JPH05272962A - Surface geometry measuring apparatus - Google Patents

Surface geometry measuring apparatus

Info

Publication number
JPH05272962A
JPH05272962A JP7063092A JP7063092A JPH05272962A JP H05272962 A JPH05272962 A JP H05272962A JP 7063092 A JP7063092 A JP 7063092A JP 7063092 A JP7063092 A JP 7063092A JP H05272962 A JPH05272962 A JP H05272962A
Authority
JP
Japan
Prior art keywords
thin film
probe
light
measuring
film portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7063092A
Other languages
Japanese (ja)
Inventor
Seiichiro Murai
誠一郎 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7063092A priority Critical patent/JPH05272962A/en
Publication of JPH05272962A publication Critical patent/JPH05272962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect geometry of a surface to be measured from a size of a spot of reflected light by a method wherein if a probe is displaced due to interatomic force according to geometry of the surface, a thin film part is elastically deformed and curvature of an concave surface made by its reflecting face varies. CONSTITUTION:Measuring light L is emitted from a light projector 15 perpendicularly to a plate when a thin film part 12 is flat. When the thin film part 12 is elastically deformed in a concave shape due to interatomic force generated between a probe 14 and a surface 16 to be measured, reflected light P from the thin film part 12 is condensed by a concave reflecting film 13 to be received by a light receiver 17. The light receiver 17 matches its center with an axial center of the probe 14 between the reflecting film 13 and the light projector 15 and is integrally provided with a support member 11. A position of a focus F when the reflecting film 13 is deformed in a concave shape differs depending on a distance between the probe 14 and the surface 16 to be measured. Therefore a displacement amount of the probe 14, that is geometry of the surface 16 can be detected from a spot diameter of the reflected light S detected by the light receiver 17. This measuring apparatus has a displacement direction of the probe 14 matched with a detected direction of the displacement, so that an error in measurement can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は探針を測定面に接近さ
せたときに生じるたとえば原子間力などの力によって上
記測定面の形状を測定するための表面形状測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring device for measuring the shape of a measuring surface by a force such as an atomic force generated when a probe is brought close to the measuring surface.

【0002】[0002]

【従来の技術】探針を測定面に接近させてその測定面の
表面形状を測定する測定装置として原子間力顕微鏡が従
来より知られている。従来の原子間力顕微鏡を図5を参
照して説明する。同図中1は支持体である。この支持体
1には板ばね2の一端部が固定されている。この板ばね
2の他端部下面には探針3が設けられている。この探針
3を測定面4に接近させると、その距離に応じて生じる
原子間力によって上記板ばね2が撓むことになる。
2. Description of the Related Art An atomic force microscope is conventionally known as a measuring device for measuring the surface shape of a measuring surface by bringing a probe close to the measuring surface. A conventional atomic force microscope will be described with reference to FIG. In the figure, 1 is a support. One end of a leaf spring 2 is fixed to the support 1. A probe 3 is provided on the lower surface of the other end of the leaf spring 2. When the probe 3 is brought close to the measurement surface 4, the leaf spring 2 is bent by the atomic force generated according to the distance.

【0003】上記板ばね2の他端部上方には光源5が配
置され、この光源5から出射される測定光Lは上記板ば
ね2の他端部上面を照射する。この板ばね2から反射す
る反射光Sは、その反射方向に配置されたフォトダイオ
−ドやPSD(位置検出素子)などの受光器6で検出さ
れるようになっている。
A light source 5 is arranged above the other end of the leaf spring 2, and the measuring light L emitted from the light source 5 illuminates the upper surface of the other end of the leaf spring 2. The reflected light S reflected from the leaf spring 2 is detected by a light receiver 6 such as a photodiode or PSD (position detecting element) arranged in the reflecting direction.

