JPH05279773A - High strength titanium alloy having fine and uniform structure - Google Patents

High strength titanium alloy having fine and uniform structure

Info

Publication number
JPH05279773A
JPH05279773A JP4052956A JP5295692A JPH05279773A JP H05279773 A JPH05279773 A JP H05279773A JP 4052956 A JP4052956 A JP 4052956A JP 5295692 A JP5295692 A JP 5295692A JP H05279773 A JPH05279773 A JP H05279773A
Authority
JP
Japan
Prior art keywords
weight
added
titanium alloy
type
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4052956A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshimura
博文 吉村
Kinichi Kimura
欽一 木村
Yoichi Ikematsu
陽一 池松
Toshihiro Hanamura
年裕 花村
Jinichi Takamura
仁一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH05279773A publication Critical patent/JPH05279773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide alpha, alpha plus beta, and beta titanium alloys where strength at ordinary temp. and high temp. is improved and which has uniform fine structure. CONSTITUTION:The alpha, alpha plus beta, or beta titanium alloy has a composition where 0.1-0.8wt.% O is added and also 0.001-0.5wt.%, in total, of one or >=2 elements among P, As, Sb, Bi, S, Se, Te, and B are added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はα型、α+β型およびβ
型チタン合金において、常温および高温における強度を
向上させた均一微細組織のチタン合金に関するものであ
る。
The present invention relates to α type, α + β type and β type
TECHNICAL FIELD The present invention relates to a titanium alloy having a uniform fine structure, which has improved strength at room temperature and high temperature.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く耐食性に優
れ、かつ耐熱性も備えていることから、航空機用部材を
はじめ多くの構造材料分野で使用されており、近時その
用途は拡大しつつある。このように注目されているチタ
ン合金には、その金属組織が六方晶のα相からなるα
型、α相と体心立方晶のβ相からなるα+β型、および
β相からなるβ型の3種類がある。
2. Description of the Related Art Titanium alloys are used in many structural material fields including aircraft parts because of their high specific strength, excellent corrosion resistance, and heat resistance. is there. In such a titanium alloy, which has been receiving attention in this way, its metallographic structure is composed of a hexagonal α phase α
Type, α + β type composed of α phase and body-centered cubic β phase, and β type composed of β phase.

【0003】α型合金にはTi−5Al−2.5Sn、
Ti−5.5Alなどがある。これらの合金は純チタン
にくらべて強度が高くβ変態点以下では常に安定である
ため、高温における熱安定性および耐クリープ性に優れ
ており、航空機のエンジンケースなどに使用される。α
+β型合金にはTi−6Al−4V、Ti−3Al−
2.5V、Ti−6Al−2Sn−4Zr−2Moおよ
びTi−6Al−2Sn−4Zr−6Mo合金などがあ
る。これらは二相合金であるため加工性および溶接性な
どの部材製造性と、強度および耐疲労性などの製品特性
の両面で優れた特性を有するバランスのとれた材料であ
り、各種構造部材に使用される。β型合金にはTi−1
5V−3Cr−3Sn−3Al、Ti−3Al−8V−
6Cr−4Mo−4Zrなどがある。これらは常温まで
β相を残留させることができるので冷間加工性に優れ、
また熱処理により高強度が得られるため、近年盛んに開
発され各種分野で使用されるようになってきた。
For the α type alloy, Ti-5Al-2.5Sn,
Ti-5.5Al and the like. These alloys have higher strength than pure titanium and are always stable below the β transformation point, so they have excellent thermal stability and creep resistance at high temperatures, and are used in aircraft engine cases and the like. α
+6 type alloy has Ti-6Al-4V, Ti-3Al-
2.5V, Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-2Sn-4Zr-6Mo alloys. Since these are two-phase alloys, they are well-balanced materials that have excellent characteristics in terms of both workability and weldability, and other product characteristics such as strength and fatigue resistance. To be done. Ti-1 for β-type alloy
5V-3Cr-3Sn-3Al, Ti-3Al-8V-
6Cr-4Mo-4Zr and the like. These have excellent cold workability because the β phase can remain at room temperature.
Further, since high strength can be obtained by heat treatment, it has been actively developed in recent years and has come to be used in various fields.

【0004】上記した各チタン合金はさらなる高強度
化、また耐熱用途においては高温環境における耐熱強
度、さらに疲労強度の向上などから金属組織が均一微細
であることが要求される。近時、用途の拡大に伴って、
従来の使用環境よりも拡大された常温から高温にいたる
まで高強度を有する材料が望まれるようになってきた。
チタン合金はその用途に応じて鋳造ままの状態で使用さ
れる場合、または鋳造後に板、線、管、形材など各種形
状に成形加工して供給される場合などがある。しかし、
鋳造まま材では、粗大な鋳造組織のため強度、延性等が
乏しいという問題があり、また微細組織を得るためにβ
変態点(例えば、Ti−3Al−2.5Vでは930
℃、Ti−6Al−4Vでは990℃)以下の低温領域
でかつ高加工率の加工を行わねばならず、そのため熱間
加工性のあまり良くないチタン合金では割れの発生とい
う問題があった。
Each of the above titanium alloys is required to have a uniform fine metal structure in order to further increase the strength and, in heat resistant applications, improve the heat resistant strength in a high temperature environment and the fatigue strength. Recently, with the expansion of applications,
A material having high strength from room temperature to high temperature, which is expanded from the conventional use environment, has been desired.
Titanium alloys may be used in the as-cast state depending on the application, or may be supplied after being molded into various shapes such as plates, wires, pipes and shapes after casting. But,
The as-cast material has a problem that strength and ductility are poor due to the coarse cast structure, and in order to obtain a fine structure β
Transformation point (for example, 930 for Ti-3Al-2.5V
C., Ti-6Al-4V must be processed in a low temperature region of 990.degree. C. or less and with a high workability, and therefore, there is a problem that cracks occur in a titanium alloy having poor hot workability.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の要望に
応えるべく、また問題点を解消するために、α型、α+
β型およびβ型チタン合金において、常温および高温に
おける強度を向上させた均一微細組織をなすチタン合金
を提供することを目的とする。
SUMMARY OF THE INVENTION In order to meet the above-mentioned demands and to solve the problems, the present invention is α type, α + type
It is an object of the present invention to provide a β-type and β-type titanium alloy having a uniform microstructure with improved strength at room temperature and high temperature.

