JPH05270803A - Production of synthetic gas from methane and carbon dioxide as source material - Google Patents

Production of synthetic gas from methane and carbon dioxide as source material

Info

Publication number
JPH05270803A
JPH05270803A JP4065955A JP6595592A JPH05270803A JP H05270803 A JPH05270803 A JP H05270803A JP 4065955 A JP4065955 A JP 4065955A JP 6595592 A JP6595592 A JP 6595592A JP H05270803 A JPH05270803 A JP H05270803A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
methane
reaction
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4065955A
Other languages
Japanese (ja)
Inventor
Satoyuki Inui
智行 乾
Koji Fujioka
幸治 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP4065955A priority Critical patent/JPH05270803A/en
Publication of JPH05270803A publication Critical patent/JPH05270803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a production method of synthetic gas by which >=90% conversion ratio is obtd. at 700 deg.C, the reaction temp. is decreased by >=100 deg.C, the amt. of a catalyst necessary for the reaction and the amt. of expensive platinum group metals are decreased, and activity of the catalyst is largely improved compared with a conventional noble metal catalyst. CONSTITUTION:Hydrogen and carbon nomoxide are synthesized from the reaction of methane and carbon dioxide. In this process, a catalyst consisting of nickel, one kind of rare earth metal oxide or a mixture of two or more kinds, and one kind of platinum group metal or a mixture of two or more kinds deposited on alumina is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタンと二酸化炭素およ
び/または水蒸気とを反応させて合成ガスを製造するた
めの接触反応で使用される触媒に関する。
TECHNICAL FIELD The present invention relates to a catalyst used in a catalytic reaction for reacting methane with carbon dioxide and / or steam to produce synthesis gas.

【0002】化石燃料の燃焼に伴う二酸化炭素の排出が
地球温暖化の主原因となって、人類生存の脅威になると
予想されている。このため燃焼により生成する二酸化炭
素を分離回収し、有効利用できれば、二酸化炭素排出が
軽減または抑制されることになり、そのための利用技術
の確立が強く望まれている。本発明はそのための二酸化
炭素利用技術を提供するものである。
It is expected that the emission of carbon dioxide due to the combustion of fossil fuels will be the main cause of global warming and threaten the survival of humankind. Therefore, if the carbon dioxide produced by combustion can be separated and collected and effectively used, the carbon dioxide emission will be reduced or suppressed, and establishment of a utilization technique for that purpose is strongly desired. The present invention provides a carbon dioxide utilization technology for that purpose.

【0003】[0003]

【従来の技術】メタンは天然ガスの主成分であり、地球
上に豊富に存在する炭化水素資源である。メタンの主用
途は燃料であるが、このほかに合成ガス(一酸化炭素+
水素)に転化し、C1化学原料としてメタノール、FT
合成油、オキソアルコールが製造されている。
2. Description of the Related Art Methane is a main component of natural gas and is a hydrocarbon resource that is abundantly present on the earth. The main use of methane is as a fuel, but in addition to this, syngas (carbon monoxide +
Hydrogen), methanol and FT as C 1 chemical raw materials
Synthetic oils, oxo alcohols are produced.

【0004】メタンから合成ガスを製造する方法はスチ
ームをガス化剤とするスチームリフォーミング法が主流
となっている。
As a method for producing synthesis gas from methane, a steam reforming method using steam as a gasifying agent is mainly used.

【0005】 CH4+H2O=CO+3H2 (1) この反応で得られる合成ガスのH2/COモル比は3で
あり、これを原料としてメタノール、FT合成油、オキ
ソアルコールなどを製造するには水素が過剰である。す
なわち、望ましいH2/COモル比は製品により異なる
が、メタノール合成の場合2.0、FT合成油は1.7
〜2.8、オキソアルコールは2.0のように2前後が
望ましい。このため別途CO源がない場合には生成ガス
の過剰の水素を分離して燃料とするなど貴重な水素源を
有効利用できない問題点があった。 一方、二酸化炭素
の有効利用のために、二酸化炭素をガス化剤とする、い
わゆる炭酸ガスリフォーミング法が研究されている。
CH 4 + H 2 O = CO + 3H 2 (1) The H 2 / CO molar ratio of the synthesis gas obtained by this reaction is 3, which is used as a raw material for producing methanol, FT synthetic oil, oxo alcohol and the like. Has an excess of hydrogen. That is, the desirable H 2 / CO molar ratio varies depending on the product, but is 2.0 for methanol synthesis and 1.7 for FT synthetic oil.
It is desirable that the oxo alcohol is about 2.8, and the oxo alcohol is about 2, such as 2.0. Therefore, if there is no separate CO source, there is a problem that a valuable hydrogen source cannot be effectively used, such as separating excess hydrogen in the produced gas and using it as fuel. On the other hand, in order to effectively utilize carbon dioxide, so-called carbon dioxide reforming method using carbon dioxide as a gasifying agent has been studied.