【0004】このような従来の測定装置においては、探
針3と測定面4との間に発生する原子間力によって撓む
上記板ばね2の撓み量を光てこの原理を利用して拡大
し、検出するようになっている。すなわち、フォトダイ
オ−ドやPSD(位置検出素子)などの受光器6の面分
解能は数μmであるから、図5にXで示す距離を大きく
して上記受光器6の受光面に対する反射光Sの入射角度
を大きして測定している。
In such a conventional measuring apparatus, the bending amount of the leaf spring 2 which is bent by the atomic force generated between the probe 3 and the measurement surface 4 is expanded by utilizing the principle of light lever. , Is designed to detect. That is, since the surface resolution of the photodetector 6 such as a photodiode or PSD (position detecting element) is several μm, the distance S shown in FIG. The incident angle of is measured large.

【0005】しかしながら、このような構造によると、
探針3の垂直変位を、板ばね2を撓ませることで角度変
位として検出している。そのため、上記受光器6での上
記探針3の変位量の検出に誤差が生じやすい。しかも、
板ばね2の撓み量を光てこの原理を利用して拡大してい
るから、受光器6での検出誤差が拡大されるということ
もある。
However, according to such a structure,
The vertical displacement of the probe 3 is detected as an angular displacement by bending the leaf spring 2. Therefore, an error is likely to occur in the detection of the displacement amount of the probe 3 in the light receiver 6. Moreover,
Since the deflection amount of the leaf spring 2 is enlarged by utilizing the principle of light, the detection error at the light receiver 6 may be enlarged.

【0006】さらに、探針3の変位量を正確に検出する
には、探針3の変位方向と、その変位の検出方向、つま
り受光器6とを同一軸線上に配置することが要求され
る。しかも、受光器6は光源%との位置関係も要求され
るから、この受光器6のアラアイメントが非常に難しい
ということもある。
Further, in order to accurately detect the amount of displacement of the probe 3, it is required to dispose the displacement direction of the probe 3 and the displacement detection direction, that is, the light receiver 6 on the same axis. .. Moreover, since the light receiver 6 is also required to have a positional relationship with the light source%, it may be very difficult to arrange this light receiver 6.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の測
定装置は、探針と測定面との間で発生する原子間力によ
る板ばねの撓みを、光てこの原理で拡大して検出するよ
うにしていたので、誤差が発生するとともに、その誤差
が拡大されるばかりか、受光器などの構成部品のアライ
メントにも手間がかかるなどのことがあった。
As described above, the conventional measuring apparatus detects the deflection of the leaf spring due to the interatomic force generated between the probe and the measurement surface by expanding the principle of the optical lever. As a result, an error occurs, the error is not only magnified, but also alignment of the components such as the light receiver may be troublesome.

【0008】この発明は上記事情にもとづきなされたも
ので、その目的とするところは、測定面の表面形状を精
密に測定することができ、しかも構成部品のアライメン
トが容易に行える表面形状測定装置を提供することにあ
る。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a surface shape measuring apparatus capable of precisely measuring the surface shape of a measurement surface and easily aligning the components. To provide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に第1の発明は、支持部材と、この支持部材に弾性変形
可能に設けられているとともに一方の面が反射面に形成
された薄膜部と、この薄膜部の他方の面に設けられた探
針と、上記薄膜部の他方の面に対向して配置され上記反
射面に測定光を照射する投光手段と、上記探針と測定面
との間に生じる力によって上記薄膜部が撓んで上記反射
面が凹面状となったときに上記反射面で反射する上記測
定光が集束されて生じるスポットの大きさを測定する検
出手段とを具備したことを特徴とする。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a support member and a thin film elastically deformable on the support member and having one surface formed as a reflecting surface. Section, a probe provided on the other surface of the thin film section, a light projecting unit that is disposed so as to face the other surface of the thin film section and irradiates the reflecting surface with measurement light, the probe and the measurement A detecting means for measuring the size of a spot produced by focusing the measurement light reflected by the reflecting surface when the reflecting surface becomes concave due to the force generated between the thin film portion and the reflecting surface. It is characterized by having.

