JPH0527489B2 - - Google Patents

Info

Publication number
JPH0527489B2
JPH0527489B2 JP63158615A JP15861588A JPH0527489B2 JP H0527489 B2 JPH0527489 B2 JP H0527489B2 JP 63158615 A JP63158615 A JP 63158615A JP 15861588 A JP15861588 A JP 15861588A JP H0527489 B2 JPH0527489 B2 JP H0527489B2
Authority
JP
Japan
Prior art keywords
rolling
width
vertical
slab
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63158615A
Other languages
Japanese (ja)
Other versions
JPH026010A (en
Inventor
Migaku Fujimoto
Noboru Kikukawa
Masafumi Sato
Minoru Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15861588A priority Critical patent/JPH026010A/en
Publication of JPH026010A publication Critical patent/JPH026010A/en
Publication of JPH0527489B2 publication Critical patent/JPH0527489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は竪型圧延機で金属スラブを幅方向に圧
延する圧延方法に関するもので、詳しくは金属ス
ラブの酸化スケールを除去する圧延方法に関する
ものである。 (従来の技術) 連続鋳造スラブの保有顕熱を有効に利用し得る
連続鋳造工程と製品形状を作り出す鋼板圧延工程
とを直結するプロセスを実現する目的から金属ス
ラブ幅のサイズ集約化が図られている。このた
め、鋼板圧延工程に必要な幅のスラブを製造する
ため連続鋳造設備の下流で大きな幅圧延がおこな
われる。 この金属スラブの幅方向圧延はカリバー付き竪
ロールを有する竪型圧延機でなされるが、幅方向
圧下量を大きくとつて幅変更量を大きくすると、
連続鋳造スラブ断面はドツグボーンと呼ばれる局
部的板厚増大部位が発生する。この局部的板厚増
大部位が大きくなると、孔型よりの噛出しによる
表面疵の発生や幅方向圧延における圧延動力の増
大を招く。このため熱間幅圧下圧延法として、例
えば特開昭55−117501号公報に提示する、幅圧延
によつて生じた板厚の局部的増大部位のみを水平
圧下圧延し、供給された金属スラブ厚と同じ元厚
さにし、再度カリバー付き竪ロールによる幅圧延
を繰換返し行なう金属スラブの幅圧延方法があ
る。 そのために、竪ロールを用いた竪型圧延機と水
平ロールを用いた水平型圧延機をパスラインに沿
い何台か串形に密接して配設する形式の圧延設備
が採用されるようになつている。 (発明が解決しようとする課題) 前記金属スラブの熱間幅圧延方法の特徴は、従
来の鋼塊を対象とした分塊圧延法と異なり120〜
360mm厚、1700〜2100mm幅の連続鋳造スラブを対
象としており、圧延時のロール接触弧長と平均板
幅の比、即ちロール間隙形状比が0.1〜0.2と小さ
いこと、一回当りの繰返し幅圧下量が幅方向、両
側合せて120〜150mmと大きいことである。このた
め、幅圧延時の竪ロールによる幅圧下力が幅中央
まで伝播しないため、板幅両側端部に局部的な板
厚増大部位が生じスラブ横断面はドツグボーン形
状となる。 従来技術で提示されている様に、該板厚増大部
位を金属スラブの元厚まで水平圧延する、いわゆ
るドツグボーンならし圧延を実施すると板幅両側
端部の板厚増大部位が長手方向に延伸する際に幅
方向の中央部位も長手方向に引張られる肉引け現
象により幅中央部には元厚より10〜20mm薄厚であ
る窪みが発生する。これにより金属スラブ形状は
両側端部のドツグボーンならし部位の元厚部と幅
中央部の肉引けによる薄肉部から成るスラブ形状
となる。 該金属スラブ形状の両側端部の元厚部の幅中央
部側の半分の領域に縦状の割れ疵が発生する。カ
リバーを有する竪型ロールで幅方向圧延をおこな
うと、発生する局部的な板厚増大部位のカリバー
に接する部位はカリバーに拘束され圧延される
が、カリバーに接しない該板厚増大部位は自由面
になつており孔型による拘束力は作用せず皺が形
成される。この皺が水平ロールで元厚まで水平圧
延されると、縦状の割れ疵となるのである。 このため、従来より連続鋳造工程と熱間圧延工
程を直結している幅圧延工程においては金属スラ
ブの両側端部位に発生する縦状の割れ疵の発生し
ない熱間幅圧延方法が強く望まれていた。 本発明は上記問題点を解決する効果的な金属ス
ラブの熱間幅圧延方法を提供するものである。 (課題を解決するための手段) 本発明は上記した問題点を解決するためなされ
たものでその要旨は 1 竪型圧延機と水平圧延機を串形配列した熱間
圧延によつて金属スラブを幅圧延するに際し
て、竪型圧延機の水平圧延機間で且つ被圧延材
である金属スラブの幅方向側部に気水噴射ノズ
ルを設け、このノズルから空気比0.5〜1.5、空
気圧と水圧:5〜10Kg/cm2の気水混合流体を竪
型圧延機から出て水平圧延機に噛み込まれる直
前の金属スラブの表面幅方向に噴射して酸化ス
ケールを除去することを特徴とする金属スラブ
の熱間幅圧延方法。 2 竪型圧延機のロールチヨツクに気水噴射ノズ
ルを設けたことを特徴とする前記1項記載の金
属スラブの熱間幅圧延方法。である。 (作 用) 本発明は、高圧水式デスケーリング(通常80
Kg/cm2以上の高圧水)とは異なり、前記の気水混
合流体〔空気比0.5〜1.5、空気圧と水圧:5〜10
Kg/cm2〕を熱間幅圧延されたスラブの表面幅方向
に噴射するものである。 これによつて、スラブ表面の温度低下を最小に
維持し且つ同表面への滞留水滴を皆無にしながら
スラブ表面の酸化スケールを確実に除去すること
ができる。 このため、次の水平ロールによる厚み圧延にお
いて、水平ロールによるドツグボーン部の厚み圧
延時のスケール噛み込みを皆無にし、該スケール
噛み込みによる縦割れ状疵の発生を確実に防止す
るものである。 このように本発明は、竪型圧延機と水平圧延機
を串形配列した熱間圧延機に単に公知の高圧水式
デスケーリング装置を設置したものでなく、今ま
でデスケーリングに適用されたことがない前記定
義の気水混合流体を適用し且つその噴射方向を規
定して従来の高圧水式デスケーリング方法を該熱
間圧延機に適用した際の特有の問題点を全て解決
したものである。 以下、本発明の作用を図面により説明する。第
3図aは幅圧下圧延機V1,V2のスタンド構成の
一例で、カリバー付の竪型ロール2と4のスタン
ド間に水平ロール3が配置されている。金属スラ
ブ1は各ロール2,3,4の間で可逆圧延され
る。 第3図b,c,dは圧延過程のスラブ断面形状
を示したものである。即ち、第3図bに示す幅
w0、厚h0の矩形状断面形状を有する金属スラブ
1を、カリバー付の竪型ロール2,4により第3
図cに示す様に板幅方向に圧下量ΔW(=w0
w1)の圧延をおこなうと、金属スラブ1の幅両
側端部に局部的板厚増大部位5が発生する。この
局部的板厚増大部位5を水平ロール3で水平圧下
し、当該部位5の板厚h0+haを元厚h0まで至らし
め、再び板幅方向の幅圧延をおこなつてスラブ幅
を減少させていく第3図cと第3図dの圧延過程