【0006】[0006]

【課題を解決するための手段および作用】本発明者は、
チタン合金にOを添加し、かつP,As,Sb,Bi,
S,Se,Te,Bの1種または2種以上を添加する
と、その複合効果によって鋳造まま材および熱間加工材
において強度が向上し、かつ均一微細組織を得ることを
知見した。特に、鋳造ままで均一微細組織が得られるの
で、その後の加工工程においても従来のα+β域加工の
ような加工温度範囲の制限が緩和できることがわかっ
た。
Means and Actions for Solving the Problems
O is added to the titanium alloy, and P, As, Sb, Bi,
It was found that the addition of one or more of S, Se, Te, and B improves the strength of the as-cast material and the hot-worked material and obtains a uniform fine structure due to its composite effect. In particular, since it is possible to obtain a uniform fine structure as cast, it has been found that the limitation of the processing temperature range, which is the case in the conventional α + β region processing, can be relaxed even in the subsequent processing steps.

【0007】本発明はこのような知見に基づくもので、
その要旨はつぎのとおりである。すなわち、 (1)α型、α+β型あるいはβ型チタン合金におい
て、重量%にてOを0.1〜0.8%添加し、かつP,
As,Sb,Bi,S,Se,Te,Bの1種または2
種以上を重量%にて合計0.001〜0.5%添加した
ことを特徴とする均一微細組織の高強度チタン合金。 (2)重量%にてAl:0.5〜7%を含有し、残部が
Tiおよび不可避的不純物からなるα型チタン合金にお
いて、重量%にてOを0.1〜0.8%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
したことを特徴とする均一微細組織の高強度チタン合
金。 (3)重量%にてAl:0.5〜7%およびSn:1〜
6%を含有し、残部がTiおよび不可避的不純物からな
るα型チタン合金において、重量%にてOを0.1〜
0.8%添加し、かつP,As,Sb,Bi,S,S
e,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織の高強度チタン合金。 (4)重量%にてV:0.2〜7%を含有し、残部がT
iおよび不可避的不純物からなるα+β型チタン合金に
おいて、重量%にてOを0.1〜0.8%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
したことを特徴とする均一微細組織の高強度チタン合
金。 (5)重量%にてAl:0.5〜7%およびV:0.2
〜12%を含有し、残部がTiおよび不可避的不純物か
らなるα+βチタン合金において、重量%にてOを0.
1〜0.8%添加し、かつP,As,Sb,Bi,S,
Se,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織の高強度チタン合金。 (6)重量%にてAl:0.5〜7%と、V:0.2〜
12%またはMo:1〜7%とを含有し、さらにS:1
〜6%、Zr:3〜8%、Fe:0.1〜3%、Cu:
0.1〜3%の1種または2種以上を含有し、残部がT
iおよび不可避的不純物からなるα+β型チタン合金に
おいて、重量%にてOを0.1〜0.8%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
したことを特徴とする均一微細組織の高強度チタン合
金。および (7)重量%にてV,Mo,Crの1種または2種以上
を合計9〜27%含有し、さらにAl:0.5〜4%、
Sn:1〜6%、Zr:3〜8%の1種または2種以上
を含有し、残部がTiおよび不可避的不純物からなるβ
型チタン合金において、重量%にてOを0.1〜0.8
%添加し、かつP,As,Sb,Bi,S,Se,T
e,Bの1種または2種以上を重量%にて合計0.00
1〜0.5%添加したことを特徴とする均一微細組織の
高強度チタン合金である。 (8)重量%にてFe:0.1〜3%およびN:0.0
1〜0.12%を含有して、残部がTiおよび不可避的
不純物からなるα型チタン合金において、重量%にてO
を0.1〜0.8%添加し、かつP,As,Sb,B
i,S,Se,Te,Bの1種または2種以上を重量%
にて合計0.001〜0.5%添加したことを特徴とす
る均一微細組織の高強度チタン合金。
The present invention is based on such findings,
The summary is as follows. That is, (1) In an α-type, α + β-type or β-type titanium alloy, 0.1 to 0.8% of O is added in a weight% and P,
1 or 2 of As, Sb, Bi, S, Se, Te, B
A high-strength titanium alloy having a uniform microstructure, characterized in that a total of 0.001 to 0.5% by weight of the seeds is added. (2) In an α-type titanium alloy containing 0.5 to 7% by weight of Al and the balance of Ti and unavoidable impurities, 0.1 to 0.8% of O is added at the weight% of And a high level of uniform fine structure characterized by adding 0.001 to 0.5% in total of 1 or 2 or more of P, As, Sb, Bi, S, Se, Te and B in weight%. Strength titanium alloy. (3) Al: 0.5 to 7% and Sn: 1 to 1 by weight%
In an α-type titanium alloy containing 6% and the balance Ti and unavoidable impurities, 0.1% by weight of O is contained.
0.8% added, and P, As, Sb, Bi, S, S
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of e, Te, and B are added in a total amount of 0.001 to 0.5% by weight. (4) V: 0.2 to 7% by weight, with the balance being T
In an α + β type titanium alloy consisting of i and unavoidable impurities, 0.1 to 0.8% of O is added by weight% and one of P, As, Sb, Bi, S, Se, Te and B or A high-strength titanium alloy having a uniform microstructure, characterized in that two or more kinds are added in a total amount of 0.001 to 0.5% by weight. (5) Al: 0.5 to 7% and V: 0.2 in wt%
.Alpha. +. Beta. Titanium alloy containing .about.12% with the balance being Ti and unavoidable impurities, and O in an amount of 0.
1 to 0.8% addition, and P, As, Sb, Bi, S,
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight. (6) Al: 0.5 to 7% in weight% and V: 0.2 to
12% or Mo: 1 to 7% and further S: 1
~ 6%, Zr: 3-8%, Fe: 0.1-3%, Cu:
0.1 to 3% of 1 type or 2 types or more, and the balance is T
In an α + β type titanium alloy consisting of i and unavoidable impurities, 0.1 to 0.8% of O is added by weight% and one of P, As, Sb, Bi, S, Se, Te and B or A high-strength titanium alloy having a uniform microstructure, characterized in that two or more kinds are added in a total amount of 0.001 to 0.5% by weight. And (7) 9% to 27% in total of 1 or 2 or more kinds of V, Mo and Cr in wt%, and Al: 0.5 to 4%,
Β containing 1: 1 or 2 or more of Sn: 1 to 6% and Zr: 3 to 8%, with the balance being Ti and inevitable impurities
Type titanium alloy, O is 0.1 to 0.8% by weight.
%, And P, As, Sb, Bi, S, Se, T
One or two or more of e and B in total of 0.00 by weight%
It is a high-strength titanium alloy having a uniform microstructure, which is characterized by adding 1 to 0.5%. (8) Fe: 0.1-3% and N: 0.0% by weight
In an α-type titanium alloy containing 1 to 0.12% and the balance of Ti and unavoidable impurities, O in weight%
0.1 to 0.8%, and P, As, Sb, B
Weight percentage of one or more of i, S, Se, Te, B
0.001 to 0.5% in total is added to the high strength titanium alloy having a uniform microstructure.

