JPH0528233B2 - - Google Patents

Info

Publication number
JPH0528233B2
JPH0528233B2 JP59192587A JP19258784A JPH0528233B2 JP H0528233 B2 JPH0528233 B2 JP H0528233B2 JP 59192587 A JP59192587 A JP 59192587A JP 19258784 A JP19258784 A JP 19258784A JP H0528233 B2 JPH0528233 B2 JP H0528233B2
Authority
JP
Japan
Prior art keywords
tetrabromobisphenol
diglycidyl ether
epoxy resin
laminate
halogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59192587A
Other languages
Japanese (ja)
Other versions
JPS6172775A (en
Inventor
Hiromi Kawachi
Kenji Fukunaga
Kyoshi Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MANATSUKU KK
Original Assignee
MANATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MANATSUKU KK filed Critical MANATSUKU KK
Priority to JP19258784A priority Critical patent/JPS6172775A/en
Publication of JPS6172775A publication Critical patent/JPS6172775A/en
Publication of JPH0528233B2 publication Critical patent/JPH0528233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は新規なハロゲン化エポキシ樹脂に関
し、更に詳しくは、難燃性及び加工性が優れ、エ
ポキシ樹脂積層板の難燃剤として有用なハロゲン
化エポキシ樹脂に関する。 〔発明の技術的背景とその問題点〕 最近、テレビ、コンピユータ、通信機器などの
電気・電子部品の積層板にはエポキシ樹脂積層板
が多用されている。これは、エポキシ樹脂が他の
樹脂(例えばフエノール樹脂、メラミン樹脂、不
飽和ポリエステル樹脂)に比べて、例えばガラス
繊維、各種の合成繊維及び紙のような補強材との
接着性が優れており、しかも硬化時に揮発成分の
発生が少なく、成形収縮が少ないなどの特性を備
えているからである。更に、エポキシ樹脂をマト
リツクスとする積層板は、機械的強度大、電気絶
縁性良好、耐薬品性が優れている。 このような積層板の製造に用いるエポキシ樹脂
としては、例えば、ビスフエノールAジグリシジ
ルエーテル型のもの、エポキシ化ノボラツク型の
もの、トリグリシジルエーテル型のものがそれぞ
れ特徴を生かした用途に使用されている。これら
のエポキシ樹脂のうち、ビスフエノールAジグリ
シジルエーテル型のものには、補強材との接着
性、硬化後の機械的強度、耐衝撃性、耐熱性、加
工性などの点でバランスの優れたものである。 しかしながら、これらエポキシ樹脂は可燃性で
あつて、ある温度以上に加熱されると分解して発
火するという欠点がある。最悪の場合、火災を起
す可能性も少なくない。 とりわけ、最近の電子材料の分野では、半導体
の容量が年々増大しそれに伴つて素子材料の小型
化が進んでいて、単位面積当りの放熱量が増大し
ているので、積層板のマトリツクスであるエポキ
シ樹脂には厳しい耐熱・難燃性が強く求められて
いる。そして、最近の要求に対しては、上記した
ビスフエノールAジグリシジルエーテル型のエポ
キシ樹脂では有効に対処できなくなつている。 このようなことから、テトラブロモビスフエノ
ールAジグリシジルエーテル型のエポキシ樹脂が
開発されている。この樹脂は、たしかに積層板の
耐熱性、難燃性を向上せしめるが、しかし、一方
では積層板の可撓性を喪失させるとともに寸法安
定性、加工性を低下せしめるという問題が派生し
てしまう。 そのため、可撓性を高めるということを目的と
して、テトラブロモビスフエノールAジグリシジ
ルエーテル型とビスフエノールAとの重合体が開
発されている。しかし、このエポキシ樹脂は、臭
素の含有率が20〜30重量%と非常に少ないので難
燃性に劣り、そのため、実際の使用時には、例え
ばハロゲン化リン酸エステル、臭素化パラフイ
ン、デカブロモジフエニルエーテル、水和アルミ
ナのような他の難燃性と併用することが必要にな
る。その結果、積層板には電気絶縁性の低下、耐
熱性、耐水性の低下、更には硬化性への悪影響な
ど新たな問題が発生する。 したがつて、現在では、テトラブロモビスフエ
ノールAジグリシジルエーテル型のエポキシ樹脂
の積層板に可撓性を付与する手段として、テトラ
ブロモビスフエノールAジグリシジルエーテルに
ビスフエノールAとテトラブロモビスフエノール
Aジグリシジルエーテルとの重合体を混合すると
いうことが行なわれている。この場合には、全体
の難燃性を高めるために、テトラブロモビスフエ
ノールAジグリシジルエーテルを40重量%以上混
在させることが必要である。したがつて、全体の
コストアツプは否めない。 一方、臭素含有率が50重量%以上であつて、難
燃性、可撓性が良好な積層板のマトリツクスにな
りうる樹脂として、テトラブロモビスフエノール
Aジグリシジルエーテルとテトラブロモビスフエ
ノールAの重合体が市販されている。 しかしながら、このエポキシ樹脂は、有機溶剤
を用いてワニス化するとき、有機溶剤に対する溶
解性が悪い。そのため、溶解不良を起し、ワニス
の補強材への含浸不良などを起し、結局は、品質
が安定した積層板を得ることが極めて困難とな
る。 このようなことから、有機溶剤に対する溶解性
が優れ、かつ、積層板の難燃性、可撓性をも同時
に満足せしめるような難燃性エポキシ樹脂の開発
が強く求められている。 〔発明の目的〕 本発明は、ワニス化工程における有機溶剤に対
する溶解性が優れ、難燃性、可撓性を兼備した積
層板を製造することのできる新規なハロゲン化エ
ポキシ樹脂の提供を目的とする。 〔発明の概要〕 本発明のハロゲン化エポキシ樹脂は、 次式、 (式中、Xは臭素原子又は塩素原子を表わし;
a,bは同じであつても異なつていてもよく、そ
れぞれ0〜4の整数を表わし(だだし、a,bが
同時に0になることはない);nは1〜11の整数
を表わし;Aはメチレン基又はイソプロピレン基
を表わす。ただし、分子中には少なくとも1つの
メチレン基が存在する。) で示されることを特徴とする。 式中、Xは臭素原子又は塩素原子のいずれかで