を繰返す。この場合、第3図dに示す如く金属ス
ラブ1には幅中央部に肉引け現象による板幅中央
部窪み6を生じ、幅中央部が幅端部よりhb薄い断
面形状となる。 本発明者等は上記熱間幅圧延法に於ける疵発生
状況について被圧延材である金属スラブの噛み込
め圧延調査などから次のことが知れた。 第4図に示す如く金属スラブが最初に幅圧下圧
延された時に幅方向両側端部に形成される局部的
板厚増大部の変形部5aと非変形部7との表層境
界部8に皺状の塑性流動が発生する。継く局部的
板厚増大部位5を元厚にする水平ロールによる圧
延により変形部と非変形部の塑性流動差による剪
断現象により皺状部位は縦割れ状の折れ込み疵と
して残存していく。該発生疵は幅圧下圧延の繰返
しにより最も加工歪の大きな局部的板厚増大部の
尖頭位置8に移動していき、より顕在化してい
く。尚、第4図は金属スラブ上面についての説明
であるが、下面についても同様である。該疵発生
部位9の形態を詳細に検鏡調査した結果、縦割れ
状疵の内部には1次、2次スケールが噛み込んで
おり、水平ロールによる圧延後も金属圧着せずに
疵として残存することが知れた。更に、1次、2
次スケールの熱間幅圧延に於ける挙動を詳細に調
査した結果、竪型圧延機による幅方向圧延におけ
る酸化スケールの剥離は局部的板厚増大部位及び
板幅中央部窪みによる局部的変形作用により有効
的におこなわれているが、局部的板厚増大部位5
を水平ロールによつて元厚に圧下するとき該酸化
スケールが表層に噛み込むことが知れた。 本発明等は連続鋳造工程と成品圧延工程を直結
するプロセス下での幅圧延工程に於ける酸化スケ
ールの脱スケール法として剥離性能を充分に発揮
することのできる方法として竪型圧延機により幅
方向圧延をおこない金属スラブ表面の酸化スケー
ルを剥離しやすい状態にし、該金属スラブが水平
型圧延機に噛み込む直前に高圧水噴射による表面
温度の低下を防止するため、水量、水圧を減少せ
しめ、且つ空気の運動量を加えることにより5〜
10Kg/cm2の低圧の水と空気の混合(好適な空気比
0.5〜2.0)である気水状態にして金属スラブ表面
(上面、下面、側面)の少なくとも上、下面幅方
向中央部に吹き付ければよいことが知れた。尚、
酸化スケールの脱スケール後の該スラブの中央窪
み部の滞留水滴を防止するため、従来の全幅に亙
つて多数のノズルを配列した散水スプレーにかわ
りスラブ幅方向の一側に単数又は数個の少ないノ
ズルを配置してこのノズルからスラブ表面幅方向
に気水を吹き付ける。このことにより、水平ロー
ルに噛み込む直前にスラブの表面(上面、下面、
側面)スケールを有効に除去でき、滞留水滴のな
い金属スラブが製造できる。 (実施例) 次に本発明の一実施例を示す。加熱・圧延条件
は表1に示す通りであり、V1−H−V2の3スタ
ンドリバース圧延方式で連続鋳造スラブ幅1800
mm、厚280mmから目標スラブ寸法幅(750〜1750)
mm、厚250mmを製造した。表2に目標スラブ寸法
幅900mm、厚250mmの圧延スケジユールを示す。
(Industrial Application Field) The present invention relates to a rolling method for rolling a metal slab in the width direction using a vertical rolling mill, and more particularly to a rolling method for removing oxide scale from a metal slab. (Prior technology) The width of metal slabs has been consolidated in order to realize a process that directly connects the continuous casting process, which can effectively utilize the sensible heat retained by continuous casting slabs, and the steel plate rolling process, which creates the product shape. There is. For this reason, large width rolling is performed downstream of the continuous casting equipment in order to produce slabs of the width necessary for the steel plate rolling process. This metal slab is rolled in the width direction using a vertical rolling mill having a vertical roll with a caliber, but if the amount of width change is increased by increasing the amount of reduction in the width direction,
In the cross section of continuously cast slabs, local areas of increased thickness called dog bones occur. When this localized thickness increase area becomes large, it causes surface flaws due to bite from the hole and an increase in the rolling power during width direction rolling. For this reason, as a hot width reduction rolling method, for example, as disclosed in JP-A-55-117501, only the locally increased part of the plate thickness caused by width rolling is horizontally reduced, and the thickness of the supplied metal slab is reduced. There is a method of width rolling a metal slab in which the original thickness is the same as that of the original thickness, and width rolling is repeatedly performed using vertical rolls with calibers. For this purpose, rolling equipment was adopted in which several vertical rolling mills using vertical rolls and horizontal rolling mills using horizontal rolls were arranged closely in a skewer shape along the pass line. ing. (Problem to be Solved by the Invention) The feature of the hot width rolling method for metal slabs is that, unlike the conventional blooming rolling method for steel ingots,
