JPH05273137A - Surface flaw inspecting device - Google Patents

Surface flaw inspecting device

Info

Publication number
JPH05273137A
JPH05273137A JP4100596A JP10059692A JPH05273137A JP H05273137 A JPH05273137 A JP H05273137A JP 4100596 A JP4100596 A JP 4100596A JP 10059692 A JP10059692 A JP 10059692A JP H05273137 A JPH05273137 A JP H05273137A
Authority
JP
Japan
Prior art keywords
detection
optical system
glass substrate
scattered light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4100596A
Other languages
Japanese (ja)
Inventor
Masayoshi Tsuchiya
政義 土屋
Shinya Iida
進也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Tech Co Ltd
Original Assignee
Sigma Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Tech Co Ltd filed Critical Sigma Tech Co Ltd
Priority to JP4100596A priority Critical patent/JPH05273137A/en
Publication of JPH05273137A publication Critical patent/JPH05273137A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect a foreign object such as a particle or a flaw existing only on the surface of a transparent flat material with high precision and prevent the erroneous detection of the scattered light from the back face. CONSTITUTION:The detection light is radiated to the surface S of the glass substrate G of a surface flaw inspecting device, the scattered light L2 caused by a foreign object existing on the surface S is detected by a detecting optical system 14 as a flaw, and the detecting optical system 14 is arranged at a position where the scattered light L2 can be detected when the foreign object D exists at a detection position P in front of the detection position P to which the detection light L is radiated on the surface S in the range partitioned by the critical angle thetac of the total reflection of the glass substrate G against the surface S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基板のような透
明平板材料の表面に存在する微粒子(塵)やキズ、ヒビ
等(以下、これらをまとめて異物という)による欠陥を
検出するための表面欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting defects due to fine particles (dust), scratches, cracks and the like (hereinafter collectively referred to as foreign matter) existing on the surface of a transparent flat plate material such as a glass substrate. The present invention relates to a surface defect inspection device.

【0002】[0002]

【従来の技術】周知のように、半導体製造工程では、シ
リコンウェハ表面の異物による欠陥を除去するため、極
めて厳密な研磨工程及び洗浄工程が要求される。この洗
浄工程において、ウェハ表面の微粒子を検出するために
従来から様々な表面欠陥検査装置が提案されている。
2. Description of the Related Art As is well known, in semiconductor manufacturing processes, extremely strict polishing and cleaning processes are required to remove defects due to foreign substances on the surface of a silicon wafer. In this cleaning process, various surface defect inspection apparatuses have been conventionally proposed to detect fine particles on the wafer surface.

【0003】図4はこの種の検査装置の第1の従来技術
を原理的に示したものである。図において、Sは検査す
るべきシリコンウェハの表面、Dは表面Sに存在する異
物、Lはレーザ光源(図示せず)から照射されるレーザ
検出光、11,12はレンズ、13はホトトランジスタ
等からなるホトデテクタである。ここで、レーザ検出光
は例えば0.5mm径のビームに制御されている。その
測定原理としては、仮りに表面Sに異物Dが存在しなけ
れば、レーザ検出光Lは表面Sから所定の反射角にてL
1のように反射するだけであるが、異物Dが存在する場
合には異物Dによる散乱光L2が発生する。従って、例
えば検出位置の上方にレンズ11,12及びホトデテク
タ13を配置しておけば上記散乱光L2を検出でき、換
言すれば異物Dを検出することができる。
FIG. 4 shows in principle the first prior art of this type of inspection apparatus. In the figure, S is the surface of a silicon wafer to be inspected, D is a foreign substance existing on the surface S, L is laser detection light emitted from a laser light source (not shown), 11 and 12 are lenses, 13 is a phototransistor, etc. Is a photo detector. Here, the laser detection light is controlled to be a beam having a diameter of 0.5 mm, for example. The principle of measurement is that if there is no foreign matter D on the surface S, the laser detection light L is L at a predetermined reflection angle from the surface S.
Although only reflected like 1, the scattered light L 2 is generated by the foreign substance D when the foreign substance D is present. Therefore, for example, if the lenses 11 and 12 and the photodetector 13 are arranged above the detection position, the scattered light L 2 can be detected, in other words, the foreign substance D can be detected.