あるが、難燃性の点からいうと臭素原子であるこ
とが好ましい。また、a,bはそれぞれハロゲン
原子:Xの数を表わし、0≦a≦4,0≦b≦4
の関係を満足する整数である。ただし、a,bが
いずれも0である場合は除く。難燃性の点からい
うと、a,bはそれぞれ1以上の整数であること
が好ましい。しかし、a+bが5以上の場合には
後述のハロゲン化の工程でXをベンゼン環に選択
的に反応させることがやや困難となりベンゼン環
以外の炭素原子で一部ハロゲン化反応が起つて樹
脂全体の耐熱性が不安定になる。そのため、a+
bが3,4となるようなa,bであることが好ま
しい。 nは1〜11の整数であるが、有機溶剤への溶解
性の点からいえばnは小さい方が好ましい。しか
し、一方、積層板に可撓性を付与する観点からい
えばnは大きい方がよい。両者のバランスをとつ
て、nは3〜7の範囲の整数であることが好適で
ある。 Aはメチレン基又はイソプロピレン基を表わ
す。ただし、分子中にはメチレン基が少なくとも
1個存在することが必要である。メチレン基が存
在しない場合には、この樹脂の有機溶剤への溶解
性が消失してワニス化工程で前述した問題を生起
して積層板の品質が不安定になつて不都合であ
る。 本発明のエポキシ樹脂は次のようにして製造す
ることができる。すなわち、ハロゲン化ビスフエ
ノールFジグリシジルエーテルとハロゲン化ビス
フエノールFとを重合させる方法;ハロゲン化ビ
スフエノールAとハロゲン化ビスフエノールFジ
グリシジルエーテルとを重合させる方法;又はハ
ロゲン化ビスフエノールAジグリシジルエーテル
とハロゲン化ビスフエノールFとを重合させる方
法などである。重合度の調節は、いずれの場合も
ジグリシジルエーテル類とビスフエノール類との
モル比を適宜に設定することによつて可能であ
る。 なお、別法としては、ハロゲン化ビスフエノー
ルAとハロゲン化ビスフエノールFとを苛生ソー
ダ、苛性カリのようなアルカリの存在下でエピク
ロルヒドリンと重縮合させる方法がある。しかし
この方法は工程も煩雑でありしかも所定重合度の
ものを安定して得ることが困難なのであまり好ま
しくない。 〔発明の実施例〕 実施例 1 テトラブロモビスフエノールAジグリシジルエ
ーテル(商品名:スミエポキシESB−340、エポ
キシ当量330、住友化学(株)製)1320g、テトラブ
ロモフエノールF526g、テトラメチルアンモニ
ウムクロライド(反応触媒)1gを反応容器の中
に入れ120℃で溶解したのち、全体を120〜180℃
で攪拌して重合させた。重合物を180℃で取り出
した。 実施例 2 テトラブロモビスフエノールFジグリシジルエ
ーテル(エポキシ当量642)2568g、テトラブロ
モビスフエノールF1578g、反応溶媒としてトリ
−n−ブチルアミン2mlを用いたことを除いては
実施例1と同様にして重合体を得た。 実施例 3 テトラブロモビスフエノールAジグリシジルエ
ーテル(商品名:ESB−340)1980g、テトラブ
ロモビスフエノールF1052gを用いたことを除い
ては実施例1と同様にして重合体を得た。 実施例 4 テトラブロモビスフエノールAジグリシジルエ
ーテル(商品名:スミエポキシESB−400、エポ
キシ当量401、住友化学(株)製)4010g、テトラブ
ロモビスフエノールF2104gを用いたことを除い
ては実施例1と同様にして重合体を得た。 実施例 5 ペンタブロモビスフエノールFジグリシジルエ
ーテル(エポキシ当量360)1440g、ペンタブロ
モビスフエノールF605gを用いたことを除いて
は実施例1と同様にして重合体を得た。 実施例 6 テトラクロロビスフエノールAジグリシジルエ
ーテル(エポキシ当量241)964g、テトラクロロ
ビスフエノールF348gを用いたことを除いては
実施例1と同様にして重合体を得た。 実施例 7 テトラブロモビスフエノールAジグリシジルエ
ーテル(商品名:スミエポキシESB−400)2406
g、テトラブロモビスフエノールFジグリシジル
エーテル(エポキシ当量325)1300g、テトラブ
ロモビスフエノールF2104gを用いたことを除い
ては実施例1と同様にして重合体を得た。 比較例 1 テトラブロモビスフエノールAジグリシジルエ
ーテル(スミエポキシESB−340)1320g、テト
ラブロモビスフエノールA544gを用いたことを
除いては実施例1と同様にして重合体を得た。 比較例 2 テトラブロモビスフエノールAジグリシジルエ
ーテル(スミエポキシESB−400)3208g、テト
ラブロモビスフエノールA1632gを用いたことを
除いては実施例1と同様にして重合体を得た。 以上、9種類のエポキシ樹脂について、その構
造を同定した。その結果を一括して第1表に示し
た。
[Technical Field of the Invention] The present invention relates to a novel halogenated epoxy resin, and more particularly to a halogenated epoxy resin that has excellent flame retardancy and processability and is useful as a flame retardant for epoxy resin laminates. [Technical background of the invention and its problems] Recently, epoxy resin laminates have been widely used as laminates for electrical and electronic components such as televisions, computers, and communication equipment. This is because epoxy resin has better adhesion to reinforcing materials such as glass fiber, various synthetic fibers, and paper than other resins (e.g., phenolic resin, melamine resin, unsaturated polyester resin). Moreover, it has characteristics such as less generation of volatile components during curing and less molding shrinkage. Furthermore, a laminate having an epoxy resin matrix has high mechanical strength, good electrical insulation, and excellent chemical resistance. Epoxy resins used in the production