27.8 parts of this resin.
A modified resin composition (B) was prepared by mixing 0.006 parts of CN (described above) and 70 parts of silver powder. Example 3 7.6 parts of epoxy resin EP4400 (mentioned above), 5.6 parts of parahydroxystyrene Maruzen Resin M (mentioned above)
Celoxide, a resin with a norbornene ring
4000 (mentioned above), 10.4 parts of γ-glycidoxypropylmethyldiethoxysilane, and 4.0 parts of diethylene glycol diethyl ether were subjected to a dissolution reaction at 100° C. for 1 hour to obtain a yellow viscous resin. 2PHZ-CN (described above) was added to 27.8 parts of this resin as a catalyst.
0.006 parts and 70 parts of silver powder were added and thoroughly mixed to produce a modified resin composition (C). Comparative Example A commercially available epoxy resin-based solvent-based conductive adhesive for semiconductors (D) was obtained. A semiconductor chip and a lead frame are bonded and cured using modified resin compositions (A), (B), and (C) obtained in Examples 1 to 3 and comparative examples and a conductive adhesive (D) to form a semiconductor element. was manufactured. These semiconductor devices were tested for adhesive strength, tensile strength, hydrolyzability, and moisture resistance. The results are shown in Table 1. Adhesive strength was measured by bonding a 4 mm x 4 mm silicon chip onto a 150 μm thick lead frame (NSD) using a push-pull gauge at each temperature. Hydrolyzable Cl ions were cured under semiconductor device adhesion conditions, then ground into 100 meshes, and heated and extracted at 180° C. for 2 hours to measure the amount of Cl ions. Moisture resistance tests include a humidity test (PCT) in water vapor at a temperature of 121°C and a pressure of 2 atm, and a humidity test (bias-PCT) in water vapor at a temperature of 120°C and a pressure of 2 atm with an applied voltage of 15 V DC.
was conducted and evaluated for each semiconductor element. The number of semiconductor devices used in this test was 60 each, and Table 1 shows the number of defects that occurred over time. The evaluation method was such that an open circuit or leakage current due to corrosion of the aluminum electrodes constituting the semiconductor element increased to 500% or more of the allowable value, and the semiconductor element was judged to be defective.

【表】 [発明の効果] 以上の説明および第1表から明らかなように本
発明は、変性樹脂組成物を接着剤とて用いたこと
によつて耐湿性、耐加水分解性に優れているた
め、アルミニウム電極の腐食による断線不良等が
起こらず、またボイドの発生もなく、接着性特に
熱時の接着性に優れている。更に硬化速度が速い
ためアツセンブリ工程等の短縮化に対応できる
等、信頼性の高い半導体素子を提供することがで
きる。
[Table] [Effects of the Invention] As is clear from the above explanation and Table 1, the present invention has excellent moisture resistance and hydrolysis resistance by using a modified resin composition as an adhesive. Therefore, disconnection defects due to corrosion of the aluminum electrodes do not occur, voids do not occur, and the adhesive property, especially when hot, is excellent. Further, since the curing speed is fast, it is possible to shorten the assembly process and provide a highly reliable semiconductor element.

Claims (1)

【特許請求の範囲】 1 (A) ポリパラヒドロキシスチレンとエポキシ
樹脂からなる変性樹脂、 (B) エポキシシラン系単官能モノマー、 (C) ノルボネン環を有する樹脂および (D) 導電性粉末 を含む変性樹脂組成物を用いて、半導体チツプと
リードフレームとを接着したことを特徴とする半
導体素子。
[Scope of Claims] 1. (A) A modified resin comprising polyparahydroxystyrene and an epoxy resin, (B) an epoxysilane monofunctional monomer, (C) a resin having a norbornene ring, and (D) a modified resin comprising a conductive powder. A semiconductor device characterized in that a semiconductor chip and a lead frame are bonded together using a resin composition.
JP19956985A 1985-09-11 1985-09-11 Semiconductor element Granted JPS6261336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19956985A JPS6261336A (en) 1985-09-11 1985-09-11 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19956985A JPS6261336A (en) 1985-09-11 1985-09-11 Semiconductor element

Publications (2)

Publication Number Publication Date
JPS6261336A JPS6261336A (en) 1987-03-18
JPH0528495B2 true JPH0528495B2 (en) 1993-04-26

Family

ID=16410009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19956985A Granted JPS6261336A (en) 1985-09-11 1985-09-11 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS6261336A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156771A (en) * 1989-05-31 1992-10-20 Kao Corporation Electrically conductive paste composition
US5183593A (en) * 1989-11-14 1993-02-02 Poly-Flex Circuits, Inc. Electrically conductive cement
GB2239244B (en) * 1989-11-14 1994-06-01 David Durand Moisture resistant electrically conductive cements and methods for making and using same
US5180523A (en) * 1989-11-14 1993-01-19 Poly-Flex Circuits, Inc. Electrically conductive cement containing agglomerate, flake and powder metal fillers
JPH03173007A (en) * 1989-12-01 1991-07-26 Kao Corp Conductive paste and conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966129A (en) * 1982-10-08 1984-04-14 Toshiba Chem Corp Semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966129A (en) * 1982-10-08 1984-04-14 Toshiba Chem Corp Semiconductor element

Also Published As

Publication number Publication date
JPS6261336A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
JP2012149111A (en) Liquid epoxy resin composition for sealing semiconductor, and semiconductor device
JPH0528495B2 (en)
JPH0793331B2 (en) Semiconductor element
JP2748318B2 (en) Semiconductor device
JPH0212509B2 (en)
JPH0212508B2 (en)
JPH0528494B2 (en)
JPS5966129A (en) Semiconductor element
JPH0793330B2 (en) Semiconductor element
JPS58153338A (en) Semiconductor element
JP2741677B2 (en) Semiconductor element
JPH0527251B2 (en)
JPH05342910A (en) Conductive paste
JPS63126114A (en) Conducting paste
JP2767606B2 (en) Semiconductor element
JP3348131B2 (en) Compound semiconductor device
JPS62218413A (en) Paste
JPH052915A (en) Semiconductor device
JPH03134907A (en) Conductive paste
JPH04274335A (en) Insulation paste
JPH07278273A (en) Compound semiconductor device
JP2785246B2 (en) Conductive paste
JPS61237436A (en) Manufacture of semiconductor element
JP3440446B2 (en) Conductive paste
JPH04274336A (en) Compound semiconductor device