【0004】図5も、同一の原理に基づく第2の従来技
術である。この例では、検査箇所の真上からレーザ検出
光Lを照射し、異物Dによる散乱光L2を斜め上方のレ
ンズ11,12及びホトデテクタ13により検出するも
のである。なお、図4、図5に示した検査装置により検
出可能な異物Dの直径は、製品の歩留まりを考慮して
0.1μm、0.3μm、0.5μm等となっている。
また、レーザ光源やレンズ11,12、ホトデテクタ1
3等からなる検出用光学系は表面S上を一定の速度でス
キャン可能であり、これによって表面Sの全域につき欠
陥を検査できるように構成されている。
FIG. 5 is also a second prior art based on the same principle. In this example, the laser detection light L is irradiated from directly above the inspection location, and the scattered light L 2 due to the foreign matter D is detected by the lenses 11 and 12 and the photodetector 13 obliquely above. The diameter of the foreign matter D that can be detected by the inspection device shown in FIGS. 4 and 5 is 0.1 μm, 0.3 μm, 0.5 μm, etc. in consideration of the product yield.
Further, the laser light source, the lenses 11 and 12, the photo detector 1
The detection optical system composed of 3 and the like is capable of scanning the surface S at a constant speed so that the entire area of the surface S can be inspected for defects.

【0005】[0005]

【発明が解決しようとする課題】一方、近年ではパネル
型ディスプレイの製造技術が飛躍的に進歩しつつある。
周知のように液晶パネルやEL(エレクトロルミネセン
ス)パネル、PD(プラズマディスプレイ)パネルのご
とくガラス基板上に電極を形成する構造のものにおいて
は、前述の半導体ウェハと同様にガラス基板表面に欠陥
がないことが要請される。ここで、図4、図5に示した
検査装置をウェハの検査に用いる場合には、ウェハが不
透明であるためその表面Sに照射したレーザ検出光Lが
ウェハ内部を透過することはない。しかるに、これらの
検査装置をガラス基板表面の欠陥検査に転用した場合、
レーザ検出光Lが透明なガラス基板内を透過し、その裏
面に付着している種々の異物からの散乱光まで表面側の
ホトデテクタ13により検出してしまう場合がある。
On the other hand, in recent years, the manufacturing technology of panel-type displays has been dramatically improved.
As is well known, in a structure in which electrodes are formed on a glass substrate such as a liquid crystal panel, an EL (electroluminescence) panel, and a PD (plasma display) panel, defects are formed on the surface of the glass substrate like the above-mentioned semiconductor wafer. Not required. Here, when the inspection apparatus shown in FIGS. 4 and 5 is used for inspecting a wafer, the laser detection light L applied to the surface S of the wafer does not pass through the inside of the wafer because the wafer is opaque. However, when these inspection devices are diverted to the defect inspection of the glass substrate surface,
The laser detection light L may pass through the inside of the transparent glass substrate, and scattered light from various foreign substances attached to the back surface thereof may be detected by the photodetector 13 on the front surface side.