The target is continuous casting slabs with a thickness of 360 mm and a width of 1700 to 2100 mm, and the ratio of the roll contact arc length to the average plate width during rolling, that is, the roll gap shape ratio, is as small as 0.1 to 0.2, and the repeated width reduction per roll is as low as 0.1 to 0.2. The width is large, totaling 120 to 150 mm on both sides. For this reason, the width reduction force by the vertical rolls during width rolling does not propagate to the center of the width, resulting in local areas of increased thickness at both ends of the width of the slab, resulting in a dogbone cross-section of the slab. As proposed in the prior art, when the so-called dog-bone leveling rolling, in which the thickened portion of the plate is horizontally rolled to the original thickness of the metal slab, the thickened portions at both ends of the plate width are stretched in the longitudinal direction. At the same time, due to the shrinkage phenomenon in which the center portion in the width direction is also pulled in the longitudinal direction, a depression that is 10 to 20 mm thinner than the original thickness is generated in the center portion of the width. As a result, the shape of the metal slab becomes a slab shape consisting of the original thick part of the dogbone leveling part at both side ends and the thin part due to wall shrinkage at the center of the width. Vertical cracks occur in a half area on the width center side of the original thickness at both end portions of the metal slab shape. When rolling in the width direction with a vertical roll having a caliber, the part of the locally increased thickness that is in contact with the caliber is restrained by the caliber and rolled, but the part of the plate that is not in contact with the caliber is a free surface. Because of this, the restraining force due to the hole shape does not act and wrinkles are formed. When these wrinkles are horizontally rolled to the original thickness using horizontal rolls, they become vertical cracks. For this reason, in the conventional width rolling process, which directly connects the continuous casting process and the hot rolling process, there is a strong desire for a hot width rolling method that does not cause vertical cracks that occur at both ends of the metal slab. Ta. The present invention provides an effective method for hot width rolling of metal slabs that solves the above problems. (Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows: 1. Metal slabs are manufactured by hot rolling using a vertical rolling mill and a horizontal rolling mill arranged in a skewer shape. During width rolling, an air/water injection nozzle is provided between the horizontal rolling mills of the vertical rolling mill and on the widthwise side of the metal slab that is the material to be rolled. A metal slab characterized in that oxidized scale is removed by spraying ~10Kg/ cm2 of mixed fluid of steam and water in the width direction of the surface of the metal slab just before it comes out of a vertical rolling mill and is bitten into a horizontal rolling mill. Hot width rolling method. 2. The method for hot width rolling of a metal slab according to item 1 above, characterized in that a steam/water injection nozzle is provided in the roll chock of the vertical rolling mill. It is. (Function) The present invention provides high-pressure water descaling (usually 80