of such laminates include, for example, bisphenol A diglycidyl ether type, epoxidized novolac type, and triglycidyl ether type, each of which is used for purposes that take advantage of their characteristics. There is. Among these epoxy resins, bisphenol A diglycidyl ether type has an excellent balance in terms of adhesion to reinforcing materials, mechanical strength after curing, impact resistance, heat resistance, processability, etc. It is something. However, these epoxy resins have the disadvantage that they are flammable and decompose and ignite when heated above a certain temperature. In the worst case scenario, there is a high possibility of a fire. In particular, in the recent field of electronic materials, the capacity of semiconductors is increasing year by year, and as a result element materials are becoming smaller and the amount of heat dissipated per unit area is increasing. Resins are required to have strict heat resistance and flame retardancy. Moreover, the above-mentioned bisphenol A diglycidyl ether type epoxy resin is no longer able to effectively meet recent demands. For this reason, tetrabromobisphenol A diglycidyl ether type epoxy resins have been developed. This resin certainly improves the heat resistance and flame retardance of the laminate, but on the other hand, it causes problems in that it causes the laminate to lose its flexibility and reduces dimensional stability and workability. Therefore, a polymer of tetrabromobisphenol A diglycidyl ether type and bisphenol A has been developed for the purpose of increasing flexibility. However, this epoxy resin has a very low bromine content of 20 to 30% by weight, so it has poor flame retardancy. Therefore, in actual use, it is difficult to use epoxy resins such as halogenated phosphate esters, brominated paraffin, decabromodiphenyl, etc. It will be necessary to use it in conjunction with other flame retardants such as ethers and hydrated alumina. As a result, new problems occur in the laminate, such as a decrease in electrical insulation, a decrease in heat resistance and water resistance, and an adverse effect on hardenability. Therefore, at present, as a means of imparting flexibility to a laminate of tetrabromobisphenol A diglycidyl ether type epoxy resin, bisphenol A and tetrabromobisphenol A are added to tetrabromobisphenol A diglycidyl ether. Mixing the polymer with diglycidyl ether has been practiced. In this case, in order to improve the overall flame retardancy, it is necessary to mix 40% by weight or more of tetrabromobisphenol A diglycidyl ether. Therefore, the overall cost increase is undeniable. On the other hand, tetrabromobisphenol A diglycidyl ether and tetrabromobisphenol A are used as resins that have a bromine content of 50% by weight or more and have good flame retardancy and flexibility. Combinations are commercially available. However, when this epoxy resin is made into a varnish using an organic solvent, its solubility in the organic solvent is poor. This results in poor dissolution and poor impregnation of the varnish into