【0006】この不都合はガラス基板が薄いほど生じ易
く、液晶パネルのようにガラス基板が0.7mmほどの
薄さである場合には、ホトデテクタによって検出してい
る散乱光がガラス基板表面の異物によるものなのか、あ
るいは裏面の異物によるものなのか判別できず、正確な
検査は不可能であった。このため、例えば400mm×
400mm程度の大きさのガラス基板に対しては有効な
表面欠陥検査手段がなく、未だに目視による検査に頼ら
ざるを得ない現状である。本発明は上記問題点を解決す
るためになされたもので、その目的とするところは、ガ
ラス基板等の透明平板材料の表面に存在する異物による
欠陥のみを高精度で検出することができる表面欠陥検査
装置を提供することにある。
This problem is more likely to occur as the glass substrate is thinner, and when the glass substrate is as thin as 0.7 mm as in a liquid crystal panel, scattered light detected by the photodetector is caused by foreign matter on the surface of the glass substrate. Since it was not possible to determine whether it was due to foreign matter on the back or due to foreign matter on the back side, accurate inspection was impossible. Therefore, for example, 400 mm ×
There is no effective surface defect inspection means for a glass substrate having a size of about 400 mm, and it is the current situation that it is still necessary to rely on visual inspection. The present invention has been made to solve the above problems, and an object thereof is a surface defect capable of highly accurately detecting only a defect caused by a foreign substance existing on the surface of a transparent flat plate material such as a glass substrate. To provide an inspection device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、透明平板材料の表面に検出光を照射し、
前記表面に存在する異物による散乱光を検出用光学系に
より検出して前記異物を欠陥として検出する表面欠陥検
査装置において、前記表面上で検出光が照射される検出
位置よりも前方であってこの検出位置に異物が存在した
場合にその散乱光を検出可能な位置であり、かつ、表面
に対し前記透明平板材料の全反射の臨界角近傍以内の範
囲に検出用光学系を配置するものである。
To achieve the above object, the present invention irradiates the surface of a transparent flat plate material with detection light,
In a surface defect inspection apparatus that detects scattered light due to foreign matter existing on the surface by a detection optical system to detect the foreign matter as a defect, in front of a detection position at which detection light is irradiated on the surface, It is a position where the scattered light can be detected when a foreign substance is present at the detection position, and the detection optical system is arranged within the vicinity of the critical angle of total reflection of the transparent flat plate material with respect to the surface. ..

【0008】[0008]

【作用】本発明によれば、検出用光学系を上述したよう
な特定の位置に配置するため、透明平板材料の裏面に存
在する異物からの散乱光が検出用光学系に入射すること
はない。従って、検出用光学系により検出されるのは、
ほぼ表面の異物による散乱光のみとなる。
According to the present invention, since the detection optical system is arranged at the specific position as described above, scattered light from foreign matter existing on the back surface of the transparent flat plate material does not enter the detection optical system. .. Therefore, what is detected by the detection optical system is
Almost only scattered light due to foreign matter on the surface is obtained.

【0009】[0009]

【実施例】以下、図に沿って本発明の一実施例を説明す
る。まず、図2は本発明の原理を示すものである。Gは
透明平板材料としてのガラス基板であり、このガラス基
板Gの表面S上の位置P1に図示されていないレーザ光
源からレーザ検出光Lが入射角θ1で入射したとする。
なお、L1は位置P1からの反射光である。いま、位置P
1に異物が存在したとすると(以下、便宜上、異物につ
いてもその位置と同符号を用いる)、前述の図4と同様
の原理により、検出用光学系を適宜な位置に配置するこ
とによって異物P1による散乱光を検出することができ
るため、異物P1の検出が可能である。
An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 2 shows the principle of the present invention. G is a glass substrate as a transparent flat plate material, and it is assumed that laser detection light L is incident on the surface P of the glass substrate G at a position P 1 from a laser light source (not shown) at an incident angle θ 1 .
Note that L 1 is the reflected light from the position P 1 . Position P now
If there is a foreign substance in 1 (for convenience, the same reference numeral is used for the foreign substance hereinafter), the foreign substance P is arranged at an appropriate position by arranging the detection optical system at an appropriate position according to the same principle as in FIG. Since the scattered light from 1 can be detected, the foreign matter P 1 can be detected.

【0010】一方、レーザ検出光Lが屈折角θ2でガラ
ス基板G内を透過したとし、そのとき、レーザ検出光L
が通過する裏面S´の位置P2にも異物があったとする
と、その異物P2による散乱光がガラス基板G内を介し
て表面Sの光学系側に透過する。従って、検出用光学系
の位置によっては、この裏面S´の異物P2による散乱
光も検出してしまう恐れがある。そこで本発明では、裏
面S´の異物P2による散乱光が全反射する臨界角θc
を考慮して検出用光学系を特定の位置に配置することと
した。
On the other hand, it is assumed that the laser detection light L is transmitted through the glass substrate G at the refraction angle θ 2 , and at that time, the laser detection light L
If there is a foreign substance also at the position P 2 on the back surface S ′ through which the foreign substance passes, the scattered light due to the foreign substance P 2 passes through the glass substrate G to the optical system side of the front face S. Therefore, depending on the position of the detection optical system, scattered light due to the foreign matter P 2 on the back surface S ′ may also be detected. Therefore, in the present invention, the critical angle θc at which the scattered light due to the foreign matter P 2 on the back surface S ′ is totally reflected
Considering the above, the detection optical system is arranged at a specific position.