Kg/cm 2 or more high-pressure water), the above-mentioned air-water mixed fluid [air ratio 0.5-1.5, air pressure and water pressure: 5-10
kg/cm 2 ] in the width direction of the surface of the hot width-rolled slab. As a result, oxidized scale on the slab surface can be reliably removed while keeping the temperature drop on the slab surface to a minimum and eliminating any water droplets staying on the surface. Therefore, in the subsequent thickness rolling using horizontal rolls, there is no scale entrainment during the thickness rolling of the dogbone portion using the horizontal rolls, and the occurrence of vertical crack-like defects due to the scale entrainment is reliably prevented. In this way, the present invention does not simply install a known high-pressure water type descaling device in a hot rolling mill in which a vertical rolling mill and a horizontal rolling mill are arranged in a skewer configuration, but also incorporates a method that has not been applied to descaling to date. By applying the air-water mixed fluid as defined above and specifying its injection direction, all the problems peculiar to when applying the conventional high-pressure water descaling method to the hot rolling mill are solved. . Hereinafter, the operation of the present invention will be explained with reference to the drawings. FIG. 3a shows an example of the stand configuration of the width reduction rolling mills V 1 and V 2 , in which a horizontal roll 3 is arranged between the stands of vertical rolls 2 and 4 with calibers. The metal slab 1 is reversibly rolled between each roll 2, 3, 4. Figures 3b, c, and d show the cross-sectional shape of the slab during the rolling process. That is, the width shown in Figure 3b
A metal slab 1 having a rectangular cross-sectional shape of w 0 and thickness h 0 is rolled into a third roll by vertical rolls 2 and 4 with calibers.
As shown in Figure c, the reduction amount ΔW (=w 0
When rolling w 1 ) is performed, locally increased thickness portions 5 occur at both ends of the width of the metal slab 1. This locally increased thickness area 5 is rolled down horizontally by the horizontal rolls 3 to bring the thickness h 0 + h a of the area 5 to the original thickness h 0 , and width rolling in the width direction is performed again to reduce the slab width. The rolling steps of FIGS. 3c and 3d are repeated to reduce the amount. In this case, as shown in FIG. 3d, the metal slab 1 has a depression 6 at the center of the plate width due to the shrinkage phenomenon, and the center of the width has a cross-sectional shape h b thinner than the end portions of the width. The inventors of the present invention have learned the following about the occurrence of defects in the above-mentioned hot width rolling method through investigation of the biting rolling of metal slabs, which are the material to be rolled. As shown in FIG. 4, when the metal slab is first width-reduced, wrinkles appear at the surface layer boundary 8 between the deformed part 5a and the non-deformed part 7 of the locally increased thickness part formed at both ends in the width direction. plastic flow occurs. As a result of rolling with horizontal rolls that restores the local plate thickness increase area 5 to the original thickness, the wrinkled