【0010】第2の発明は、固定部と、この固定部にア
クチュエ−タを介して取付けられた支持部材と、この支
持部材に弾性変形可能に設けられているとともに一方の
面が反射面に形成された薄膜部と、この薄膜部の他方の
面に設けられた探針と、上記薄膜部の他方の面に対向し
て配置され上記反射面に測定光を照射する投光手段と、
上記探針と測定面との間に生じる力によって上記薄膜部
が撓んで反射面が凹面状となったときに上記反射面で反
射する上記測定光が集束されて生じるスポットの大きさ
を測定する検出手段と、この検出手段からの検出信号に
よって上記アクチュエ−タを駆動して上記検出手段が検
出する上記反射光のスポットの径が一定になるよう上記
支持部材を変位させる制御手段とを具備したことを特徴
とする。
According to a second aspect of the present invention, a fixed portion, a support member attached to the fixed portion via an actuator, an elastically deformable member provided on the support member, and one surface thereof serving as a reflecting surface. A thin film portion formed, a probe provided on the other surface of the thin film portion, a light projecting unit that is arranged to face the other surface of the thin film portion and irradiates the reflection surface with measurement light,
When the thin film portion is bent by the force generated between the probe and the measurement surface and the reflection surface becomes concave, the size of the spot generated by converging the measurement light reflected by the reflection surface is measured. The detection means and the control means for driving the actuator by a detection signal from the detection means and displacing the support member so that the spot diameter of the reflected light detected by the detection means becomes constant. It is characterized by

【0011】[0011]

【作用】上記第1の発明によれば、測定面の形状に応じ
て探針が原子間力によって変位すると、薄膜部が弾性変
形してその反射面がなす凹面の曲率が変化するから、上
記反射面で反射する反射光のスポットの大きさによって
上記測定面の形状を検出することができる。
According to the first aspect of the present invention, when the probe is displaced by the atomic force according to the shape of the measurement surface, the thin film portion is elastically deformed and the curvature of the concave surface formed by the reflecting surface changes. The shape of the measurement surface can be detected by the size of the spot of the reflected light reflected by the reflection surface.

【0012】上記第2の発明によれば、測定面の形状に
応じて探針が原子間力によって変位し、薄膜部が弾性変
形すると、その反射面がなす凹面の曲率が変化し、この
反射面で集束される反射光のスポットの大きさが変化す
るから、この変化に応じてアクチュエ−タは支持部材を
駆動して上記スポット径を一定に維持することで、上記
アクチュエ−タの駆動信号によって上記測定面の形状が
検出できる。
According to the second aspect of the invention, when the probe is displaced by the atomic force according to the shape of the measurement surface and the thin film portion is elastically deformed, the curvature of the concave surface formed by the reflecting surface changes, and this reflection Since the size of the spot of the reflected light focused on the surface changes, the actuator drives the supporting member in response to this change to keep the spot diameter constant, and thus the actuator drive signal. Thus, the shape of the measurement surface can be detected.

【0013】[0013]

【実施例】以下、この発明の第1の実施例を図1乃至図
3を参照して説明する。図1に示す測定装置はSiO2
やSi3 4 などの材料からなる支持部材11を備えて
いる。この支持部材11には、半導体製造プロセスにお
けるエッチング加工を用いることで、図3(a)に示す
ように厚さが数μmで、直径が数十μmの平らな薄膜部
12が形成されている。この薄膜部12の上面には同じ
く半導体製造プロセスにおけるCVD加工を用いること
で、たとえばアルミニュウムなどの金属からなる反射膜
13が図3(b)に示すように形成されている。上記薄
膜部12の下面中心部には図3(c)に示すようにタン
グステンなどの金属の結晶を接着蒸着、スパッタなどの
手段によって成長させることで長さが数μmの探針14
が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. The measuring device shown in FIG. 1 is SiO 2
And a support member 11 made of a material such as Si 3 N 4 . As shown in FIG. 3A, a flat thin film portion 12 having a thickness of several μm and a diameter of several tens of μm is formed on the support member 11 by using the etching process in the semiconductor manufacturing process. .. A reflection film 13 made of a metal such as aluminum is formed on the upper surface of the thin film portion 12 by using the CVD process in the semiconductor manufacturing process as shown in FIG. 3B. At the center of the lower surface of the thin film portion 12, as shown in FIG. 3C, a crystal of a metal such as tungsten is grown by means such as adhesion vapor deposition and sputtering, and a probe 14 having a length of several μm is formed.
Are formed.