【0008】請求項1はα型、α+β型およびβ型の各
種チタン合金に、OおよびP,As,Sb,Bi,S,
Se,Te,Bの1種または2種以上を複合添加するこ
とにより均一微細組織とし、強度を向上させるものであ
る。α型合金の代表例としてTi−5Al−2.5S
n、α+β型合金の代表例としてTi−6Al−4Vお
よびTi−3Al−2.5V、およびβ型合金の代表例
としてTi−15V−3Cr−3Sn−3Alを選び、
Oと、PおよびAs、Sb,Bi,S,Se,Te,B
とを複合添加した材料を溶製して棒材を製造し、常温お
よび高温での引張強度および組織を調べた。その結果、
PおよびAs、Sb,Bi,S,Se,Te,Bの各元
素はTiと化合物を形成し、これがOと共存するとマト
リックスの強化とともに複合化合物として微細分散し、
均一微細な鋳造組織が得られることを知見した。そし
て、この組織の細粒化とO,P等の固溶強化が相伴っ
て、顕著な高強度化が図られると同時に加工性が向上す
る。そしてこの効果は、Oを0.1重量%以上添加し、
かつPなどの元素の1種または2種以上を合計0.00
1重量%以上添加したときに現れ、Oを0.8重量%を
超えて、かつPなどの元素の1種または2種以上を合計
0.5重量%を超えて添加した場合は、組織の微細化効
果が顕著でなくなるとともに、延性が低下する。また、
Oが0.1重量%未満添加の場合やPなどの元素の1種
または2種以上が合計0.001重量%未満添加の場
合、およびOが0.1重量%未満かつPなどの元素の1
種または2種以上が合計0.001重量%未満添加の場
合には、組織の均一細粒効果が認められにくい。従って
請求項1においてOを0.1〜0.8重量%添加し、か
つP,As,Sb,Bi,S,Se,Te,Bの1種ま
たは2種以上を重量%にて合計0.001〜0.5%添
加させることとした。
According to claim 1, various kinds of α-type, α + β-type and β-type titanium alloys are provided with O and P, As, Sb, Bi, S,
By adding one or more of Se, Te and B in combination, a uniform fine structure is obtained and the strength is improved. Ti-5Al-2.5S is a typical example of α-type alloy.
n, Ti-6Al-4V and Ti-3Al-2.5V as typical examples of α + β type alloys, and Ti-15V-3Cr-3Sn-3Al as typical examples of β type alloys,
O, P and As, Sb, Bi, S, Se, Te, B
A bar material was manufactured by melting a material to which and were added in combination, and the tensile strength and the structure at normal temperature and high temperature were examined. as a result,
Each element of P and As, Sb, Bi, S, Se, Te and B forms a compound with Ti, and when it coexists with O, it is finely dispersed as a composite compound together with strengthening of the matrix,
It was found that a uniform and fine cast structure can be obtained. The fine graining of the structure and the solid solution strengthening of O, P, etc. are accompanied with each other, so that the strength is remarkably increased and the workability is improved at the same time. And the effect is to add O by 0.1% by weight or more,
And the total amount of one or more elements such as P is 0.00
It appears when 1 wt% or more is added, and if O is added in an amount of more than 0.8 wt% and one or more elements such as P are added in an amount of more than 0.5 wt% in total, The miniaturization effect becomes insignificant and the ductility decreases. Also,
When O is added in an amount of less than 0.1% by weight, when one or more elements such as P are added in a total amount of less than 0.001% by weight, and when O is less than 0.1% by weight and an element such as P is added. 1
When less than 0.001% by weight is added in total of two or more kinds, it is difficult to recognize the uniform fine grain effect of the structure. Therefore, 0.1 to 0.8% by weight of O is added in claim 1, and one or more of P, As, Sb, Bi, S, Se, Te, and B are added in a total amount of 0. 001 to 0.5% was added.