area remains as a vertical crack-like folding flaw due to the shearing phenomenon caused by the difference in plastic flow between the deformed area and the non-deformed area. As the width reduction rolling is repeated, the generated flaw moves to the peak position 8 of the local plate thickness increase part where the processing strain is the largest, and becomes more obvious. Although FIG. 4 describes the upper surface of the metal slab, the same applies to the lower surface. As a result of a detailed microscopic examination of the morphology of the flaw occurrence site 9, it was found that primary and secondary scales were embedded inside the vertical crack-like flaw, and the flaw remained as a flaw without metal pressure bonding even after rolling with horizontal rolls. I learned what to do. Furthermore, primary, secondary
As a result of a detailed investigation of the behavior of the following scales during hot width rolling, it was found that the peeling of oxide scales during widthwise rolling by a vertical rolling mill is due to the local deformation effect caused by local thickening areas and depressions at the center of the width of the plate. Although it is effective, there are some areas where the plate thickness increases locally5.
It has been found that when the steel is rolled down to its original thickness using horizontal rolls, the oxidized scale is bitten into the surface layer. The present invention is a method for descaling oxidized scale in the width rolling process, which is a process that directly connects the continuous casting process and the product rolling process. In order to make the oxide scale on the surface of the metal slab easy to peel off during rolling, and to prevent the surface temperature from decreasing due to high-pressure water injection just before the metal slab is bitten into the horizontal rolling mill, the amount and pressure of water are reduced, and 5~ by adding the momentum of the air
10Kg/ cm2 low pressure water and air mixture (suitable air ratio)
It has been found that it is sufficient to spray the metal slab surface (upper surface, lower surface, side surface) at least on the upper and lower widthwise central portions of the metal slab surface (upper surface, lower surface, and side surfaces) in an air-water state with a temperature of 0.5 to 2.0. still,
In order to prevent water droplets from accumulating in the central depression of the slab after descaling the oxide scale, a single or several small number of nozzles are installed on one side in the width direction of the slab instead of the conventional water spray system in which many nozzles are arranged over the entire width of the slab. A nozzle is arranged and air and water are sprayed from this nozzle in the width direction of the slab surface. This allows the surface of the slab (top, bottom,
Side) Scale can be effectively removed and metal slabs without accumulated water droplets can be manufactured. (Example) Next, an example of the present invention will be shown. The heating and rolling conditions are as shown in Table 1, and the continuous casting slab width was 1800 mm using the 3-stand reverse rolling method of V1 -H- V2 .
mm, thickness 280mm to target slab dimension width (750~1750)
mm, thickness 250mm. Table 2 shows the rolling schedule for the target slab dimensions of 900 mm in width and 250 mm in thickness.

