JPH05271719A - Production of metal powder - Google Patents

Production of metal powder

Info

Publication number
JPH05271719A
JPH05271719A JP10173092A JP10173092A JPH05271719A JP H05271719 A JPH05271719 A JP H05271719A JP 10173092 A JP10173092 A JP 10173092A JP 10173092 A JP10173092 A JP 10173092A JP H05271719 A JPH05271719 A JP H05271719A
Authority
JP
Japan
Prior art keywords
cooling
powder
nozzle
gas
cooling mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173092A
Other languages
Japanese (ja)
Inventor
Taizo Kawamura
退三 河村
Yoshiyuki Shinohara
吉幸 篠原
Katsuyuki Yoshizawa
克之 吉沢
Yoshio Harakawa
義夫 原川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Piston Ring Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP10173092A priority Critical patent/JPH05271719A/en
Publication of JPH05271719A publication Critical patent/JPH05271719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently produce a gas-atomized metal powder by secondarily cooling the droplets obtained by finely dispersing and cooling the molten metal ejected from a nozzle by a primary cooling mechanism in a secondary cooling mechanism with liq. nitrogen, etc. CONSTITUTION:A molten metal in a crucible 2 is ejected from a nozzle 8 under the control of a stopper 3. An atomizing gas is injected into the molten metal flow from the nozzle of a primary cooling mechanism 4 below the nozzle 8. Consequently, the molten metal is finely divided into fine droplets and cooled. The droplet and powder are secondarily cooled and quenched in the secondary cooling mechanism 12 with liq. nitrogen or carbon dioxide as a coolant. In this case, the coolant is preferably injected from a nozzle of >=3mm. The metal powder thus obtained is collected in a collecting bottle 10 and sent to a cyclone. A globular powder capable of being easily dried after cooling is efficiently obtained by this two-stage-cooling gas atomization method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスアトマイズ法により
金属粉末を製造する方法に関する。一般にガスアトマイ
ズ粉は、水アトマイズ粉に比べて酸化が少なくかつ球形
の粉末が得られやすいという特長を有する。
FIELD OF THE INVENTION The present invention relates to a method for producing metal powder by a gas atomizing method. Generally, the gas atomized powder has a feature that it is less oxidized than the water atomized powder and a spherical powder is easily obtained.

【0002】[0002]

【従来の技術】ガスアトマイズ法による粉末製造装置は
コンファインド型(図4参照)とフリーホール型(図5
参照)に分けられることは良く知られている。本発明は
これらのいずれにも適用されるものである。図3はコン
ファインド型による高圧ガスアトマイズ微粒子製造装置
を示すものである。図3に示す製造装置の本体におい
て、容器内に配置した溶湯坩堝2内の溶湯1をストッパ
ー3で開閉される流下用ノズル8に供給し、溶湯1をア
トマイズガス噴射ノズル部4により液滴5に分断する。
この液滴5は粉末として粉末捕集瓶10に集められ、続
いてサイクロン(図示せず)に送られる。
2. Description of the Related Art A powder atomizing method using a gas atomizing method includes a confined type (see FIG. 4) and a free hole type (see FIG.
It is well known that it can be divided into two). The present invention is applicable to any of these. FIG. 3 shows a confined high-pressure gas atomized fine particle production apparatus. In the main body of the manufacturing apparatus shown in FIG. 3, the molten metal 1 in the molten metal crucible 2 arranged in the container is supplied to the downflow nozzle 8 which is opened and closed by the stopper 3, and the molten metal 1 is dropped by the atomizing gas injection nozzle unit 4 into droplets 5 Divide into.
The droplets 5 are collected as a powder in a powder collection bottle 10 and then sent to a cyclone (not shown).

【0003】アトマイズガス噴射ノズル4には本体容器
を貫通する管(図示せず)を通して窒素ガスが供給さ
れ、その後アトマイズに供した窒素ガスは粉末捕集瓶1
0の下端の放出出口6を経てサイクロンに送られる。サ
イクロンには粉末容器が設けられて、生成した粒子を収
集するように構成されている。
Nitrogen gas is supplied to the atomizing gas injection nozzle 4 through a pipe (not shown) which penetrates the main body container, and the nitrogen gas supplied to the atomizing after that is the powder collection bottle 1
It is sent to the cyclone via the discharge outlet 6 at the lower end of 0. The cyclone is provided with a powder container and is configured to collect the produced particles.