【0009】請求項2はTi−5.5Alを代表とする
α型チタン合金を対象としたものでのある。Alはα相
の安定化と固溶強化のために含有させ、その効果が0.
5重量%以上で現れ、7重量%を超えるとTi3 Al金
属間化合物が析出して加工性が劣化するので、0.5〜
7重量%含有させることとした。また請求項1と同様の
理由でOを0.1〜0.8重量%添加し、かつP,A
s,Sb,Bi,S,Se,Te,Bの1種または2種
以上を重量%にて合計0.001〜0.5%添加させる
こととした。
The second aspect is directed to an α-type titanium alloy represented by Ti-5.5Al. Al is contained for stabilizing the α phase and strengthening the solid solution, and the effect is 0.
It appears at 5 wt% or more, and if it exceeds 7 wt%, Ti 3 Al intermetallic compound precipitates and the workability deteriorates.
It was decided to contain 7% by weight. For the same reason as in claim 1, 0.1 to 0.8% by weight of O is added, and P and A are added.
One or two or more of s, Sb, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.

【0010】請求項3はTi−5Al−2.5Snを代
表とするα型チタン合金を対象としたものである。Al
は請求項2と同様な理由で0.5〜7重量%含有させる
こととした。Snは固溶強化のために含有させ、その効
果が1重量%以上で現れ、6重量%を超えるとその効果
は飽和するので1〜6重量%含有させることとした。ま
た請求項1と同様の理由でOを0.1〜0.8重量%添
加し、かつP,As,Sb,Bi,S,Se,Te,B
の1種または2種以上を重量%にて合計0.001〜
0.5%添加させることとした。
The third aspect is directed to an α-type titanium alloy represented by Ti-5Al-2.5Sn. Al
For the same reason as in claim 2, 0.5 to 7% by weight is included. Sn is included for solid solution strengthening, and its effect appears at 1% by weight or more. If it exceeds 6% by weight, the effect is saturated, so 1 to 6% by weight is included. For the same reason as in claim 1, 0.1 to 0.8% by weight of O is added, and P, As, Sb, Bi, S, Se, Te and B are added.
0.001 to 1 or 2 or more in total by weight%
It was decided to add 0.5%.

【0011】請求項4はTi−2.5Vなどのα+β型
チタン合金を対象としたものである。Vはβ相安定化と
固溶強化および加工性向上のために含有させ、その効果
が0.2重量%以上で現れ、Vのみ含有する場合7重量
%を超えるとα相が不安定化するので0.2〜7重量%
含有させることとした。また請求項1と同様の理由でO
を0.1〜0.8重量%添加し、かつP,As,Sb,
Bi,S,Se,Te,Bの1種または2種以上を重量
%にて合計0.01〜0.5%添加させることとした。
The fourth aspect is directed to an α + β type titanium alloy such as Ti-2.5V. V is contained for stabilizing the β phase, strengthening the solid solution, and improving workability, and the effect appears at 0.2% by weight or more. When V is contained alone, the α phase becomes unstable if it exceeds 7% by weight. So 0.2 to 7% by weight
It was decided to include it. For the same reason as in claim 1, O
0.1 to 0.8% by weight, and P, As, Sb,
One or two or more of Bi, S, Se, Te, and B are added in a total amount of 0.01 to 0.5% by weight.

【0012】請求項5はTi−6Al−4V、Ti−3
Al−2.5Vなどのα+β型チタン合金を対象とした
ものである。Alは請求項2と同様α相の安定化と固溶
強化のために0.5〜7重量%含有させることとした。
Vはβ相安定化と固溶強化および加工性向上のために含
有させ、その効果が0.2重量%以上で現れ、12重量
%を超えるとα相が不安定化するので0.2〜12重量
%含有させることとした。また請求項1と同様の理由で
Oを0.1〜0.8重量%添加し、かつP,As,S
b,Bi,S,Se,Te,Bの1種または2種以上を
重量%にて合計0.001〜0.5%添加させることと
した。
[0012] Claim 5 is Ti-6Al-4V, Ti-3
It is intended for α + β type titanium alloys such as Al-2.5V. Similar to claim 2, Al is contained in an amount of 0.5 to 7% by weight for stabilizing the α phase and strengthening the solid solution.
V is contained for stabilizing the β phase, strengthening the solid solution and improving the workability, and the effect appears at 0.2% by weight or more, and when it exceeds 12% by weight, the α phase is destabilized, so 0.2 to 0.2%. It was decided to contain 12% by weight. For the same reason as in claim 1, 0.1 to 0.8% by weight of O is added, and P, As and S are added.
One or two or more of b, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.