【表】【table】

【表】【table】

【表】 (注) ○:気水噴射有
−:気水噴射無
第1図aは本発明を実施するための熱間幅圧延
装置の一例を示す概略図であり、連続鋳造設備
(図示していない)から出た金属スラブ1は竪型
ロール2、水平ロール3、竪型ロール4を可逆圧
延することによつて目標の金属スラブ寸法に圧延
される。10a〜13aは空気制御弁、10w〜
13wは水量制御弁、10n〜13nは噴射ノズ
ルを示す。空気及び水量の制御弁は各竪型ロール
の回転方向に連動しており、金属スラブの水平ロ
ール入側の噴射ノズルのみが噴射する様に制御さ
れる。 第1図bは実施例装置の側面図であり、第1図
cは同装置の平面図である。被圧延材である金属
スラブ1は矢印Aの方向に搬送され、竪型ロール
2で幅方向に圧延される。この幅方向圧下により
発生する局部的板厚増大部位5は水平ロール3に
より元厚まで厚み方向に圧延される。その後、再
び竪ロール4により往復幅圧下されてのち、矢印
Bの方向に搬送・圧延される。これを数回繰返す
ことにより所定の寸法に仕上げられる。 図中14,15は竪竪ロール1,4を固定保持
するロールチヨツク装置であり、駆動装置に連動
しており所定の位置に設定され、且つ圧延中は常
時被圧延材1の両端部に位置している。10n〜
13nはロールチヨツク装置14,15に取りつ
けられた気水噴射管である。即ち、本設備構成に
よれば水平ロール入側の幅寸法に応じて自動的に
幅方向側方の等距離より金属スラブ表面に気水混
合流体を噴射することができる。第2図は噴射ノ
ズル10n〜13nの詳細を示す。噴射ノズル1
0n〜13nは低圧水管16内に低圧空気管17
を導き、環状の水吐出口20と中央の空気吐出口
21を形成し、この前方の出側空隙部18を気水
混合部とし、ここで気水混合流体を得る構造にな
つており、噴射域の調整は噴射域調整管19で出
側空隙部18の空間域を変化させることによつて
おこなう。 従来の全面型散水噴射法で竪型ロール出側で55
〜130Kg/cm2の高圧水を噴射した場合と、本発明
法を実施した場合の結果の比較を表3に示す。但
し本発明法における噴射流体は前記各ノズル10
n〜13n夫々についての好ましい条件を示す。
[Table] (Note) ○: With air and water injection
-: No steam/water injection FIG. 1a is a schematic diagram showing an example of a hot width rolling apparatus for carrying out the present invention, and the metal slab 1 that comes out of the continuous casting equipment (not shown) has a vertical shape. By reversibly rolling the rolls 2, horizontal rolls 3, and vertical rolls 4, the metal slab is rolled to a target dimension. 10a to 13a are air control valves, 10w to
13w is a water flow control valve, and 10n to 13n are injection nozzles. The air and water flow control valves are linked to the rotation direction of each vertical roll, and are controlled so that only the injection nozzle on the entrance side of the horizontal roll of the metal slab is injected. FIG. 1b is a side view of the embodiment apparatus, and FIG. 1c is a plan view of the same apparatus. A metal slab 1, which is a material to be rolled, is conveyed in the direction of arrow A and rolled in the width direction by vertical rolls 2. The locally increased thickness portion 5 generated by this reduction in the width direction is rolled in the thickness direction by the horizontal rolls 3 to the original thickness. Thereafter, it is rolled down again in a reciprocating width by the vertical rolls 4, and then conveyed and rolled in the direction of arrow B. By repeating this several times, the desired dimensions can be achieved. In the figure, reference numerals 14 and 15 indicate roll choking devices that fixedly hold the vertical rolls 1 and 4, which are linked to a drive device and set at predetermined positions, and which are always located at both ends of the rolled material 1 during rolling. ing. 10n~
13n is an air/water injection pipe attached to the roll chocks 14, 15. That is, according to this equipment configuration, it is possible to automatically inject the steam/water mixed fluid onto the surface of the metal slab from the same distance on the sides in the width direction, depending on the width dimension of the entrance side of the horizontal roll. FIG. 2 shows details of the injection nozzles 10n to 13n. Injection nozzle 1
0n to 13n are low pressure air pipes 17 inside the low pressure water pipes 16.
The structure is such that an annular water outlet 20 and a central air outlet 21 are formed, and the outlet side gap 18 at the front is used as an air/water mixing section to obtain an air/water mixed fluid. The area is adjusted by changing the spatial area of the outlet cavity 18 using the injection area adjustment pipe 19. 55 on the exit side of the vertical roll using the conventional full-surface water spraying method
Table 3 shows a comparison of the results when high-pressure water of ~130 Kg/cm 2 was injected and when the method of the present invention was implemented. However, the injection fluid in the method of the present invention is
Preferred conditions for each of n to 13n are shown below.