【0004】この装置を使用してガスアトマイズ粉末を
作る場合、粉末の凝固過程を連続冷却曲線で見たのが図
2である。Lubanskaの式により決定されるガス
アトマイズ粉の平均粒径が小さい微細粉末はaで示す曲
線を経て冷却され、冷却曲線aが結晶析出領域に交差し
ないでガラス化温度Tgと交差するので、アモルファス
合金が形成される。この方法で作られるアモルファス粉
末としては、粒径が20μm以下のFe69Cr813
10合金などがある。一方、粒径が大きな粉末は、連続冷
却曲線bが結晶析出領域と交差するので、冷却が不十分
となるため結晶となり、アモルファス合金粉末が得られ
ない。
When a gas atomized powder is produced using this apparatus, the solidification process of the powder is seen in a continuous cooling curve in FIG. The fine powder having a small average particle size of the gas atomized powder determined by the Lubanska equation is cooled through the curve indicated by a, and the cooling curve a intersects the vitrification temperature Tg without intersecting the crystal precipitation region. It is formed. As the amorphous powder produced by this method, Fe 69 Cr 8 P 13 C having a particle size of 20 μm or less is used.
There are 10 alloys. On the other hand, in the case of a powder having a large particle diameter, the continuous cooling curve b intersects with the crystal precipitation region, so that the cooling is insufficient and the powder becomes crystals, so that an amorphous alloy powder cannot be obtained.

【0005】また、図1の様にアトマイズガス噴射ノズ
ル4の下方にHeガスや窒素ガスを噴霧する粉末製造装
置が特開昭63−65004号にて公知である。この場
合、下方のガス噴射装置はアトマイズガス噴射ノズル4
と同様の構造のノズルであり、アトマイズガス噴射ノズ
ル4によりx1 (図2参照)の領域で冷却された粉末
を、続いてx2 の領域で冷却を強化して冷却するための
ものである。前者の冷却を「一次冷却」と、後者の冷却
を「二次冷却」と言い、これらによる冷却法を「二段冷
却」と言う。すなわち前記公報の方法はx2 の冷却を単
に放冷によるのではなく、ガス冷却による二次冷却を行
い結晶析出領域を経ないようにすることを意図してい
る。
Further, a powder manufacturing apparatus for spraying He gas or nitrogen gas below the atomizing gas injection nozzle 4 as shown in FIG. 1 is known from Japanese Patent Laid-Open No. 63-65004. In this case, the lower gas injection device is the atomizing gas injection nozzle 4
A nozzle having a structure similar to that for cooling the powder cooled by the atomizing gas injection nozzle 4 in the region of x 1 (see FIG. 2) and subsequently strengthening the cooling in the region of x 2. .. The former cooling is called "primary cooling", the latter cooling is called "secondary cooling", and the cooling method by these is called "two-stage cooling". That is, the method of the above-mentioned publication intends that the cooling of x 2 is performed not only by cooling it but by performing secondary cooling by gas cooling so as not to pass through the crystal precipitation region.

【0006】しかしながら、冷却ガスの冷却能力が小さ
いためにさほど効果的な二次冷却がなされず、実用でな
い。また、ガスの代わりに水が使用される例が文献MP
RJuly/August 1990,p529に報告
されている。
However, since the cooling capacity of the cooling gas is small, the secondary cooling is not so effective, which is not practical. In addition, an example in which water is used instead of gas is document MP.
RJury / August 1990, p529.

【0007】以上アモルファス合金粉末について説明し
たが、結晶質合金についても微結晶を得ることが望まれ
ている。微結晶を得るには一次冷却で急冷することが必
要になるが、そうすると粉末粒径が小さくなる。微粉末
はそのままでは金型に充填することができないので、予
め造粒するなど製造工程が多くなり、好ましくない。
Although the amorphous alloy powder has been described above, it is desired to obtain fine crystals also for the crystalline alloy. Quenching with primary cooling is required to obtain fine crystals, which reduces the powder particle size. Since the fine powder cannot be filled in the mold as it is, the number of manufacturing steps such as granulation in advance increases, which is not preferable.

【0008】[0008]

【発明が解決しようとする課題】表1に各種ガス及び水
の冷却能力の比較を示す。表1においてガスは温度0℃
で80リットル(l)を冷媒として使用し、冷却したと
きに冷媒が奪う熱量をその質量と比熱から計算して示し
ている。一方水は温度0℃で50gを冷媒として使用
し、同様に冷却をしたときに冷媒が奪う熱量をその質
量、比熱及び気化熱から計算して示している。
Table 1 shows a comparison of cooling capacities of various gases and water. In Table 1, the gas temperature is 0 ° C.
80 liters (l) is used as the refrigerant, and the amount of heat taken by the refrigerant when cooled is calculated from its mass and specific heat. On the other hand, 50 g of water is used as a refrigerant at a temperature of 0 ° C., and the amount of heat taken by the refrigerant when cooled is calculated from its mass, specific heat and vaporization heat.

【0009】[0009]

【表1】 気体、液体の冷却能力比較 [Table 1] Comparison of cooling abilities of gas and liquid

【0010】アルゴン、窒素、ヘリウムのガス程度の冷
却能力をもつ冷却媒体によりアモルファス金属を作成し
ようとすると、図3の冷却曲線bに示すように、アトマ
イズしたときの粉末の形状が大きいと冷却不足となり結
晶が析出してしまう。
When an amorphous metal is produced with a cooling medium having a cooling capacity of about argon, nitrogen, or helium gas, as shown in a cooling curve b in FIG. 3, when the shape of the atomized powder is large, the cooling is insufficient. And crystals are deposited.