【0014】上記支持部材11は図示しない駆動装置に
よってX、Y、Zの三次元方向に駆動されるようになっ
ている。この支持部材11の薄膜部12の上方には、半
導体レ−ザやHe−Neレ−ザなどの投光器15がその
中心を上記探針14の軸中心と一致させ、かつ上記支持
部材11と一体的に設けられている。この投光器15か
らは測定光Lが上記薄膜部12が平坦な状態にあるとき
にその板面に対して垂直に出射される。
The support member 11 is driven in a three-dimensional X, Y, Z direction by a driving device (not shown). Above the thin film portion 12 of the support member 11, a projector 15 such as a semiconductor laser or a He-Ne laser has its center aligned with the axial center of the probe 14, and is integrated with the support member 11. Is provided for the purpose. The measuring light L is emitted from the light projector 15 perpendicularly to the plate surface when the thin film portion 12 is in a flat state.

【0015】上記薄膜部12が平坦な状態から探針14
と測定面16との間に発生する原子間力によって図1に
示すように凹面状に弾性変形すると、薄膜部12からの
反射光Pは、その凹面状の反射膜13で集束されて受光
器17に受光される。この受光器17はフォトダイオ−
ドやPSDなどからなり、上記反射膜13と上記投光器
15との間に、その中心を上記探針14の軸中心と一致
させ、かつ上記支持部材11と一体的に配設されてい
る。上記反射膜13が凹面状に変形したときの焦点Fの
位置は、上記探針14に作用する原子間力の大きさ、つ
まり探針14と測定面16との間隔によって異なる。そ
れによって、上記受光器17が検出する反射光Sのスポ
ットの大きさも異なることになる。
From the flat state of the thin film portion 12 to the probe 14
When elastically deformed into a concave shape as shown in FIG. 1 by an atomic force generated between the measurement surface 16 and the measurement surface 16, the reflected light P from the thin film portion 12 is focused by the concave reflection film 13 and is received by the light receiver. The light is received by 17. This light receiver 17 is a photodio
It is composed of a cord, a PSD or the like, and is disposed between the reflection film 13 and the light projector 15 such that its center coincides with the axial center of the probe 14 and is integrated with the support member 11. The position of the focal point F when the reflection film 13 is deformed into a concave shape varies depending on the magnitude of the atomic force acting on the probe 14, that is, the distance between the probe 14 and the measurement surface 16. As a result, the spot size of the reflected light S detected by the light receiver 17 also differs.

【0016】上記構成の測定装置において、図2に示す
ように段差がある測定面16を測定する場合について説
明する。図2に示す測定面16の位置aにおいて、探針
14を測定面16に十分に接近させ、これら探針14と
測定面16との間に原子間力を発生させると、その原子
間力によって薄膜部12が凹面状に弾性変形し、探針1
4が下方へ変位する。このときの薄膜部12の焦点位置
をF1 とすると、反射膜13で反射して集束される反射
光Sは、そのスポット径dの光束として受光器17に検
出される。したがって、受光器17が検出する反射光S
のスポット径dから探針14の変位量、つまり測定面1
6の形状を検出することができる。
A description will be given of a case where the measuring device having the above-mentioned configuration measures the measuring surface 16 having a step as shown in FIG. At the position a of the measurement surface 16 shown in FIG. 2, when the probe 14 is brought sufficiently close to the measurement surface 16 and an atomic force is generated between the probe 14 and the measurement surface 16, the atomic force causes the atomic force. The thin film portion 12 elastically deforms into a concave shape, and the probe 1
4 is displaced downward. When the focus position of the thin film portion 12 at this time is F 1 , the reflected light S reflected and focused by the reflective film 13 is detected by the light receiver 17 as a light beam having the spot diameter d. Therefore, the reflected light S detected by the light receiver 17
Displacement amount of the probe 14 from the spot diameter d of
6 shapes can be detected.