【表】 この結果、熱間幅圧延において、縦割れ状発生
疵は、従来法の3分の1程度となり、大幅に金属
スラブの品位が向上した。 (発明の効果) 以上説明した如く、本発明によると幅方向圧延
により発生する縦割れ状疵は、竪型圧延機より水
平圧延機に噛込む時に幅方向側方より気水混合流
体を噴射して酸化スケールを除去することにより
大幅に改善された。更に、本発明法によると表面
温度低下量は少く、表面上の滞留水滴がなくなる
など省エネルギープロセスに多大の効果をもたら
す。また、本発明方法によれば従来の高水圧・高
水量型の全面型散水脱水スケール装置に比べ蒸気
発生や飛散スケールによる環境対策が必要でなく
なり、工業上効果が大である。
[Table] As a result, the number of vertical crack-like defects in hot width rolling was reduced to about one-third of the conventional method, and the quality of the metal slab was significantly improved. (Effects of the Invention) As explained above, according to the present invention, vertical crack-like defects caused by rolling in the width direction can be fixed by injecting a mixed fluid of steam and water from the side in the width direction when the vertical rolling mill is bitten by the horizontal rolling mill. This was significantly improved by removing the oxide scale. Furthermore, according to the method of the present invention, the amount of surface temperature decrease is small, and water droplets remaining on the surface are eliminated, which brings about a great effect on the energy-saving process. Furthermore, the method of the present invention eliminates the need for environmental measures such as steam generation and scattered scale compared to conventional high water pressure/high water flow type full-surface water dewatering scale equipment, and is industrially more effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための熱間幅圧延装
置の一例を示す図であり、第1図aは同装置の全
体を示す概略図、第1図bは側面図、第1図cは
平面図、第2図は噴射ノズルの詳細を示す図、第
3図aは幅圧下圧延機のスタンド構成の一例を示
す図、第3図b,c,dは圧延過程の金属スラブ
断面形状を示す図、第4図は疵発生機構の説明に
使用した幅圧下圧延時の金属スラブ断面の変化過
程を示す図である。 1…金属スラブ、2…竪型ロール、3…水平ロ
ール、4…竪型ロール、5…局部的板厚増大部
位、6…板幅中央部窪み、7…非変形部、8…局
部的板厚増大部位の尖頭位置、9…疵発生部位、
10a〜13a…空気制御弁、10w〜13w…
水量制御弁、10n〜13n…噴射ノズル、14
…ロールチヨツク装置、15…ロールチヨツク装
置、16…低圧水管、17…低圧空気、18…出
側空隙部、19…噴射域調整管、20…水吐出
口、21…空気吐出口。
FIG. 1 is a diagram showing an example of a hot width rolling apparatus for carrying out the present invention, FIG. 1 a is a schematic diagram showing the entire apparatus, FIG. 1 b is a side view, and FIG. 1 c is a plan view, FIG. 2 is a diagram showing details of the injection nozzle, FIG. 3 a is a diagram showing an example of the stand configuration of a width reduction rolling mill, and FIGS. 3 b, c, and d are cross-sectional shapes of metal slabs during the rolling process. FIG. 4 is a diagram showing the process of change in the cross section of a metal slab during width reduction rolling used to explain the flaw generation mechanism. DESCRIPTION OF SYMBOLS 1...Metal slab, 2...Vertical roll, 3...Horizontal roll, 4...Vertical roll, 5...Local plate thickness increase area, 6...Dieth in central part of plate width, 7...Non-deformed part, 8...Local plate Point position of increased thickness area, 9... flaw occurrence area,
10a to 13a...Air control valve, 10w to 13w...
Water flow control valve, 10n to 13n...Injection nozzle, 14
... Roll check device, 15 ... Roll check device, 16 ... Low pressure water pipe, 17 ... Low pressure air, 18 ... Outlet side cavity, 19 ... Injection area adjustment pipe, 20 ... Water discharge port, 21 ... Air discharge port.