【0011】表1から明らかなように、水はガスよりも
冷却能力が大きいので、効率的二次冷却媒体であること
が期待されるが、実際は粉体表面で蒸発したときに形成
される蒸気膜が水と粉体の間に介在し、断熱膜として働
く。そこで粉体から水への熱移動は蒸気膜を介して行わ
れるので、水が本来もっている冷却能力よりも著しく小
さくなり、やはり粉末の粒径が大きいと冷却不足になる
ことがあった。
As is clear from Table 1, since water has a larger cooling capacity than gas, it is expected to be an efficient secondary cooling medium, but in reality, the vapor formed when it evaporates on the powder surface. The film acts as a heat insulating film by interposing between the water and the powder. Therefore, the heat transfer from the powder to the water is performed through the vapor film, so that the cooling capacity is significantly smaller than the original cooling capacity of water, and if the particle size of the powder is large, cooling may be insufficient.

【0012】さらに、水はアルミニウムのように水素を
吸収しやすい金属の冷却には採用できない。しかも粉体
は水中に捕集されるので、その後の乾燥が必要になり、
経費がかかるという問題があった。
Furthermore, water cannot be used for cooling metals such as aluminum, which tend to absorb hydrogen. Moreover, since the powder is collected in water, subsequent drying is necessary,
There was a problem that it was expensive.

【0013】したがって、本発明は以上のような従来技
術の現状を考えて、二段冷却方式のガスアトマイズ冷却
法において二次冷却能力を高めるとともに、冷却後の粉
末の乾燥が簡単なガスアトマイズ粉末製造方法を提供す
ることを目的とする。
Therefore, in consideration of the present state of the art as described above, the present invention is a method for producing a gas atomized powder in which the secondary cooling capacity is enhanced in the gas atomizing cooling method of the two-stage cooling system and the powder after cooling is easily dried. The purpose is to provide.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、金属粉末を製造するガスアトマイズ装置
の溶湯ノズル下方に位置する一次冷却機構で、前記金属
溶湯ノズルから流出する溶湯を微細な液滴に分断しかつ
冷却した後、更にその下方に位置しかつ二次冷却機構の
冷却媒として、液体窒素または液体二酸化炭素を使用す
る二次冷却機構で、一次冷却された液滴および粉末を二
次冷却することを特徴とする金属粉末の製造方法を提供
する。
In order to achieve the above object, the present invention is a primary cooling mechanism located below a melt nozzle of a gas atomizing apparatus for producing metal powder, in which the melt flowing out from the metal melt nozzle is finely divided. Primary cooling liquid droplets and powder in a secondary cooling mechanism that is liquid nitrogen or liquid carbon dioxide as a cooling medium of the secondary cooling mechanism, which is located below the liquid droplets and is cooled, and is cooled. And a method for producing a metal powder, which comprises secondary cooling.

【0015】本発明者は一次冷却の冷媒について種々検
討した。その一つとして二次冷却に使用する液体二酸化
炭素または液体窒素を一次冷媒に使用することを検討し
たが、これらの一次冷媒は溶湯ノズルに冷媒が直接接触
するコンファインド型アトマイズ装置では溶湯流下ノズ
ルが冷えて、溶湯がノズル内にて固まる問題点がある。
また水を一次冷媒とした場合にも同様の問題がある。フ
リーホール型アトマイズ装置において水を一次冷媒とす
ると、粉末形状が不規則になる。このような点からコン
ファインド型及びフリーホール型いずれにおいても一次
冷媒としてはガスを使用することとした。ガスは特に種
類が限定されないが、二次冷媒と同種のガスが好まし
い。
The present inventor has conducted various studies on primary cooling refrigerants. As one of them, we considered using liquid carbon dioxide or liquid nitrogen used for secondary cooling as the primary refrigerant, but these primary refrigerants are the melt downflow nozzles in the confined atomizer where the refrigerant directly contacts the melt nozzle. However, there is a problem that the molten metal is cooled and solidified in the nozzle.
The same problem also occurs when water is used as the primary refrigerant. When water is used as the primary refrigerant in the free-hole atomizer, the powder shape becomes irregular. From this point of view, in both the confined type and the free hole type, gas is used as the primary refrigerant. The type of gas is not particularly limited, but the same type of gas as the secondary refrigerant is preferable.