【0011】図1は本発明の一実施例を示しており、図
2と同一の構成要素には同一符号を付してある。なお、
図1において、14はレンズ11,12及びホトデテク
タ13からなる検出用光学系を示す。ここで、レンズ1
1,12としては非球面レンズが用いられている。ま
た、ホトデテクタ13としては例えばシリコンホトダイ
オード等のソリッドステート受光素子や、ホトマル等で
あればよい。集光方式としては、レンズの他に楕円ミラ
ーや光ファイバ等を用いたものであってもよい。レーザ
光源としては、He−Neレーザ等のガスレーザ、半導
体レーザ及びYAGレーザ等の複合素子レーザ等、その
種類を問わない。更に、上記光源や検出用光学系14の
種類はあくまで例示的なものであり、本発明はこれら以
外の光源や検出用光学系を用いる場合も含むものであ
る。なお、ガラス基板Gの厚さは0.7mm、屈折率n
=1.5であり、その全反射の臨界角θcは41.8°
である。
FIG. 1 shows an embodiment of the present invention, in which the same components as those in FIG. 2 are designated by the same reference numerals. In addition,
In FIG. 1, reference numeral 14 denotes a detection optical system including lenses 11, 12 and a photodetector 13. Where lens 1
Aspherical lenses 1 and 12 are used. The photodetector 13 may be, for example, a solid-state light receiving element such as a silicon photodiode or a photomultiplier. The condensing method may use an elliptical mirror, an optical fiber or the like in addition to the lens. The laser light source may be of any type such as a gas laser such as a He—Ne laser, a compound laser such as a semiconductor laser and a YAG laser, and the like. Further, the types of the light source and the detection optical system 14 described above are merely examples, and the present invention also includes the case of using a light source or a detection optical system other than these. The glass substrate G has a thickness of 0.7 mm and a refractive index n.
= 1.5, and the critical angle θc of total reflection is 41.8 °.
Is.

【0012】本実施例では、前述の原理に基づき、ガラ
ス基板Gの表面S上でレーザ検出光Lが照射される検出
位置Pよりも前方であってこの検出位置Pに異物Dが存
在した場合にその散乱光を検出可能な位置であり、か
つ、表面Sに対しガラス基板Gの全反射の臨界角θc近
傍以内の範囲に検出用光学系14を配置するようにした
ものである。
In the present embodiment, based on the above-mentioned principle, when the foreign matter D exists at the detection position P in front of the detection position P where the laser detection light L is irradiated on the surface S of the glass substrate G. Further, the detection optical system 14 is arranged at a position where the scattered light can be detected, and within the vicinity of the critical angle θc of the total reflection of the glass substrate G with respect to the surface S.

【0013】このような範囲に検出用光学系14を配置
することにより、ガラス基板Gの裏面S´の異物による
散乱光であってガラス基板Gを表面S方向に透過したも
ののうち、臨界角θc以下の角度で表面Sに達したもの
は表面Sの外部に漏れ出すが、臨界角θc近傍以内の範
囲にある検出用光学系14には入射しない。また、臨界
角θc以上の角度で表面Sに達したものは、図2にL3
で示すようにガラス基板G内で全反射を繰り返しながら
その端面方向に進んでいき、やはり検出用光学系14に
は入射しないことになる。
By arranging the detection optical system 14 in such a range, the critical angle θc of the scattered light due to the foreign matter on the back surface S ′ of the glass substrate G which is transmitted through the glass substrate G in the front surface S direction. Those that reach the surface S at the following angles leak to the outside of the surface S, but do not enter the detection optical system 14 in the range within the vicinity of the critical angle θc. Moreover, to have reached the surface S at an angle greater than the critical angle θc is, L 3 in FIG. 2
As shown in FIG. 3, the total reflection is repeated in the glass substrate G, and the glass substrate G advances toward the end face thereof, and again does not enter the detection optical system 14.