Claims (1)

【特許請求の範囲】 1 竪型圧延機と水平圧延機を串形配列した熱間
圧延によつて金属スラブを幅圧延するに際して、
竪型圧延機の水平圧延機間で且つ被圧延材である
金属スラブの幅方向側部に気水噴射ノズルを設
け、このノズルから空気比0.5〜1.5、空気圧と水
圧:5〜10Kg/cm2の気水混合流体を竪型圧延機か
ら出て水平圧延機に噛み込まれる直前の金属スラ
ブの表面幅方向に噴射して酸化スケールを除去す
ることを特徴とする金属スラブの熱間幅圧延方
法。 2 竪型圧延機のロールチヨツクに気水噴射ノズ
ルを設けたことを特徴とする請求項1記載の金属
スラブの熱間幅圧延方法。
[Claims] 1. When width rolling a metal slab by hot rolling with a vertical rolling mill and a horizontal rolling mill arranged in a skewer shape,
An air/water injection nozzle is provided between the horizontal rolling mills of the vertical rolling mill and on the widthwise side of the metal slab that is the material to be rolled, and from this nozzle air ratio of 0.5 to 1.5, air pressure and water pressure: 5 to 10 Kg/cm 2 A method for hot width rolling of a metal slab, characterized in that oxidized scale is removed by injecting a steam/water mixed fluid in the width direction of the surface of the metal slab just before it comes out of a vertical rolling mill and is bitten into a horizontal rolling mill. . 2. The method of hot width rolling of a metal slab according to claim 1, wherein a steam/water injection nozzle is provided in the roll chock of the vertical rolling mill.
JP15861588A 1988-06-27 1988-06-27 Hot cross rolling method for metallic slab Granted JPH026010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15861588A JPH026010A (en) 1988-06-27 1988-06-27 Hot cross rolling method for metallic slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15861588A JPH026010A (en) 1988-06-27 1988-06-27 Hot cross rolling method for metallic slab

Publications (2)

Publication Number Publication Date
JPH026010A JPH026010A (en) 1990-01-10
JPH0527489B2 true JPH0527489B2 (en) 1993-04-21

Family

ID=15675580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15861588A Granted JPH026010A (en) 1988-06-27 1988-06-27 Hot cross rolling method for metallic slab

Country Status (1)

Country Link
JP (1) JPH026010A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516407B1 (en) * 2014-11-20 2016-05-15 Andritz Ag Maschf Process for the use of hydrated sorbents in thermal process plants
CN106345828B (en) * 2016-08-31 2019-09-24 山东钢铁股份有限公司 Continuous casting blank scale eliminating device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117501A (en) * 1979-03-02 1980-09-09 Nippon Steel Corp Broadside rolling method for metallic slab
JPS61212404A (en) * 1985-03-15 1986-09-20 Sumitomo Electric Ind Ltd Hot rolling method for carbon-steel wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117501A (en) * 1979-03-02 1980-09-09 Nippon Steel Corp Broadside rolling method for metallic slab
JPS61212404A (en) * 1985-03-15 1986-09-20 Sumitomo Electric Ind Ltd Hot rolling method for carbon-steel wire rod

Also Published As

Publication number Publication date
JPH026010A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
KR100191298B1 (en) Process for the production of a strip, a pre-strip or a slab
JP3802830B2 (en) Steel sheet descaling method and equipment
JPS62240103A (en) Method and apparatus for rolling high-temperature thin sheet material
JPH0527489B2 (en)
JP2004167521A (en) Apparatus and method for secondary-cooling of continuously cast slab
KR20100020648A (en) Apparatus for ascenting and descenting of descaling header for hot rolling steel plate
JP3704222B2 (en) How to prevent scale wrinkles
JP3335052B2 (en) Descaling device and descaling device and roller guide device
JPS59229268A (en) Descaling method of continuous casting billet
JP3038308B2 (en) Continuous casting method and continuous casting equipment for steel square slabs
JP3747546B2 (en) Method and apparatus for cooling high temperature steel sheet
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP3058311B2 (en) Descaling method for hot rolled steel
JP3448600B2 (en) Induction heating device
JPS5856641B2 (en) Method to prevent rolling material from rising
JPS5950903A (en) Continuous hot rolling device for steel plate
JP2001150018A (en) Effective rescaling method for hot rolling
JPH0619908U (en) Descaling device for hot rolled steel end surface
JP2000117318A (en) Descaling device for bar steel
JP2774201B2 (en) Work roll cooling method for cold rolling mill
RU2365442C1 (en) Method for protection of hot rolled breakdown surface against oxidation in process of rolling
JPS63309318A (en) Method and device for hot width rolling of metallic slab
JPS6321925Y2 (en)
JPH0675722B2 (en) Hot width rolling method for metal slabs
JP3196677B2 (en) High temperature steel plate cooling system