【0016】本発明は二次冷媒として液体窒素(液化窒
素ガス)または液体二酸化炭素(液化二酸化炭素ガス)
を使用することを特徴とするものである。この二次冷媒
は一次冷媒により冷却されかつ分断された液滴または粉
末が流下している時にその円錐状外周から噴射され、蒸
発前にこれらを冷却する。二次冷媒の液化ガスは粉末な
どを急冷した後にガス化し、大気中に放出されるか、あ
るいは再生され液化ガスとなり循環使用される。二次冷
却機構は一次冷却機構のアトマイズ作用を妨げない範囲
でできるだけアトマイズガス噴射ノズルに接近して配置
することが好ましく、これにより高温粉末から奪熱して
冷却能率を高くすることができる。上記した二段冷却方
式のガスアトマイズ法は図1に示す装置により実施する
ことができる。その際二次冷却能率が著しく高められる
結果粒径が大きいアモルファス金属粉末を製造すること
が可能になる。
The present invention uses liquid nitrogen (liquefied nitrogen gas) or liquid carbon dioxide (liquefied carbon dioxide gas) as the secondary refrigerant.
It is characterized by using. The secondary refrigerant is cooled by the primary refrigerant and is jetted from the outer periphery of the conical shape of the droplets or powders that have been divided, and cools them before evaporation. The liquefied gas of the secondary refrigerant is gasified after rapidly cooling the powder and the like, and is released into the atmosphere or is regenerated and becomes a liquefied gas for circulation and use. The secondary cooling mechanism is preferably arranged as close as possible to the atomizing gas injection nozzle within a range not hindering the atomizing action of the primary cooling mechanism, whereby heat can be taken from the high temperature powder to enhance the cooling efficiency. The above-described two-stage cooling type gas atomizing method can be carried out by the apparatus shown in FIG. At that time, the secondary cooling efficiency is remarkably increased, and as a result, it becomes possible to manufacture an amorphous metal powder having a large particle size.

【0017】液体窒素などの二次冷媒の二次冷却機構
は、粉末・液滴の円錐状流束の外周に分配しかつ一旦溜
める手段と、その手段から冷媒を放出する手段とを備え
る。この放出手段はパイプ、スリットなどであるが、放
出パイプを使用することが好ましく、その場合パイプの
口径は好ましくは3mm以上,より好ましくは5mm以
上である。それはパイプから低圧の外部に放出される時
ノズル口径が小さいと摩擦熱により冷却媒の熱が奪わ
れ、ガス化しやすい為である。
The secondary cooling mechanism for the secondary refrigerant such as liquid nitrogen is provided with means for distributing the powder / droplets to the outer periphery of the conical flux and once accumulating, and means for discharging the refrigerant from the means. The discharging means is a pipe, a slit or the like, but it is preferable to use a discharging pipe, in which case the diameter of the pipe is preferably 3 mm or more, more preferably 5 mm or more. This is because when the nozzle is discharged to the outside at a low pressure and the nozzle diameter is small, the heat of the cooling medium is taken away by frictional heat and the gas is easily gasified.

【0018】本発明が最も有利である適用対象はアモル
ファス化が困難である金属の大径アトマイズ粉の製造で
あって、この場合一次冷却機構により分断された粉末の
平均粒径が、二次冷却を行わないで一次冷却のみで冷却
した連続冷却曲線が結晶析出領域と交差する程度の粒径
であるように一次冷却を行う。これに続く二次冷却は急
冷により連続冷却曲線が結晶析出領域と交差しないよう
に冷却を行うから、粒径が大きくともアモルファス組織
を有するアトマイズ粉末が得られる。
The object to which the present invention is most advantageous is the production of large-diameter atomized powder of a metal which is difficult to be amorphized. In this case, the average particle size of the powder divided by the primary cooling mechanism is the secondary cooling. The primary cooling is performed so that the continuous cooling curve obtained by cooling only the primary cooling without performing the above is a grain size that intersects with the crystal precipitation region. Subsequent secondary cooling is performed by rapid cooling so that the continuous cooling curve does not intersect with the crystal precipitation region, so that atomized powder having an amorphous structure can be obtained even if the grain size is large.

【0019】本発明の方法は金属の種類を問わず適用さ
れ、例えば純Fe,Cu,Alなどの金属、あるいはス
テンレス、青銅などの結晶質合金のアトマイズ粉を製造
することもできる。また本発明により提供されるアトマ
イズ粉には下記の:組成がAl100-x-yxy (ただ
し、TはNi,Cu,Fe,Coから選択された少なく
とも1種の遷移金属元素、Rはミッシュメタル、Y,C
e,Laから選択された少なくとも1種の希土類元素、
x=2〜15at%,b=2〜15at%である)を有
し、平均粒径が25ないし50μmであり、かつ全体が
アモルファス組織を有するとともに表面が実質的に酸化
されていないアトマイズ金属粉末がある。
The method of the present invention can be applied regardless of the kind of metal, and for example, atomized powder of a metal such as pure Fe, Cu, Al or a crystalline alloy such as stainless steel or bronze can be produced. The atomized powder provided by the present invention has the following composition: Al 100-xy T x R y (where T is at least one transition metal element selected from Ni, Cu, Fe and Co, and R is Misch metal, Y, C
e, at least one rare earth element selected from La,
x = 2 to 15 at%, b = 2 to 15 at%), the average particle size is 25 to 50 μm, and the whole has an amorphous structure and the surface is not substantially oxidized. There is.