【0017】上記探針14を走査し、図2の位置aから
測定面16が低く変化した位置bへ移動させると、探針
14は測定面16の低下に応じて下方へ大きき変位する
から、薄膜部12の弾性変形量が大きくなる。つまり、
薄膜部12は先程よりも小さな曲率で湾曲する。薄膜部
12の曲率が小さくなれば、その焦点位置は、先程の焦
点位置F1 よりも受光器17から離れたF2 の位置に変
化する。それによって、上記受光器17が検出する反射
光Sのスポット径はdからDへと大きくなるから、その
スポット径の変化によって測定面16の形状変化を測定
することができる。
When the probe 14 is scanned and moved from the position "a" in FIG. 2 to the position "b" where the measuring surface 16 is changed to a low position, the probe 14 is largely displaced downward as the measuring surface 16 is lowered. The amount of elastic deformation of the thin film portion 12 increases. That is,
The thin film portion 12 is curved with a smaller curvature than before. If the curvature of the thin film portion 12 becomes smaller, the focal position of the thin film portion 12 changes to a position of F 2 which is farther from the light receiver 17 than the focal position F 1 of the previous time. As a result, the spot diameter of the reflected light S detected by the photodetector 17 increases from d to D, so that the change in shape of the measurement surface 16 can be measured by the change in the spot diameter.

【0018】上記測定装置は、探針14の変位方向と、
その変位の検出方向が一致している。つまり、受光器1
7を探針14の垂直上方に配置することで、反射光Sの
スポット径の変化から測定面16の表面形状を測定する
ことができる。そのため、探針14の変位を角度変位と
して検出する従来に比べて測定誤差を小さくできる。
The measuring device described above has a displacement direction of the probe 14,
The displacement detection directions are the same. That is, the light receiver 1
By arranging 7 vertically above the probe 14, the surface shape of the measurement surface 16 can be measured from the change in the spot diameter of the reflected light S. Therefore, the measurement error can be reduced as compared with the conventional method in which the displacement of the probe 14 is detected as an angular displacement.

【0019】上記投光器15と受光器17とは、それら
の中心を探針14の中心軸と一致させて薄膜部12の垂
直方向上方に一列に配置すればよく、しかも薄膜部12
に設けられる反射膜13の面積を従来の板ばねの面積に
比べて大きくできる。したがって、上記投光器15と受
光器17とのアライメントを容易かつ精密に行うことが
できる。上記薄膜部12による探針14の支持状態は、
従来の片持ちの板ばねに支持された状態に比べて剛性を
十分に高くできるから、外部からの振動などに対して測
定誤差が生じづらくなる。
The light projector 15 and the light receiver 17 may be arranged in a line vertically above the thin film portion 12 with their centers aligned with the central axis of the probe 14, and the thin film portion 12 is also provided.
The area of the reflection film 13 provided on the can be made larger than the area of the conventional leaf spring. Therefore, the light projector 15 and the light receiver 17 can be aligned easily and precisely. The support state of the probe 14 by the thin film portion 12 is
Since the rigidity can be sufficiently increased as compared with the conventional state of being supported by a cantilevered leaf spring, a measurement error is less likely to occur due to external vibration.