the reinforcing material, which ultimately makes it extremely difficult to obtain a laminate with stable quality. For these reasons, there is a strong demand for the development of a flame-retardant epoxy resin that has excellent solubility in organic solvents and also satisfies the flame retardancy and flexibility of laminates. [Object of the Invention] The purpose of the present invention is to provide a novel halogenated epoxy resin that has excellent solubility in organic solvents in the varnishing process and can be used to produce laminates that have both flame retardancy and flexibility. do. [Summary of the invention] The halogenated epoxy resin of the present invention has the following formula: (In the formula, X represents a bromine atom or a chlorine atom;
a and b may be the same or different, and each represents an integer from 0 to 4 (however, a and b cannot be 0 at the same time); n represents an integer from 1 to 11. ;A represents a methylene group or an isopropylene group. However, at least one methylene group is present in the molecule. ). In the formula, X is either a bromine atom or a chlorine atom, but from the viewpoint of flame retardancy, a bromine atom is preferable. In addition, a and b each represent the number of halogen atoms: X, 0≦a≦4, 0≦b≦4
is an integer that satisfies the relationship. However, this excludes the case where both a and b are 0. From the viewpoint of flame retardancy, a and b are each preferably an integer of 1 or more. However, when a+b is 5 or more, it becomes somewhat difficult to selectively react X with the benzene ring in the halogenation step described below, and the halogenation reaction occurs partially at carbon atoms other than the benzene ring, causing the entire resin to react. Heat resistance becomes unstable. Therefore, a+
Preferably, a and b are such that b is 3 or 4. n is an integer of 1 to 11, but from the viewpoint of solubility in organic solvents, smaller n is preferable. However, on the other hand, from the viewpoint of imparting flexibility to the laminate, it is better for n to be larger. In order to balance the two, it is preferable that n be an integer in the range of 3 to 7. A represents a methylene group or an isopropylene group. However, it is necessary that at least one methylene group exists in the molecule. If methylene groups are not present, the solubility of this resin in organic solvents is lost, causing the aforementioned problems in the varnishing step, which is disadvantageous as the quality of the laminate becomes unstable. The epoxy resin of the present invention can be manufactured as follows. That is, a method of polymerizing halogenated bisphenol F diglycidyl ether and halogenated bisphenol F; a method of polymerizing halogenated bisphenol A and halogenated bisphenol F diglycidyl ether; or a method of polymerizing halogenated bisphenol A diglycidyl ether; Examples include a method of polymerizing ether and halogenated bisphenol F. In either case, the degree of polymerization can be adjusted by appropriately setting the molar ratio of