【0020】ここで、上記の組成範囲はアモルファス化
が可能な範囲に設定されている。また平均粒径が25μ
m未満であると、従来法でも製造可能であり、さらに容
器に入れて押出加工する際の容器への充填密度を高めら
れる利点が活用できない。また25μm未満の微細粉末
は粉末を固めた際の粉末の充填密度が均一にならない。
一方平均粒径が50μmを越えるとアモルファス化が困
難になる。最後に粉末表面に酸化相が、粉末粒子の結合
を妨げる程度には存在していないので、押出加工等によ
り強度の高い材料を得ることができる。
Here, the above composition range is set to a range in which amorphization is possible. The average particle size is 25μ
If it is less than m, it can be produced by the conventional method, and the advantage that the packing density in the container when it is put into the container and extruded can be increased cannot be utilized. Further, the fine powder having a particle size of less than 25 μm does not have a uniform packing density when the powder is solidified.
On the other hand, if the average particle size exceeds 50 μm, it becomes difficult to make amorphous. Finally, since the oxidized phase does not exist on the surface of the powder to the extent that it hinders the bonding of the powder particles, a material having high strength can be obtained by extrusion processing or the like.

【0021】[0021]

【作用】高周波コイルなどにより溶解された金属溶湯は
細いノズルを伝わって流出していく。その流出した溶湯
は一次冷媒ガスノズルから吹き出した窒素ガスなどによ
り分断され微細な粒子になる。この時、二次冷却用冷媒
放出ノズルから放出された液体二酸化炭素などは粉末に
衝突し、その熱を奪う。これによる急冷速度は104
106 ℃/秒と考えられる。その後冷媒に使われた液化
二酸化炭素はガス化し装置の中を流れてサイクロンを通
過して排気筒にたどり着く。液体窒素及び二酸化炭素の
冷却能力を表2に示す。
[Function] The molten metal melted by the high frequency coil or the like flows out through the thin nozzle. The molten metal that has flowed out is divided into fine particles by the nitrogen gas blown out from the primary refrigerant gas nozzle. At this time, liquid carbon dioxide or the like discharged from the secondary cooling refrigerant discharge nozzle collides with the powder and removes the heat. The rapid cooling rate by this is 10 4 ~
It is considered to be 10 6 ° C / sec. After that, the liquefied carbon dioxide used as the refrigerant is gasified, flows through the device, passes through the cyclone, and reaches the exhaust stack. Table 2 shows the cooling ability of liquid nitrogen and carbon dioxide.

【0022】[0022]

【表2】 気体、液体の冷却能力比較 [Table 2] Comparison of cooling abilities of gas and liquid

【0023】表2に示されるような液体窒素と二酸化炭
素の高い冷却能力と蒸発し易さを利用して二次冷却を行
うと、冷媒は粉末表面から断熱膜を形成することなく直
ちに気化して急冷するとともに事後の乾燥の必要もなく
なる。また請求項2では、粒径が大きくアモルファス化
が困難なアトマイズ粉末を二次冷却によりアモルファス
化する。出された液化ガスにより二次冷却が行われる。
図2の結晶が析出するノーズ部にかかる事なく冷却が進
みガラス化温度以下にすることができるために、アモル
ファス合金粉末が作れる。
When the secondary cooling is performed by utilizing the high cooling ability and the easiness of evaporation of liquid nitrogen and carbon dioxide as shown in Table 2, the refrigerant is immediately vaporized from the powder surface without forming a heat insulating film. It eliminates the need for post-drying as well as rapid cooling. In the second aspect, atomized powder having a large particle size and difficult to be made amorphous is made amorphous by secondary cooling. Secondary cooling is performed by the discharged liquefied gas.
Since the cooling proceeds without exceeding the nose portion where crystals of FIG. 2 are deposited and the temperature can be kept below the vitrification temperature, amorphous alloy powder can be produced.

【0024】次に請求項3では二次冷却機構から冷媒が
放出される際の気化を防止して二次冷却の効率をさらに
高める。以下、本発明の実施例及び比較例を詳しく説明
する。
Next, in claim 3, vaporization when the refrigerant is discharged from the secondary cooling mechanism is prevented to further improve the efficiency of the secondary cooling. Hereinafter, examples and comparative examples of the present invention will be described in detail.