【0020】図4はこの発明の第2の実施例を示す。な
お、第1の実施例と同一部分には同一記号を付して説明
を省略する。すなわち、この実施例は支持部材11が複
数のアクチュエ−タ21を介してX、Y、Z方向に駆動
される固定部22に取付け固定されている。上記アクチ
ュエ−タ21としてはPZTなどの電歪素子が用いられ
ている。上記アクチュエ−タ21はドライバ23からの
駆動信号によって伸縮駆動される。ドライバ23は、受
光器17が検出する反射光Sのスポット径が一定になる
よう上記アクチュエ−タ21をフィ−ドバック制御す
る。
FIG. 4 shows a second embodiment of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. That is, in this embodiment, the support member 11 is attached and fixed to the fixing portion 22 which is driven in the X, Y, and Z directions via the plurality of actuators 21. As the actuator 21, an electrostrictive element such as PZT is used. The actuator 21 is expanded / contracted by a drive signal from a driver 23. The driver 23 feeds back the actuator 21 so that the spot diameter of the reflected light S detected by the light receiver 17 becomes constant.

【0021】このような構成においては、探針14と測
定面16との間に原子間力が発生するよう、上記探針1
4を測定面16に十分に接近させる。その状態で受光器
17が検出する反射光Sのスポット径を基準値とし、上
記探針14を走査させる。測定面16に凹凸があると、
それに応じて探針14が変位し、薄膜部12が変形する
から、受光器17が検出するスポット径も変化する。そ
のときの受光器17の検出信号はドライバ23へ出力さ
れる。このドライバ23は、上記検出信号と基準値との
差に応じた駆動信号をアクチュエ−タ21へ出力する。
それによって、アクチュエ−タ21は受光器17が検出
するスポット径と基準値とが一致するよう伸縮駆動され
る。
In such a structure, the probe 1 is designed so that an atomic force is generated between the probe 14 and the measurement surface 16.
4 is sufficiently close to the measuring surface 16. In this state, the spot diameter of the reflected light S detected by the light receiver 17 is used as a reference value to scan the probe 14. If the measurement surface 16 has irregularities,
In response to this, the probe 14 is displaced and the thin film portion 12 is deformed, so that the spot diameter detected by the light receiver 17 also changes. The detection signal of the light receiver 17 at that time is output to the driver 23. The driver 23 outputs a drive signal corresponding to the difference between the detection signal and the reference value to the actuator 21.
As a result, the actuator 21 is expanded and contracted so that the spot diameter detected by the light receiver 17 and the reference value match.

【0022】つまり、受光器17が検出するスポット径
が一定、つまり薄膜部12の変形量が一定になるよう上
記アクチュエ−タ21がフィ−ドバック制御される。し
たがって、上記ドライバ23からアクチュエ−タ21へ
出力される駆動信号の変化によって、上記測定面16の
表面形状を測定することができる。
That is, the actuator 21 is feedback-controlled so that the spot diameter detected by the light receiver 17 is constant, that is, the deformation amount of the thin film portion 12 is constant. Therefore, the surface shape of the measurement surface 16 can be measured by the change in the drive signal output from the driver 23 to the actuator 21.

【0023】[0023]

【発明の効果】以上述べたように第1の発明は、支持部
材に形成された弾性変形可能な薄膜部に探針を設け、測
定面の形状の変化に応じた上記薄膜部の変形量を、この
薄膜部を照射する測定光のスポット径の変化によって検
出するようにした。
As described above, according to the first aspect of the present invention, the elastically deformable thin film portion formed on the support member is provided with the probe, and the deformation amount of the thin film portion according to the change of the shape of the measurement surface is measured. The spot diameter of the measuring light with which the thin film portion is irradiated is detected.

【0024】第2の発明は、薄膜部を照射する測定光の
スポット径が一定になるよう、支持部材を固定部に取付
けたアクチュエ−タをフィ−ドバック制御することで、
測定面の形状変化を検出するようにした。
In a second aspect of the present invention, feedback control is performed on an actuator having a supporting member attached to a fixed portion so that the spot diameter of the measuring light with which the thin film portion is irradiated becomes constant.
The change in the shape of the measurement surface was detected.