【0014】従って、検出用光学系14が裏面S´の異
物を誤検出する恐れは極めて小さくなり、表面Sに存在
する異物Dのみを検出可能となる。なお、検出用光学系
14による検出信号(パルス)の個数は異物の個数を示
し、振幅は異物の大きさ(粒径)を示す。検出用光学系
14の出力信号はマイコンによって処理され、必要に応
じてプリンタやディスプレイにより異物の個数や大きさ
が印字ないし表示される。
Therefore, the possibility that the detection optical system 14 erroneously detects the foreign matter on the back surface S'is extremely small, and only the foreign matter D existing on the front surface S can be detected. The number of detection signals (pulses) by the detection optical system 14 indicates the number of foreign matters, and the amplitude indicates the size (particle diameter) of the foreign matters. The output signal of the detection optical system 14 is processed by a microcomputer, and the number and size of foreign matters are printed or displayed by a printer or a display as needed.

【0015】本実施例において、レーザ光源と検出用光
学系14との位置関係は一定であるため、これらを同一
フレームに固定して一体的に移動させ、ガラス基板Gの
表面Sの全域をスキャンするようにすればよい。ここ
で、本実施例が適用されるガラス基板Gの大きさは例え
ば400mm四方から100mm四方であり、スキャン
速度としては80mm/秒程度に設定するとよい。ま
た、場合によってはレーザ光源及び検出用光学系14を
固定しておき、ガラス基板Gを水平方向に移動させても
よい。
In this embodiment, since the positional relationship between the laser light source and the detection optical system 14 is fixed, they are fixed to the same frame and moved integrally, and the entire surface S of the glass substrate G is scanned. You can do it. Here, the size of the glass substrate G to which this embodiment is applied is, for example, 400 mm square to 100 mm square, and the scan speed may be set to about 80 mm / sec. Further, in some cases, the laser light source and the detection optical system 14 may be fixed, and the glass substrate G may be moved in the horizontal direction.

【0016】図3は、本実施例の概略的な構造の一例を
示すもので、図において15はレーザ光源、16は検出
用光学系14及びレーザ光源15の駆動部、17はハウ
ジング、18は開閉可能なメクラ板である。この装置全
体はクリーンルームのクリーンブース内に設置されるも
のであるが、図示するように、ガラス基板Gの検査する
べき表面Sを下方に向けてセットすることにより、浮遊
ダストや駆動部16等により発生する塵が表面Sに付着
するのを防止することができる。また、ガラス基板G等
にはセッティング時にたわみが生じるため、図示しない
が、基板Gのコーナー部を真空吸着する等の手段により
基板Gにテンションを加えれば、上記たわみを除去する
ことが可能であり、測定精度を向上させることができ
る。
FIG. 3 shows an example of a schematic structure of this embodiment. In the figure, reference numeral 15 is a laser light source, 16 is a detection optical system 14 and a driving portion of the laser light source 15, 17 is a housing, and 18 is a housing. It is a blind plate that can be opened and closed. The entire apparatus is installed in a clean booth in a clean room. However, as shown in the drawing, the surface S to be inspected of the glass substrate G is set downward so that the floating dust and the driving unit 16 cause It is possible to prevent the generated dust from adhering to the surface S. Further, since bending occurs in the glass substrate G and the like during setting, it is possible to remove the above-mentioned bending by applying tension to the substrate G by means such as vacuum suction of a corner portion of the substrate G, although not shown. The measurement accuracy can be improved.