diglycidyl ethers and bisphenols. Alternatively, there is a method in which halogenated bisphenol A and halogenated bisphenol F are polycondensed with epichlorohydrin in the presence of an alkali such as caustic soda or caustic potash. However, this method is not very preferable because the steps are complicated and it is difficult to stably obtain a desired degree of polymerization. [Examples of the invention] Example 1 1320 g of tetrabromobisphenol A diglycidyl ether (trade name: Sumiepoxy ESB-340, epoxy equivalent 330, manufactured by Sumitomo Chemical Co., Ltd.), 526 g of tetrabromophenol F, tetramethylammonium chloride (reaction Place 1g of catalyst in a reaction container and dissolve at 120℃, then heat the whole mixture to 120-180℃.
The mixture was stirred and polymerized. The polymer was taken out at 180°C. Example 2 A polymer was produced in the same manner as in Example 1, except that 2568 g of tetrabromobisphenol F diglycidyl ether (epoxy equivalent: 642), 1578 g of tetrabromobisphenol F, and 2 ml of tri-n-butylamine were used as the reaction solvent. I got it. Example 3 A polymer was obtained in the same manner as in Example 1, except that 1980 g of tetrabromobisphenol A diglycidyl ether (trade name: ESB-340) and 1052 g of tetrabromobisphenol F were used. Example 4 Same as Example 1 except that 4010 g of tetrabromobisphenol A diglycidyl ether (trade name: Sumiepoxy ESB-400, epoxy equivalent 401, manufactured by Sumitomo Chemical Co., Ltd.) and 2104 g of tetrabromobisphenol F were used. A polymer was obtained in the same manner. Example 5 A polymer was obtained in the same manner as in Example 1, except that 1440 g of pentabromobisphenol F diglycidyl ether (epoxy equivalent: 360) and 605 g of pentabromobisphenol F were used. Example 6 A polymer was obtained in the same manner as in Example 1, except that 964 g of tetrachlorobisphenol A diglycidyl ether (epoxy equivalent: 241) and 348 g of tetrachlorobisphenol F were used. Example 7 Tetrabromobisphenol A diglycidyl ether (trade name: Sumiepoxy ESB-400) 2406
A polymer was obtained in the same manner as in Example 1, except that 1,300 g of tetrabromobisphenol F diglycidyl ether (epoxy equivalent: 325) and 2104 g of tetrabromobisphenol F were used. Comparative Example 1 A polymer was obtained in the same manner as in Example 1, except that 1320 g of tetrabromobisphenol A diglycidyl ether (Sumi Epoxy ESB-340) and 544 g of tetrabromobisphenol A were used. Comparative Example 2 A polymer was obtained in the same manner as in Example 1, except that 3208 g of tetrabromobisphenol A diglycidyl ether (Sumiepoxy ESB-400) and 1632 g of tetrabromobisphenol A were used. As described above, the structures of nine types of epoxy resins have been identified. The results are summarized in Table 1.

【表】 次に、実施例1、実施例2、比較例1及び比較
例2の各エポキシ樹脂の第2表に示した溶剤に対
する50℃における溶解性を調べた。結果を第2表
に示した。
[Table] Next, the solubility of each of the epoxy resins of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 in the solvents shown in Table 2 at 50°C was investigated. The results are shown in Table 2.