【0025】したがって、第1、第2の発明によれば、
探針の変位方向と、測定光のスポットの検出方向とを同
一方向にできるから、角度変化で検出する従来に比べて
測定精度を向上させることができる。しかも、投光手段
と受光手段とを同一直線上に配置すればよいから、これ
らのアラアイメントを容易かつ精密に行うことができ
る。さらに、従来の板ばねに比べて探針の支持剛性を高
めることができるから、外部からの振動などに対して測
定精度が低下しずらくなる。
Therefore, according to the first and second inventions,
Since the displacement direction of the probe and the detection direction of the spot of the measurement light can be made to be the same direction, the measurement accuracy can be improved as compared with the conventional method in which the detection is performed by changing the angle. Moreover, since the light projecting means and the light receiving means may be arranged on the same straight line, these alignments can be performed easily and precisely. Further, since the support rigidity of the probe can be increased as compared with the conventional leaf spring, the measurement accuracy is less likely to be deteriorated due to external vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】同じく測定時における薄膜部の変形の説明図。FIG. 2 is an explanatory view of deformation of the thin film portion during the same measurement.

【図3】(a)〜(c)は薄膜部と探針との製造工程の
説明図。
3A to 3C are explanatory views of a manufacturing process of a thin film portion and a probe.

【図4】この発明の第2の実施例の構成図。FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【図5】従来の測定装置の説明図。FIG. 5 is an explanatory diagram of a conventional measuring device.

【符号の説明】[Explanation of symbols]

11…支持部材、12…薄膜部、13…反射膜(反射
面)、14…探針、15…投光器(投光手段)、16…
測定面、17…受光器(受光手段)。
11 ... Supporting member, 12 ... Thin film part, 13 ... Reflective film (reflection surface), 14 ... Probe, 15 ... Projector (projecting means), 16 ...
Measurement surface, 17 ... Light receiver (light receiving means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 支持部材と、この支持部材に弾性変形可
能に設けられているとともに一方の面が反射面に形成さ
れた薄膜部と、この薄膜部の他方の面に設けられた探針
と、上記薄膜部の他方の面に対向して配置され上記反射
面に測定光を照射する投光手段と、上記探針と測定面と
の間に生じる力によって上記薄膜部が撓んで上記反射面
が凹面状となったときに上記反射面で反射する上記測定
光が集束されて生じるスポットの大きさを測定する検出
手段とを具備したことを特徴とする表面形状測定装置。
1. A support member, a thin film portion elastically deformable on the support member and having one surface formed as a reflection surface, and a probe provided on the other surface of the thin film portion. , The light projecting means arranged to face the other surface of the thin film portion and irradiating the reflecting surface with measuring light, and the thin film portion being bent by the force generated between the probe and the measuring surface, and the reflecting surface. And a detecting means for measuring the size of a spot produced by converging the measuring light reflected by the reflecting surface when the surface becomes concave.
【請求項2】 固定部と、この固定部にアクチュエ−タ
を介して取付けられた支持部材と、この支持部材に弾性
変形可能に設けられているとともに一方の面が反射面に
形成された薄膜部と、この薄膜部の他方の面に設けられ
た探針と、上記薄膜部の他方の面に対向して配置され上
記反射面に測定光を照射する投光手段と、上記探針と測
定面との間に生じる力によって上記薄膜部が撓んで上記
反射面が凹面状となったときに上記反射面で反射する上
記測定光が集束されて生じるスポットの大きさを測定す
る検出手段と、この検出手段からの検出信号によって上
記アクチュエ−タを駆動して上記検出手段が検出する上
記反射光のスポットの径が一定になるよう上記支持部材
を変位させる制御手段とを具備したことを特徴とする表
面形状測定装置。
2. A fixing portion, a supporting member attached to the fixing portion via an actuator, and a thin film provided on the supporting member so as to be elastically deformable and having one surface formed as a reflecting surface. Section, a probe provided on the other surface of the thin film section, a light projecting unit that is disposed so as to face the other surface of the thin film section and irradiates the reflecting surface with measurement light, the probe and the measurement A detecting means for measuring the size of a spot produced by focusing the measurement light reflected by the reflecting surface when the reflecting surface is concave due to the force generated between the thin film portion and the reflecting surface is concave, The control means is driven by the detection signal from the detection means to displace the support member so that the diameter of the spot of the reflected light detected by the detection means becomes constant. Surface profile measuring device.
JP7063092A 1992-03-27 1992-03-27 Surface geometry measuring apparatus Pending JPH05272962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063092A JPH05272962A (en) 1992-03-27 1992-03-27 Surface geometry measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063092A JPH05272962A (en) 1992-03-27 1992-03-27 Surface geometry measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05272962A true JPH05272962A (en) 1993-10-22