【0017】更に、本実施例ではレーザ検出光Lのビー
ム径を例えば10mm,1.2mm,0.5mmという
ように選択することができ、各ビーム径につき直径が
1.0μm,0.5μm,0.3μmの異物を検出する
ことができる。このようにビーム径が小さいほど微細な
異物の検出が可能となるが、その反面、表面Sの全域を
スキャンするのに要する時間が長くなるため、これら両
者の兼ね合いでビーム径等を設定することが望ましい。
Further, in the present embodiment, the beam diameter of the laser detection light L can be selected to be, for example, 10 mm, 1.2 mm, 0.5 mm, and the diameter is 1.0 μm, 0.5 μm, for each beam diameter. A foreign matter of 0.3 μm can be detected. As described above, the smaller the beam diameter, the finer the foreign matter can be detected, but on the other hand, the time required to scan the entire surface S becomes longer. Therefore, the beam diameter and the like should be set in consideration of both of them. Is desirable.

【0018】[0018]

【発明の効果】以上のように本発明によれば、検出用光
学系を所定の範囲内に配置して透明平板材料の裏面に存
在する異物からの散乱光を誤検出しないようにしたた
め、ガラス基板等の表面に存在する微粒子、キズ、ヒビ
等の個数や大きさを高精度で検出することができる。従
って、通常は20〜30%といわれるこの種のガラス基
板の歩留まりを大幅に向上させることが可能であり、液
晶パネル等のコスト低減にも寄与することができる。ま
た、従来装置に新たに付加する部材も特になく、極めて
低コストで提供できる等の効果がある。なお、本発明は
ガラス基板ばかりでなく、プラスチック基板等の透明材
料のほか、薄膜を形成したシリコンウェハ等に対しても
適用可能である。
As described above, according to the present invention, the detection optical system is arranged within a predetermined range so as to prevent false detection of scattered light from foreign matter present on the back surface of the transparent flat plate material. The number and size of fine particles, scratches, and cracks existing on the surface of a substrate or the like can be detected with high accuracy. Therefore, the yield of this type of glass substrate, which is usually 20 to 30%, can be greatly improved, and the cost of the liquid crystal panel or the like can be reduced. Further, there is no particular member newly added to the conventional device, and there is an effect that it can be provided at an extremely low cost. The present invention can be applied not only to a glass substrate but also to a transparent material such as a plastic substrate, and also to a silicon wafer having a thin film formed thereon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】実施例の概略的な構造の一例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of a schematic structure of an example.

【図4】第1の従来技術を示す原理図である。FIG. 4 is a principle diagram showing a first conventional technique.

【図5】第2の従来技術を示す原理図である。FIG. 5 is a principle diagram showing a second conventional technique.

【符号の説明】[Explanation of symbols]

11,12 レンズ 13 ホトデテクタ 14 検出用光学系 15 レーザ光源 16 駆動部 17 ハウジング 18 メクラ板 G ガラス基板 S 表面 S′ 裏面 L レーザ検出光 L1 反射光 L2 散乱光 D 異物 P 検出位置 θc 臨界角11, 12 lens 13 photodetector 14 detection optical system 15 laser light source 16 driving part 17 housing 18 blind plate G glass substrate S front surface S'rear surface L laser detection light L 1 reflected light L 2 scattered light D foreign matter P detection position θc critical angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明平板材料の表面に検出光を照射し、
前記表面に存在する異物による散乱光を検出用光学系に
より検出して前記異物を欠陥として検出する表面欠陥検
査装置において、 前記表面上で検出光が照射される検出位置よりも前方で
あってこの検出位置に異物が存在した場合にその散乱光
を検出可能な位置であり、かつ、表面に対し前記透明平
板材料の全反射の臨界角近傍以内の範囲に検出用光学系
を配置することを特徴とする表面欠陥検査装置。
1. The surface of a transparent flat plate material is irradiated with detection light,
In a surface defect inspection apparatus that detects scattered light due to foreign matter existing on the surface by a detection optical system to detect the foreign matter as a defect, in front of a detection position at which detection light is irradiated on the surface, It is a position where scattered light can be detected when a foreign substance is present at the detection position, and the detection optical system is arranged in a range within the vicinity of the critical angle of total reflection of the transparent flat plate material with respect to the surface. And surface defect inspection equipment.
JP4100596A 1992-03-26 1992-03-26 Surface flaw inspecting device Withdrawn JPH05273137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100596A JPH05273137A (en) 1992-03-26 1992-03-26 Surface flaw inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100596A JPH05273137A (en) 1992-03-26 1992-03-26 Surface flaw inspecting device