【0013】請求項6はTi−6Al−2Sn−4Zr
−2Mo、Ti−6Al−6V−2Sn Ti−6Al
−2Sn−4Zr−6Mo、Ti−10V−2Fe−3
Alなどのα+β型チタン合金を対象としたものであ
る。Alは請求項2と同様α相の安定化と固溶強化のた
めに0.5〜7重量%含有させることとした。Vまたは
Moはβ相安定化と固溶強化および加工性向上のために
含有させ、その効果はVは0.2重量%以上、Moは1
重量%以上で現れるが、Vは12重量%を超えた場合、
Moが7重量%を超えた場合はα相が不安定化するの
で、Vを0.2〜12重量%含有させるかまたはMoを
1〜7重量%含有させることとした。Sn,Zr,F
e,Cuは何れも固溶強化に有効な元素であり、Snは
1重量%以上、Zrは3重量%以上、FeおよびCuは
それぞれ0.1重量%以上で効果が現れる。しかし、S
nが6重量%を超えた場合、Zrが8重量%を超えた場
合効果が飽和し、FeおよびCuがそれぞれ3重量%を
超えた場合は共析化合物が析出して加工性が劣化する。
従って、Sn:1〜6重量%、Zr:3〜8重量%、F
e:0.1〜3重量%、Cu:0.1〜3重量%の1種
または2種以上を含有させることとした。また請求項1
と同様の理由でOを0.1〜0.8重量%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
させることとした。
Claim 6 is Ti-6Al-2Sn-4Zr
-2Mo, Ti-6Al-6V-2Sn Ti-6Al
-2Sn-4Zr-6Mo, Ti-10V-2Fe-3
It is intended for α + β type titanium alloys such as Al. Similar to claim 2, Al is contained in an amount of 0.5 to 7% by weight for stabilizing the α phase and strengthening the solid solution. V or Mo is contained for stabilizing the β phase, strengthening the solid solution and improving the workability. The effect is that V is 0.2% by weight or more and Mo is 1
Although it appears at more than 12% by weight, if V exceeds 12% by weight,
When Mo exceeds 7% by weight, the α phase becomes unstable, so it was decided to contain V in an amount of 0.2 to 12% by weight or Mo in an amount of 1 to 7% by weight. Sn, Zr, F
Both e and Cu are effective elements for solid solution strengthening, Sn is 1 wt% or more, Zr is 3 wt% or more, and Fe and Cu are 0.1 wt% or more, respectively. But S
When n exceeds 6% by weight, when Zr exceeds 8% by weight, the effect is saturated, and when Fe and Cu exceed 3% by weight, eutectoid compounds precipitate and workability deteriorates.
Therefore, Sn: 1 to 6% by weight, Zr: 3 to 8% by weight, F
One or two or more of e: 0.1 to 3% by weight and Cu: 0.1 to 3% by weight are included. Claim 1
For the same reason as above, 0.1 to 0.8% by weight of O is added, and one or more of P, As, Sb, Bi, S, Se, Te and B is added in a total amount of 0. 001 to 0.5% was added.

【0014】請求項7はTi−13V−11Cr−3A
l,Ti−3Al−8V−6Cr−4Mo−4Zr(β
c合金),Ti−11.5Mo−6Zr−4.5Sn
(βIII 合金),Ti−15V−3Cr−3Sn−3A
lなどのβ型チタン合金を対象としたものである。V,
Mo,Crはβ相安定化と固溶強化および加工性向上の
ために含有させ、その効果はこれら各元素の1種または
2種以上が合計9重量%以上で現れるが、27重量%を
超えるとこれら元素が偏析しやすくなり、疲労特性をは
じめとする製品特性の向上が期待できない、また比重が
増加してチタン合金の特徴である高比強度が損なわれる
ので、1種または2種以上を合計9〜27重量%含有さ
せることとした。Al,Sn,Zrは何れも固溶強化に
有効な元素である。AlおよびSnはさらにω相が析出
して材料の脆化を抑制する効果があって、その効果はA
lの場合は0.5重量%以上、Snの場合は1重量%以
上で現れ、Zrはさらにβ相を安定化させる効果があっ
て、その効果は3重量%以上で現れる。しかしAlが4
重量%を超えるとβ相が不安定化し、Snが6重量%を
超えた場合およびZrが8重量%を超えた場合はその効
果が飽和する。従ってAl:0.5〜4重量%、Sn:
1〜6重量%、Zr:3〜8重量%の1種または2種以
上を含有させることとした。また請求項1と同様の理由
でOを0.1〜0.8重量%添加し、かつP,As,S
b,Bi,S,Se,Te,Bの1種または2種以上を
重量%にて合計0.001〜0.5%添加させることと
した。
A seventh aspect is Ti-13V-11Cr-3A.
1, Ti-3Al-8V-6Cr-4Mo-4Zr (β
c alloy), Ti-11.5Mo-6Zr-4.5Sn
(ΒIII alloy), Ti-15V-3Cr-3Sn-3A
It is intended for β-type titanium alloys such as l. V,
Mo and Cr are contained in order to stabilize the β phase, strengthen the solid solution and improve the workability. The effect of one or more of these elements is 9 wt% or more in total, but it exceeds 27 wt%. When these elements tend to segregate, improvement in product properties such as fatigue properties cannot be expected, and the specific gravity increases and the high specific strength characteristic of titanium alloys is impaired. It was decided to contain a total of 9 to 27% by weight. Al, Sn and Zr are all effective elements for solid solution strengthening. Al and Sn further have the effect of suppressing the embrittlement of the material due to the precipitation of the ω phase.
In the case of 1, the content is 0.5% by weight or more, and in the case of Sn, the content is 1% by weight or more, and Zr has the effect of further stabilizing the β phase, and the effect appears at 3% by weight or more. But Al is 4
When it exceeds 5% by weight, the β phase becomes unstable, and when Sn exceeds 6% by weight and when Zr exceeds 8% by weight, the effect is saturated. Therefore, Al: 0.5 to 4% by weight, Sn:
1 to 6% by weight, Zr: 3 to 8% by weight, and one or more types are included. For the same reason as in claim 1, 0.1 to 0.8% by weight of O is added, and P, As and S are added.
One or two or more of b, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.