【表】 実施例1〜4、比較例1の各エポキシ樹脂を第
3表に示した割合で各成分と混合し、得られたワ
ニスをマトリツクスとしてガラス繊維エポキシ樹
脂積層板を製造した。このときのブリブレグ製造
の条件は、温度130℃で10分、またブレス条件は
温度170℃、圧力30Kg/cm2、時間2時間であつた。 各積層板につき、以下の方法で難燃性、加工性
を判定した。 難燃性:積層板から長さ152.4mm幅12.7mm厚み2
mmの試験片を切り出し、それを垂直に吊して下
端にライターの炎を10秒間あてたのち、ライタ
ーの炎を取除き、そのときの消炎時間及び溶融
滴下の状態を観察した。 加工性:積層板(厚み2.0mm)をパンチング用金
型で打抜き、そのときの打抜き穴の状態を観察
して判定。○−ヘアークラツクやささくれが全
くみられない状態。△−若干のヘアークラツ
ク、ささくれ×−ヘアークラツク、ささくれが
多数みられる状態。
[Table] The epoxy resins of Examples 1 to 4 and Comparative Example 1 were mixed with each component in the proportions shown in Table 3, and the resulting varnish was used as a matrix to produce a glass fiber epoxy resin laminate. At this time, the conditions for producing brybregs were a temperature of 130°C for 10 minutes, and pressing conditions were a temperature of 170°C, a pressure of 30 kg/cm 2 , and a time of 2 hours. The flame retardancy and workability of each laminate were determined by the following methods. Flame retardant: Length 152.4mm Width 12.7mm Thickness 2 from laminated board
A test piece of mm was cut out, hung vertically, and a lighter flame was applied to the lower end for 10 seconds.The lighter flame was then removed and the flame extinction time and state of molten dripping were observed. Workability: Judged by punching a laminate (thickness 2.0mm) using a punching die and observing the condition of the punched holes. ○ - No hair cracks or hangnails observed. △ - Some hair cracks and hangnails × - Condition where many hair cracks and hangnails are observed.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明のハロゲ
ン化エポキシ樹脂は、有機溶剤との溶解性が優れ
ているので積層板製造のワニス化工程において溶
解時間の短縮、溶剤量の節約などの効果をもたら
し、また溶解不良に伴うワニスの補強材への含浸
不良とそれに基づく積層板の品質の不安定性が解
消される。 しかも第3表の結果から明らかなように、本発
明のハロゲン化エポキシ樹脂は優れた難燃性を備
えていて、エポキシ樹脂積層板に配合したとき得
られた積層板の難燃性が向上すると同時に加工性
も良好になるので、その工業的価値は極めて大で
ある。
As is clear from the above explanation, the halogenated epoxy resin of the present invention has excellent solubility in organic solvents, so it can have effects such as shortening the dissolution time and saving the amount of solvent in the varnishing process for manufacturing laminates. In addition, poor impregnation of the varnish into the reinforcing material due to poor dissolution and instability in the quality of the laminate due to this are eliminated. Moreover, as is clear from the results in Table 3, the halogenated epoxy resin of the present invention has excellent flame retardancy, and when blended into an epoxy resin laminate, the flame retardance of the resulting laminate improves. At the same time, the processability is also improved, so its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 次式: (式中、Xは臭素原子又は塩素原子を表わし;
a,bは同じであつても異なつていてもよく、そ
れぞれ0〜4の整数を表わし(だだし、a,bが
同時に0になることはない);nは1〜11の整数
を表わし;Aはメチレン基又はイソプロピレン基
を表わす。ただし、分子中には少なくとも1つの
メチレン基が存在する。) で示されることを特徴とするハロゲン化エポキシ
樹脂。
[Claims] Primary formula: (In the formula, X represents a bromine atom or a chlorine atom;
a and b may be the same or different, and each represents an integer from 0 to 4 (however, a and b cannot be 0 at the same time); n represents an integer from 1 to 11. ;A represents a methylene group or an isopropylene group. However, at least one methylene group is present in the molecule. ) A halogenated epoxy resin characterized by:
JP19258784A 1984-09-17 1984-09-17 Halogenated epoxy resin Granted JPS6172775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19258784A JPS6172775A (en) 1984-09-17 1984-09-17 Halogenated epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19258784A JPS6172775A (en) 1984-09-17 1984-09-17 Halogenated epoxy resin

Publications (2)

Publication Number Publication Date
JPS6172775A JPS6172775A (en) 1986-04-14
JPH0528233B2 true JPH0528233B2 (en) 1993-04-23

Family

ID=16293757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19258784A Granted JPS6172775A (en) 1984-09-17 1984-09-17 Halogenated epoxy resin

Country Status (1)