【0025】[0025]

【実施例】【Example】

実施例1 合金Al88Ni7 Mm5 (at%)を2kg用意する
(なお、Mmはミッシュメタルである)。それを図1の
溶解坩堝2にセットする。溶解坩堝2を入れた容器を真
空に引いた後アルゴンガスと置換し、1150℃の温度
で溶解した後70kg/cm2 のガス圧力で窒素ガスを
アトマイズ用ノズル4より噴出させアトマイズ(一次冷
却)する。かくして分断された液滴及び粉末はその後そ
の真下にセットした二次冷却用冷媒である液化二酸化炭
素が吹き付けられ冷却される。その液量は50g/sと
した。その結果25μmの平均粒径の粉末まで完全なア
モルファス組織の粉末材料が得られた。
Example 1 2 kg of alloy Al 88 Ni 7 Mm 5 (at%) is prepared (note that Mm is misch metal). It is set in the melting crucible 2 shown in FIG. The container containing the melting crucible 2 was evacuated, then replaced with argon gas, melted at a temperature of 1150 ° C., and then nitrogen gas was ejected from the atomizing nozzle 4 at a gas pressure of 70 kg / cm 2 (primary cooling). To do. The thus separated liquid droplets and powder are then cooled by spraying liquefied carbon dioxide, which is a secondary cooling refrigerant set thereunder. The liquid volume was 50 g / s. As a result, a powder material having a completely amorphous structure up to a powder having an average particle diameter of 25 μm was obtained.

【0026】実施例2 実施例1と同様な工程で、アモルファス合金になり易い
Al84Ni10Mm6 を粉末化したところ38μmの粒径
でもアモルファス合金となった。この結果を表3に示
す。
Example 2 Al 84 Ni 10 Mm 6 which is likely to be an amorphous alloy was pulverized in the same process as in Example 1, and an amorphous alloy was obtained even with a particle size of 38 μm. The results are shown in Table 3.

【0027】比較例1 実施例1及び実施例2の合金を実施例1の一次冷却のみ
で粉末化したところ、表3に示す結果が得られ、Al84
Ni10Mm6 組成でかつ25μm以下の粒径の場合にの
みアモルファス合金となった。
Comparative Example 1 The alloys of Examples 1 and 2 were pulverized only by the primary cooling of Example 1, and the results shown in Table 3 were obtained. Al 84
An amorphous alloy was formed only when the composition was Ni 10 Mm 6 and the grain size was 25 μm or less.

【0028】比較例2 実施例1及び実施例2の合金を実施例1の二段冷却法に
おいて二次冷却にHeガスを使用して粉末化したとこ
ろ、表3に示す結果が得られ、25μm以下の粒径の場
合にのみアモルファス合金となった。
Comparative Example 2 When the alloys of Examples 1 and 2 were pulverized in the two-stage cooling method of Example 1 using He gas for secondary cooling, the results shown in Table 3 were obtained, and 25 μm was obtained. It became an amorphous alloy only in the following grain sizes.

【0029】[0029]

【表3】 本発明例および比較例 Table 3 Inventive Examples and Comparative Examples

【0030】[0030]

【発明の効果】通常のガスアトマイズのみでは十分な急
冷速度が得られないが、請求項1記載の本発明法では二
次冷却媒体として所定の液化ガスを使用することによ
り、極めて凝固速度の速い粉末が得られる。したがって
アモルファス合金粉末がアトマイズ法により容易に得ら
れる。また本発明法では粉末の乾燥が必要ないかあるい
は極めて簡単なものでよい。加えて本発明は結晶質粉末
の製造にも適用可能であり、この場合は結晶粒径が極め
て小さい微結晶でかつ粉末の粒径が比較的大きい粉末が
得られる。この粉末を使用して微結晶からなる高強度粉
末冶金製品を作ることができる。
A sufficient quenching rate cannot be obtained only by ordinary gas atomization, but in the method of the present invention according to claim 1, the use of a predetermined liquefied gas as the secondary cooling medium results in a powder having an extremely fast solidification rate. Is obtained. Therefore, the amorphous alloy powder can be easily obtained by the atomizing method. Also, the method of the present invention does not require drying of the powder or may be extremely simple. In addition, the present invention can be applied to the production of crystalline powder, and in this case, it is possible to obtain fine crystals having a very small crystal grain size and a relatively large grain size. This powder can be used to make high strength powder metallurgical products consisting of crystallites.

【0031】請求項2記載の本発明法では、同一組成で
あれば従来小さい粒径でしか作製できなかったアモルフ
ァス合金粉末が大きな粒径まで作製可能となるため、二
次加工である押出のときにカプセル充填が容易となり、
また強度の大きな材料の得られる可能性が高い材料を提
供できる。
According to the method of the present invention as set forth in claim 2, since amorphous alloy powders which can be produced only with a small grain size can be produced up to a large grain size with the same composition, it is possible to produce an amorphous alloy powder with a large grain size. Easy to fill capsules,
Further, it is possible to provide a material having a high possibility of obtaining a material having high strength.

【0032】請求項3記載の本発明法では、液化ガスが
粉末などに衝突する前の気化を少なくして、二次冷却の
効果を高めることができる。
According to the method of the present invention as set forth in claim 3, the vaporization of the liquefied gas before colliding with the powder or the like can be reduced and the effect of the secondary cooling can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】二段冷却式アトマイズ装置の図である。FIG. 1 is a diagram of a two-stage cooling type atomizing device.