Family

ID=13437151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063092A Pending JPH05272962A (en) 1992-03-27 1992-03-27 Surface geometry measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05272962A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942149A (en) * 2017-12-01 2018-04-20 昆山文特自动化设备有限公司 A kind of antenna detection device applied to cambered surface vehicle glass
CN109238181A (en) * 2018-09-29 2019-01-18 昆明理工大学 A kind of elevator rail planeness detection system and method based on multistage optical lever

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942149A (en) * 2017-12-01 2018-04-20 昆山文特自动化设备有限公司 A kind of antenna detection device applied to cambered surface vehicle glass
CN107942149B (en) * 2017-12-01 2023-11-03 昆山文特自动化设备有限公司 Antenna detection device applied to cambered surface automobile glass
CN109238181A (en) * 2018-09-29 2019-01-18 昆明理工大学 A kind of elevator rail planeness detection system and method based on multistage optical lever
CN109238181B (en) * 2018-09-29 2023-09-26 昆明理工大学 Elevator track flatness detection system and method based on multistage optical lever

Similar Documents

Publication Publication Date Title
USRE37404E1 (en) Detection system for atomic force microscopes
JP3860121B2 (en) Apparatus and method for decoupling and measuring movement in a measuring device
KR101410191B1 (en) Fast-scanning spm and method of operating the same
US5714682A (en) Scanning stylus atomic force microscope with cantilever tracking and optical access
US6748794B2 (en) Method for replacing a probe sensor assembly on a scanning probe microscope
JP4873081B2 (en) Scanning probe microscope
US5247186A (en) Integrated optical displacement sensor
US8087288B1 (en) Scanning stylus atomic force microscope with cantilever tracking and optical access
JP2005517911A (en) Scanning probe microscope
US6189373B1 (en) Scanning force microscope and method for beam detection and alignment
US20120079633A1 (en) Apparatus and Method for Isolating and Measuring Movement in Metrology Apparatus
US20140317790A1 (en) Optical beam positioning unit for atomic force microscope
US5874669A (en) Scanning force microscope with removable probe illuminator assembly
JPWO2006090593A1 (en) Displacement detection mechanism for scanning probe microscope and scanning probe microscope using the same
JPH05272962A (en) Surface geometry measuring apparatus
US6748795B1 (en) Pendulum scanner for scanning probe microscope
JP2004069445A (en) Scanning type probe microscope
JPH0954102A (en) Calibrator for frictional force microscope and its calibration method
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope
JPH11257936A (en) Apparatus using minute angle-of-rotation sensor
JPH074953A (en) Scanner for scanning probe microscope and scanning probe microscope provided with the scanning probe microscope
JPH0980060A (en) Scanning probe microscope
JPH08278316A (en) Inter atomic force microscope
JP2001013057A (en) Scanning probe microscope
JPH09133690A (en) Z-displacement detecting mechanism for scanning probe microscope