【0015】請求項8はTi−0.5Fe−0.05N
合金などのα型チタン合金を対象としたものである。F
eは請求項6と同様に固溶強化のため0.1〜3重量%
含有させることとした。Nも固溶強化のため含有させ、
その効果は0.01重量%以上で現れるが、0.12重
量%を越えた場合は延性の劣化傾向が認められる。従っ
て、Fe:0.1〜3重量%、N:0.01〜0.12
重量%含有させることとした。また請求項1と同様の理
由でOを0.1〜0.8重量%添加し、かつP,As,
Sb,Bi,S,Se,Te,Bの1種または2種以上
を重量%にて合計0.001〜0.5%添加させること
とした。
The eighth aspect is Ti-0.5Fe-0.05N.
It is intended for α-type titanium alloys such as alloys. F
e is 0.1 to 3% by weight for solid solution strengthening as in claim 6.
It was decided to include it. N is also included for solid solution strengthening,
The effect appears at 0.01% by weight or more, but when it exceeds 0.12% by weight, a tendency of deterioration of ductility is recognized. Therefore, Fe: 0.1 to 3% by weight, N: 0.01 to 0.12
It has been decided to include it by weight%. For the same reason as in claim 1, 0.1 to 0.8% by weight of O is added, and P, As,
One or two or more kinds of Sb, Bi, S, Se, Te and B are added in a total amount of 0.001 to 0.5% by weight.

【0016】本発明によるチタン合金は、鋳造まま材と
して、および鋳造材を熱間圧延や熱間押出また必要に応
じて冷間圧延等の加工を行い板、線、棒、形材などの各
種形状としても提供でき、またこれらに溶接施工を施し
た溶接構造材および溶接時の溶接材料としても提供可能
である。さらに粉末成形材としても提供可能である。特
に、鋳造ままでも微細組織を得ることができるので、そ
の後の加工工程において加工温度範囲の制限が緩和さ
れ、また熱処理条件なども同様に緩和でき、割れなど発
生することなく従来材よりも容易に加工できるなどの特
徴がある。さらに、本発明による材料を従来のような条
件範囲で加工−熱処理を行うとさらに均一微細な組織が
得られる。
The titanium alloy according to the present invention can be used as an as-cast material, and by subjecting the cast material to hot rolling, hot extrusion, and if necessary, cold rolling, etc., to obtain various materials such as plates, wires, rods and shapes. It can be provided as a shape, and can also be provided as a welded structural material obtained by performing a welding process on these and a welding material at the time of welding. Further, it can be provided as a powder molding material. In particular, since it is possible to obtain a fine structure even in the as-cast state, restrictions on the processing temperature range can be relaxed in subsequent processing steps, and heat treatment conditions can also be relaxed in a similar manner. It has features such as processing. Furthermore, when the material according to the present invention is processed and heat-treated in the conventional condition range, a more uniform and finer structure can be obtained.

【0017】[0017]

【実施例】表1〜表4に示す成分の各種チタン合金を溶
解、鋳造した。そして1100℃に加熱後熱間押出によ
り製造した丸棒より直径10mmの引張試験片で、常温お
よび400℃の高温引張試験を行い耐力を測定した。そ
の結果を、表に示すように本発明は何れも比較例に対し
て常温および高温強度が優れたものであり、本発明例の
鋳造材組織は何れも従来例に比べて微細均一な組織であ
つた。その代表例として、表1の本発明例No.12およ
び表4の比較例No.67の鋳造まま材の組織を図1に示
す。本発明による組織の微細化効果が明瞭である。な
お、PまたはOの添加量を過多にした比較例の表4No.
53,54,56,59,61は、熱間押出できたもの
の割れが発生した。
EXAMPLES Various titanium alloys having the components shown in Tables 1 to 4 were melted and cast. Then, after heating to 1100 ° C., a tensile test piece having a diameter of 10 mm was made from a round bar manufactured by hot extrusion, and a high temperature tensile test at room temperature and 400 ° C. was performed to measure the yield strength. The results, as shown in the table, the present invention is excellent in room temperature and high temperature strength in comparison with Comparative Examples, the casting material structure of the present invention example is a fine and uniform structure compared to the conventional example. Atsuta As a representative example thereof, the invention example No. 12 and Comparative Example No. 4 in Table 4. The structure of the as-cast 67 material is shown in FIG. The effect of refining the structure according to the present invention is clear. In addition, Table 4 No. of the comparative example in which the addition amount of P or O was excessive.
Nos. 53, 54, 56, 59, 61 were cracked although they could be hot extruded.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【発明の効果】本発明により、α型、α+β型チタン合
金材において、常温および高温強度に優れ、かつ微細化
均一組織をなす材料が提供され、比強度が高くかつ耐食
性が良いチタン合金の特性が維持されるとともに、従来
よりも高温での使用が可能となる。また、鋳造まま材料
でも微細均一な組織をなす、強度、延性に優れた材料を
提供することが可能となり、その工業的効果は著しい。
EFFECTS OF THE INVENTION According to the present invention, there is provided an α-type or α + β-type titanium alloy material which is excellent in normal temperature and high temperature strength and has a finely-divided uniform structure. It can be used at a higher temperature than before. Further, it becomes possible to provide a material having excellent strength and ductility, which has a fine and uniform structure even in the as-cast material, and its industrial effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】写真は実施例に記述した本発明例(a)および
比較例(b)の金属組織を示す。
FIG. 1 is a photograph showing the metal structures of the inventive example (a) and the comparative example (b) described in the examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花村 年裕 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 高村 仁一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Hanamura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Laboratories (72) Inventor, Shinichi Takamura, Ida 1618 Nippon Steel Corporation Advanced Technology Research Laboratories