【図2】粉末が急冷凝固し組織がアモルファスになると
き及び結晶質になるときの連続冷却曲線の図である。
FIG. 2 is a diagram of a continuous cooling curve when the powder is rapidly solidified and the structure becomes amorphous and when the structure becomes crystalline.

【図3】一般的なアトマイズ装置の図である。FIG. 3 is a diagram of a general atomizing device.

【図4】コンファインタイプのノズル部を示す図であ
る。
FIG. 4 is a diagram showing a confine type nozzle unit.

【図5】フリーホールタイプのノズル部を示す図であ
る。
FIG. 5 is a view showing a free hole type nozzle portion.

【符号の説明】[Explanation of symbols]

1 溶湯 2 溶湯坩堝 3 ストッパー 4 アトマイズガス噴射ノズル 5 液滴 8 流下用ノズル 1 Molten Metal 2 Melt Crucible 3 Stopper 4 Atomized Gas Injection Nozzle 5 Droplet 8 Flow Down Nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原川 義夫 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Harakawa 1-9-9 Yaesu, Chuo-ku, Tokyo Teikoku Piston Ring Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末を製造するガスアトマイズ装置
の溶湯ノズル下方に位置する一次冷却機構で、前記溶湯
ノズルから流出する溶湯を微細な液滴に分断しかつ冷却
した後、更にその下方に位置しかつ二次冷却機構の冷媒
として液体窒素または液体二酸化炭素を使用する二次冷
却機構で、一次冷却された液滴および粉末を二次冷却す
ることを特徴とする金属粉末の製造方法。
1. A primary cooling mechanism located below a melt nozzle of a gas atomizing apparatus for producing metal powder, which divides the melt flowing out from the melt nozzle into fine liquid droplets and cools them, and further locates below them. A method for producing metal powder, characterized in that liquid droplets and powder that have been primarily cooled are secondarily cooled by a secondary cooling mechanism that uses liquid nitrogen or liquid carbon dioxide as a refrigerant of the secondary cooling mechanism.
【請求項2】 前記一次冷却機構により分断された粉末
の平均粒径が、前記二次冷却を行わないで一次冷却のみ
で冷却した場合の連続冷却曲線が結晶析出領域と交差す
る程度の粒径であることを特徴とする請求項1記載の金
属粉末の製造方法。
2. The average particle size of the powder divided by the primary cooling mechanism is such that the continuous cooling curve in the case of cooling by only the primary cooling without performing the secondary cooling intersects with the crystal precipitation region. The method for producing a metal powder according to claim 1, wherein
【請求項3】 前記二次冷却機構の冷媒を3mm以上の
ノズルから放出することを特徴とすることを特徴とする
請求項1または2記載の金属粉末の製造方法。
3. The method for producing metal powder according to claim 1, wherein the refrigerant of the secondary cooling mechanism is discharged from a nozzle of 3 mm or more.
JP10173092A 1992-03-27 1992-03-27 Production of metal powder Pending JPH05271719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173092A JPH05271719A (en) 1992-03-27 1992-03-27 Production of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173092A JPH05271719A (en) 1992-03-27 1992-03-27 Production of metal powder

Publications (1)

Publication Number Publication Date
JPH05271719A true JPH05271719A (en) 1993-10-19

Family

ID=14308395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173092A Pending JPH05271719A (en) 1992-03-27 1992-03-27 Production of metal powder

Country Status (1)

Country Link
JP (1) JPH05271719A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
FR2887162A1 (en) * 2005-06-20 2006-12-22 Bernard Serole Rapid cooling procedure for forming metal alloys from powders uses flattened hyperboloid tube positioned close to outlet of gas atomiser
CN102210998A (en) * 2011-05-19 2011-10-12 天津大学 Device and method for preparing egg-type alloy welded ball
WO2012157733A1 (en) * 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
CN103769597A (en) * 2013-07-08 2014-05-07 湖南久泰冶金科技有限公司 Technology and device for continuously manufacturing high-quality amorphous alloy powder materials on large scale
JP2014136807A (en) * 2013-01-15 2014-07-28 Tohoku Techno Arch Co Ltd Apparatus and method for producing metal powder
WO2015026224A1 (en) * 2013-08-23 2015-02-26 Universiti Malaysia Perlis A system and a method of producing granulated solder
WO2015114838A1 (en) * 2014-02-03 2015-08-06 ハード工業有限会社 Method for producing metal powder and apparatus for producing metal powder
CN106891015A (en) * 2017-03-31 2017-06-27 成都惠锋新材料科技股份有限公司 A kind of crystallite, amorphous metal powder fabricating apparatus and its manufacture method
FR3051699A1 (en) * 2016-12-12 2017-12-01 Commissariat Energie Atomique ATOMIZATION AND CHEMICAL VAPOR DEPOSITION DEVICE
CN107900364A (en) * 2017-11-07 2018-04-13 常州大学 Cooling method prepares the device of amorphous metal powder to a kind of ultrasonic atomizatio again
KR20180043853A (en) * 2014-03-31 2018-04-30 제이에프이 스틸 가부시키가이샤 Method for producing atomized metal powder
CN108188408A (en) * 2018-01-04 2018-06-22 北京理工大学 A kind of spherical atomization magnesium zinc non-crystaline amorphous metal powder and preparation method thereof
CN114713828A (en) * 2022-03-11 2022-07-08 北京七弟科技有限公司 Preparation method of titanium and titanium alloy spherical or near-spherical metal powder for MIM