Publications (1)

Publication Number Publication Date
JPH05273137A true JPH05273137A (en) 1993-10-22

Family

ID=14278253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100596A Withdrawn JPH05273137A (en) 1992-03-26 1992-03-26 Surface flaw inspecting device

Country Status (1)

Country Link
JP (1) JPH05273137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040582A (en) * 2000-11-22 2002-05-30 구사마 사부로 Method of evaluating liquid crystal panel and evaluating device
JP2011076669A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Method and device for inspecting defects on both surfaces of magnetic disk
JP2011096305A (en) * 2009-10-28 2011-05-12 Hitachi High-Technologies Corp Apparatus and method for inspecting surface defect on both sides of optical magnetic disk
JP2011137721A (en) * 2009-12-28 2011-07-14 Hitachi High-Technologies Corp Optical checking for defect in magnetic disk, and apparatus of the same
KR20110097182A (en) 2010-02-25 2011-08-31 가부시끼가이샤 야마나시 기쥬쯔 고오보오 Alien substance inspection apparatus and inspection method
CN111007016A (en) * 2019-12-09 2020-04-14 暨南大学 Device for detecting tiny particle impurities on surface of transparent material and using method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040582A (en) * 2000-11-22 2002-05-30 구사마 사부로 Method of evaluating liquid crystal panel and evaluating device
JP2011076669A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Method and device for inspecting defects on both surfaces of magnetic disk
JP2011096305A (en) * 2009-10-28 2011-05-12 Hitachi High-Technologies Corp Apparatus and method for inspecting surface defect on both sides of optical magnetic disk
JP2011137721A (en) * 2009-12-28 2011-07-14 Hitachi High-Technologies Corp Optical checking for defect in magnetic disk, and apparatus of the same
KR20110097182A (en) 2010-02-25 2011-08-31 가부시끼가이샤 야마나시 기쥬쯔 고오보오 Alien substance inspection apparatus and inspection method
CN111007016A (en) * 2019-12-09 2020-04-14 暨南大学 Device for detecting tiny particle impurities on surface of transparent material and using method

Similar Documents

Publication Publication Date Title
JP2671241B2 (en) Glass plate foreign matter detection device
US5995226A (en) Optical apparatus for measuring profiles of a wafer
KR101177299B1 (en) Detection apparatus for particle on the glass
TW571079B (en) Method and apparatus for inspecting display panel
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
JP4104924B2 (en) Optical measuring method and apparatus
US11249032B2 (en) Methods and apparatus for detecting surface defects on glass sheets
JPH05273137A (en) Surface flaw inspecting device
JP2013140061A (en) Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JPH0587739A (en) Device for inspecting defect of transparent body
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP3454735B2 (en) Foreign object detector and process line including foreign object detector
TWI485392B (en) Foreign body inspection device and inspection method
CN111007077A (en) Device for detecting foreign matters on upper surface of ultrathin transparent substrate
KR101685703B1 (en) Alien substance inspection apparatus and inspection method
JP2004170102A (en) Foreign matter inspection device for liquid crystal display panel
JP2009174957A (en) Foreign matter detection method and foreign matter detector
JP3402746B2 (en) Photomask inspection method and apparatus
KR102303658B1 (en) Upper Surface Foreign Matter Detection Device of the Transparent Substrate using Ultraviolet Light
JPH06138045A (en) Defect inspecting device for glass substrate
JPH0989793A (en) Foreign matter inspection apparatus
JPH09218162A (en) Surface defect inspection device
JPS63200043A (en) Apparatus for detecting surface flaw of sheet like object to be inspected
JP2001264262A (en) Surface foreign matter inspecting method and surface foreign matter inspecting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608