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 α型、α+β型あるいはβ型チタン合金
において、重量%にてOを0.1〜0.8%添加し、か
つP,As,Sb,Bi,S,Se,Te,Bの1種ま
たは2種以上を重量%にて合計0.001〜0.5%添
加したことを特徴とする均一微細組織の高強度チタン合
金。
1. An α-type, α + β-type or β-type titanium alloy containing 0.1 to 0.8% by weight of O and P, As, Sb, Bi, S, Se, Te, B. 0.001 to 0.5% by weight in total of one or more of the above is added to the high strength titanium alloy having a uniform microstructure.
【請求項2】 重量%にてAl:0.5〜7%を含有
し、残部がTiおよび不可避的不純物からなるα型チタ
ン合金において、重量%にてOを0.1〜0.8%添加
し、かつP,As,Sb,Bi,S,Se,Te,Bの
1種または2種以上を重量%にて合計0.001〜0.
5%添加したことを特徴とする均一微細組織の高強度チ
タン合金。
2. An α-type titanium alloy containing Al: 0.5 to 7% by weight, the balance being Ti and unavoidable impurities, and 0.1 to 0.8% O by weight. In addition, one or more of P, As, Sb, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.
A high-strength titanium alloy having a uniform microstructure characterized by being added at 5%.
【請求項3】 重量%にてAl:0.5〜7%およびS
n:1〜6%を含有し、残部がTiおよび不可避的不純
物からなるα型チタン合金において、重量%にてOを
0.1〜0.8%添加し、かつP,As,Sb,Bi,
S,Se,Te,Bの1種または2種以上を重量%にて
合計0.001〜0.5%添加したことを特徴とする均
一微細組織の高強度チタン合金。
3. Al: 0.5 to 7% by weight% and S
In an α-type titanium alloy containing n: 1 to 6% and the balance of Ti and unavoidable impurities, 0.1 to 0.8% of O is added by weight% and P, As, Sb, Bi are added. ,
A high-strength titanium alloy having a uniform microstructure, wherein one or more of S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項4】 重量%にてV:0.2〜7%を含有し、
残部がTiおよび不可避的不純物からなるα+β型チタ
ン合金において、重量%にてOを0.1〜0.8%添加
し、かつP,As,Sb,Bi,S,Se,Te,Bの
1種または2種以上を重量%にて合計0.001〜0.
5%添加したことを特徴とする均一微細組織の高強度チ
タン合金。
4. V: 0.2 to 7% in weight%,
In an α + β titanium alloy, the balance of which is Ti and unavoidable impurities, 0.1 to 0.8% of O is added by weight%, and 1 of P, As, Sb, Bi, S, Se, Te and B is added. Or a total of 0.001 to 0.
A high-strength titanium alloy having a uniform microstructure characterized by being added at 5%.
【請求項5】 重量%にてAl:0.5〜7%および
V:0.2〜12%を含有し、残部がTiおよび不可避
的不純物からなるα+β型チタン合金において、重量%
にてOを0.1〜0.8%添加し、かつP,As,S
b,Bi,S,Se,Te,Bの1種または2種以上を
重量%にて合計0.001〜0.5%添加したことを特
徴とする均一微細組織の高強度チタン合金。
5. An α + β titanium alloy containing Al: 0.5 to 7% and V: 0.2 to 12% by weight, the balance being Ti and inevitable impurities.
0.1 to 0.8% of O is added, and P, As, S
A high-strength titanium alloy having a uniform microstructure, wherein one or more of b, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項6】 重量%にてAl:0.5〜7%と、V:
0.2〜12%またはMo:1〜7%とを含有し、さら
にSn:1〜6%、Zr:3〜8%、Fe:0.1〜3
%、Cu:0.1〜3%の1種または2種以上を含有
し、残部がTiおよび不可避的不純物からなるα+β型
チタン合金において、重量%にてOを0.1〜0.8%
添加し、かつP,As,Sb,Bi,S,Se,Te,
Bの1種または2種以上を重量%にて合計0.001〜
0.5%添加したことを特徴とする均一微細組織の高強
度チタン合金。
6. A weight ratio of Al: 0.5 to 7% and V:
0.2 to 12% or Mo: 1 to 7%, Sn: 1 to 6%, Zr: 3 to 8%, Fe: 0.1 to 3
%, Cu: 0.1 to 3% of one or more kinds, and the balance is an α + β type titanium alloy consisting of Ti and unavoidable impurities.
And P, As, Sb, Bi, S, Se, Te,
0.001 to 1 in total of 1 or 2 or more of B in% by weight.
A high-strength titanium alloy having a uniform microstructure, which is characterized by adding 0.5%.
【請求項7】 重量%にてV,Mo,Crの1種または
2種以上を合計9〜27%含有し、さらにAl:0.5
〜4%、Sn:1〜6%、Zr:3〜8%の1種または
2種以上を含有し、残部がTiおよび不可避的不純物か
らなるβ型チタン合金において、重量%にてOを0.1
〜0.8%添加し、かつP,As,Sb,Bi,S,S
e,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織の高強度チタン合金。
7. A total of 9 to 27% by weight of one or more of V, Mo and Cr, and further, Al: 0.5.
.About.4%, Sn: 1 to 6%, Zr: 3 to 8%, one or two or more kinds, and the balance is Ti and inevitable impurities. .1
~ 0.8% added, and P, As, Sb, Bi, S, S
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of e, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項8】 重量%にてFe:0.1〜3%および
N:0.01〜0.12%を含有して、残部がTiおよ
び不可避的不純物からなるα型チタン合金において、重
量%にてOを0.1〜0.8%添加し、かつP,As,
Sb,Bi,S,Se,Te,Bの1種または2種以上
を重量%にて合計0.001〜0.5%添加したことを
特徴とする均一微細組織の高強度チタン合金。
8. An α-type titanium alloy containing Fe: 0.1 to 3% and N: 0.01 to 0.12% by weight, with the balance being Ti and inevitable impurities. 0.1 to 0.8% of O is added, and P, As,
A high-strength titanium alloy having a uniform microstructure, wherein one or more kinds of Sb, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
JP4052956A 1991-03-25 1992-03-11 High strength titanium alloy having fine and uniform structure Pending JPH05279773A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6059991 1991-03-25
JP3-60599 1991-03-25