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
FR2887162A1 (en) * 2005-06-20 2006-12-22 Bernard Serole Rapid cooling procedure for forming metal alloys from powders uses flattened hyperboloid tube positioned close to outlet of gas atomiser
WO2012157733A1 (en) * 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
CN102210998A (en) * 2011-05-19 2011-10-12 天津大学 Device and method for preparing egg-type alloy welded ball
JP2014136807A (en) * 2013-01-15 2014-07-28 Tohoku Techno Arch Co Ltd Apparatus and method for producing metal powder
CN103769597A (en) * 2013-07-08 2014-05-07 湖南久泰冶金科技有限公司 Technology and device for continuously manufacturing high-quality amorphous alloy powder materials on large scale
WO2015026224A1 (en) * 2013-08-23 2015-02-26 Universiti Malaysia Perlis A system and a method of producing granulated solder
WO2015114838A1 (en) * 2014-02-03 2015-08-06 ハード工業有限会社 Method for producing metal powder and apparatus for producing metal powder
KR20180043853A (en) * 2014-03-31 2018-04-30 제이에프이 스틸 가부시키가이샤 Method for producing atomized metal powder
FR3051699A1 (en) * 2016-12-12 2017-12-01 Commissariat Energie Atomique ATOMIZATION AND CHEMICAL VAPOR DEPOSITION DEVICE
CN106891015A (en) * 2017-03-31 2017-06-27 成都惠锋新材料科技股份有限公司 A kind of crystallite, amorphous metal powder fabricating apparatus and its manufacture method
CN106891015B (en) * 2017-03-31 2019-05-17 成都惠锋新材料科技股份有限公司 A kind of crystallite, amorphous metal powder fabricating apparatus and its manufacturing method
CN107900364A (en) * 2017-11-07 2018-04-13 常州大学 Cooling method prepares the device of amorphous metal powder to a kind of ultrasonic atomizatio again
CN107900364B (en) * 2017-11-07 2021-01-29 常州大学 Device for preparing metal amorphous powder by ultrasonic atomization recooling method
CN108188408A (en) * 2018-01-04 2018-06-22 北京理工大学 A kind of spherical atomization magnesium zinc non-crystaline amorphous metal powder and preparation method thereof
CN108188408B (en) * 2018-01-04 2021-04-02 北京理工大学 Spherical atomized magnesium-zinc amorphous alloy powder and preparation method thereof
CN114713828A (en) * 2022-03-11 2022-07-08 北京七弟科技有限公司 Preparation method of titanium and titanium alloy spherical or near-spherical metal powder for MIM

Similar Documents

Publication Publication Date Title
JPH05271719A (en) Production of metal powder
US4544404A (en) Method for atomizing titanium
US5707419A (en) Method of production of metal and ceramic powders by plasma atomization
US4592781A (en) Method for making ultrafine metal powder
CN108213406B (en) Spherical atomized aluminum-zinc amorphous alloy powder and preparation method thereof
US4758405A (en) Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat resistant aluminum alloy
US4897111A (en) Method for the manufacture of powders from molten materials
JP4793872B2 (en) Fine particle production method and production apparatus
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
US5102620A (en) Copper alloys with dispersed metal nitrides and method of manufacture
US4981512A (en) Methods are producing composite materials of metal matrix containing tungsten grain
Gummeson Modern atomizing techniques
JPS6317884B2 (en)
JP6406156B2 (en) Method for producing water atomized metal powder
US4971133A (en) Method to reduce porosity in a spray cast deposit
US4961457A (en) Method to reduce porosity in a spray cast deposit
JP2642060B2 (en) Method and apparatus for producing reactive metal particles
JPH0754019A (en) Production of powder by multistage fissure and quenching
Schade et al. Atomization
US6461403B1 (en) Apparatus and method for the formation of uniform spherical particles
Fuqian et al. Study of rapidly solidified atomization technique and production of metal alloy powders
CA1315055C (en) Atomization process
JPH07102307A (en) Production of flaky powder material
JPH11323411A (en) Low melting point metal powder and its production
JPH10158755A (en) Production of bcc type hydrogen storage alloy