Country Link
JP (1) JPS6172775A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206758A (en) * 1985-03-08 1986-09-13 Mitsubishi Heavy Ind Ltd Corrugated cardboard sheet position detecting device in box manufacturing machine
US4756954A (en) * 1986-01-22 1988-07-12 The Dow Chemical Company Epoxy resin laminating varnish and laminates prepared therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058946A (en) * 1958-08-05 1962-10-16 Michigan Chem Corp Plastic product comprising cured mixture of a brominated polyepoxide and a non-halogenated polyepoxide
JPS57137348A (en) * 1981-02-20 1982-08-24 Teijin Ltd Flame-retardant polyester resin molded article
JPS58118850A (en) * 1982-01-09 1983-07-15 Kanegafuchi Chem Ind Co Ltd Flame-retardant, arc-resistant resin composition
JPS6018518A (en) * 1983-07-11 1985-01-30 Yuka Shell Epoxy Kk Epoxy resin composition
JPS6038421A (en) * 1983-08-11 1985-02-28 Mitsubishi Petrochem Co Ltd Epoxy resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058946A (en) * 1958-08-05 1962-10-16 Michigan Chem Corp Plastic product comprising cured mixture of a brominated polyepoxide and a non-halogenated polyepoxide
JPS57137348A (en) * 1981-02-20 1982-08-24 Teijin Ltd Flame-retardant polyester resin molded article
JPS58118850A (en) * 1982-01-09 1983-07-15 Kanegafuchi Chem Ind Co Ltd Flame-retardant, arc-resistant resin composition
JPS6018518A (en) * 1983-07-11 1985-01-30 Yuka Shell Epoxy Kk Epoxy resin composition
JPS6038421A (en) * 1983-08-11 1985-02-28 Mitsubishi Petrochem Co Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPS6172775A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
JP3092009B2 (en) Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
JP3412585B2 (en) Epoxy resin composition for prepreg used for production of printed wiring board and multilayer printed wiring board, prepreg, multilayer printed wiring board
US8581107B2 (en) Halogen-free flame-retardant epoxy resin composition, and prepreg and printed circuit board using the same
US6361866B1 (en) Prepreg and laminated board
CA1057441A (en) Flame resistant thermosetting resin composition and metal clad laminate composed of the thermosetting resin composition
JPH0255721A (en) Curable composition useful for manufacture of printed wiring board
KR102282600B1 (en) Thermosetting resin composition, prepreg prepared therefrom, metal foil laminate and high-frequency circuit board
JP3268498B2 (en) Phosphorus-containing flame-retardant epoxy resin
US4020225A (en) Metal clad laminate composed of flame resistant thermosetting resin composition
US6337363B1 (en) Epoxy resin composition with non-halogen, non-phosphorus flame retardant
JP4442174B2 (en) Flame-retardant resin composition, and prepreg, metal-clad laminate and printed wiring board using the same
JPH04502176A (en) Polyphenylene oxide/hybrid epoxy resin system for electrical laminates
JP3500465B2 (en) Flame retardant epoxy resin composition, prepreg and laminated product
US5116670A (en) Allyl ester resin composition and laminated sheet using the same
JP2000290490A (en) Flame retardant curable resin composition
JPH0528233B2 (en)
JPH04132730A (en) Hardenable polyphenylene ether polyepoxide composition
JP3176356B2 (en) Flame retardant epoxy resin composition, prepreg and laminated product
JP3400363B2 (en) Flame-retardant resin composition, prepreg and laminate using the same
JP2848241B2 (en) Epoxy resin composition for laminate and method for producing the same
JP2003072011A (en) Fire-retardant composite laminated sheet
KR100283882B1 (en) Epoxy Resin Compositions and Copper Clad Laminates
KR940001718B1 (en) Curable polyepoxide and polyphenylene ehter compositions
JPH03722A (en) Heat-resistant and flame-retardant epoxy resin composition
KR101676560B1 (en) Halogen-free thermosetting resin composition, and prepreg and laminate for printed circuits using the same