Publications (1)

Publication Number Publication Date
JPH05279773A true JPH05279773A (en) 1993-10-26

Family

ID=13146873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052956A Pending JPH05279773A (en) 1991-03-25 1992-03-11 High strength titanium alloy having fine and uniform structure

Country Status (1)

Country Link
JP (1) JPH05279773A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
WO2003085144A1 (en) * 2002-04-11 2003-10-16 Nippon Steel Corporation Automobile part made from titanium
WO2005090623A1 (en) * 2004-03-19 2005-09-29 Nippon Steel Corporation Heat resistant titanium alloy sheet excelling in cold workability and process for producing the same
JP2007519822A (en) * 2003-12-11 2007-07-19 オハイオ ユニヴァーシティ Titanium alloy microstructure refinement method and superplastic formation of titanium alloy at high temperature and high strain rate
JP2008063659A (en) * 2006-08-09 2008-03-21 United Technol Corp <Utc> Process for casting boron modified titanium alloy based parts, process for making wrought titanium alloy based parts, and titanium alloy
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
US7438849B2 (en) * 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
JP2010275630A (en) * 2009-04-27 2010-12-09 Kyushu Institute Of Technology METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
WO2015175032A3 (en) * 2014-02-13 2016-01-21 Titanium Metals Corporation High-strength alpha-beta titanium alloy
CN105382418A (en) * 2015-12-23 2016-03-09 江苏启澜激光科技有限公司 Laser marking machine
CN105483434A (en) * 2015-12-18 2016-04-13 江苏常盛无纺设备有限公司 Vibrating type cotton feeding machine
US9631261B2 (en) 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
CN114507788A (en) * 2022-01-27 2022-05-17 新疆湘润新材料科技有限公司 Vacuum consumable melting method of TC10 titanium alloy ingot

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
WO2003085144A1 (en) * 2002-04-11 2003-10-16 Nippon Steel Corporation Automobile part made from titanium
US7438849B2 (en) * 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
JP2007519822A (en) * 2003-12-11 2007-07-19 オハイオ ユニヴァーシティ Titanium alloy microstructure refinement method and superplastic formation of titanium alloy at high temperature and high strain rate
JP4890262B2 (en) * 2003-12-11 2012-03-07 オハイオ ユニヴァーシティ Titanium alloy microstructure refinement method and superplastic formation of titanium alloy at high temperature and high strain rate
WO2005090623A1 (en) * 2004-03-19 2005-09-29 Nippon Steel Corporation Heat resistant titanium alloy sheet excelling in cold workability and process for producing the same
US9797029B2 (en) 2004-03-19 2017-10-24 Nippon Steel & Sumitomo Metal Corporation Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
JP2008063659A (en) * 2006-08-09 2008-03-21 United Technol Corp <Utc> Process for casting boron modified titanium alloy based parts, process for making wrought titanium alloy based parts, and titanium alloy
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
JP2010275630A (en) * 2009-04-27 2010-12-09 Kyushu Institute Of Technology METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
US9631261B2 (en) 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
WO2015175032A3 (en) * 2014-02-13 2016-01-21 Titanium Metals Corporation High-strength alpha-beta titanium alloy
US10066282B2 (en) 2014-02-13 2018-09-04 Titanium Metals Corporation High-strength alpha-beta titanium alloy
EP3521480A1 (en) * 2014-02-13 2019-08-07 Titanium Metals Corporation High-strength alpha-beta titanium alloy
US10837092B2 (en) 2014-02-13 2020-11-17 Titanium Metals Corporation High-strength alpha-beta titanium alloy
US10837093B2 (en) 2014-02-13 2020-11-17 Titanium Metals Corporation High-strength alpha-beta titanium alloy
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
CN105483434A (en) * 2015-12-18 2016-04-13 江苏常盛无纺设备有限公司 Vibrating type cotton feeding machine
CN105382418A (en) * 2015-12-23 2016-03-09 江苏启澜激光科技有限公司 Laser marking machine
CN114507788A (en) * 2022-01-27 2022-05-17 新疆湘润新材料科技有限公司 Vacuum consumable melting method of TC10 titanium alloy ingot

Similar Documents

Publication Publication Date Title
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
US2754204A (en) Titanium base alloys
US6056835A (en) Superplastic aluminum alloy and process for producing same
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPS63157831A (en) Heat-resisting aluminum alloy
US5084109A (en) Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
US5076858A (en) Method of processing titanium aluminum alloys modified by chromium and niobium
US20220396860A1 (en) Creep Resistant Titanium Alloys
JP3873313B2 (en) Method for producing high-strength titanium alloy
US4093474A (en) Method for preparing aluminum alloys possessing improved resistance weldability
JPH0457734B2 (en)
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US5281285A (en) Tri-titanium aluminide alloys having improved combination of strength and ductility and processing method therefor
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
US2779677A (en) Ti-sn-al alloys with alpha, beta and compound formers
US3061427A (en) Alloy of titanium
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JPH032218B2 (en)
JPS63312938A (en) Heat resistant ti alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020312