【0006】 CH4+CO2=2CO+2H2 (2) この反応によればH2/COモル比は1と低く、化学原
料とするには水素が不足している。したがって、メタン
と水蒸気と二酸化炭素を同時にフィードして反応させる
ことにより希望するH2/COモル比の合成ガスが得ら
れれば工業的に有利である。
CH 4 + CO 2 = 2CO + 2H 2 (2) According to this reaction, the H 2 / CO molar ratio is as low as 1, and hydrogen is insufficient as a chemical raw material. Therefore, it is industrially advantageous if a desired synthesis gas of H 2 / CO can be obtained by simultaneously feeding and reacting methane, steam and carbon dioxide.

【0007】しかし、Gadalla とBower によればスチー
ムリフォーミングに使用する通常のニッケル系触媒を用
いてメタンと二酸化炭素を反応させると、CO2/CH4
モル比および圧力によって決まるある温度以下では触媒
表面にカーボンが析出し、触媒が劣化し、さらにある温
度以上ではニッケルカーバイド(Ni3C)の生成する
温度域が存在し、これらを避ける温度条件は非常に狭い
領域に限られることが知られている。
However, according to Gadalla and Bower, when methane and carbon dioxide are reacted using a conventional nickel-based catalyst used for steam reforming, CO 2 / CH 4
Below a certain temperature determined by the molar ratio and pressure, carbon is deposited on the catalyst surface and the catalyst deteriorates, and above a certain temperature there is a temperature range in which nickel carbide (Ni 3 C) is generated. It is known to be limited to very small areas.

【0008】原料組成や反応条件の設定に制約があり、
実用上の問題点が存在する。
There are restrictions on the composition of raw materials and the setting of reaction conditions,
There are practical problems.

【0009】これらの問題点を解決するためにニッケル
の代わりに白金族金属を担持した触媒を用いてメタンと
二酸化炭素を反応させ、比較的低温度でカーボンの析出
を伴わずに合成ガスが製造できることが知られている。
In order to solve these problems, a catalyst supporting a platinum group metal in place of nickel is used to react methane with carbon dioxide, and a synthesis gas is produced at a relatively low temperature without carbon deposition. It is known to be possible.

【0010】例えば、Gustafson & Waldenはアルミナに
Ptを1%またはPdを0.5%担持した触媒にメタン
とCO2をモル比0.9:1.0、1atm、850
℃、W/F0.007g/(Ncc/分)で反応させ9
6%以上のメタン転化率を得ている(US−5,06
8,057)。
For example, Gustafson & Walden, in a catalyst in which 1% of Pt or 0.5% of Pd is supported on alumina, the molar ratio of methane and CO 2 is 0.9: 1.0, 1 atm, 850.
9 ° C, W / F 0.007 g / (Ncc / min) reacted 9
A methane conversion rate of 6% or more is obtained (US-5,06).
8,057).

【0011】[0011]

【発明が解決しようとする課題】メタンに二酸化炭素と
水を同時に反応させると(1)式と(2)式のような反
応により水素とCOの生成モル比を1以上にすることが
期待できるが、従来の貴金属触媒を使用した場合には二
酸化炭素のみを反応させた場合に比べて反応が抑制さ
れ、触媒の活性が著しく低下し、また(3)で示される
副反応が併発することが知られている。
When carbon dioxide and water are simultaneously reacted with methane, it is expected that the molar ratios of hydrogen and CO produced will be 1 or more by the reactions represented by the formulas (1) and (2). However, when the conventional noble metal catalyst is used, the reaction is suppressed as compared with the case where only carbon dioxide is reacted, the activity of the catalyst is significantly reduced, and the side reaction shown in (3) may occur simultaneously. Are known.

【0012】 CO+H2O=CO2+H2 (3) そこでこれらの現象の起こらない比較的低温で十分な活
性をもつ高活性触媒が求められていた。
CO + H 2 O = CO 2 + H 2 (3) Therefore, there has been a demand for a highly active catalyst having sufficient activity at a relatively low temperature where these phenomena do not occur.

【0013】[0013]

【課題を解決するための手段】本発明者はカーボン析出
を極力抑制し、低温で高活性な触媒について研究した結
果、アルミナにニッケルおよび希土類金属酸化物および
少量の白金族金属を担持した複合触媒がメタンと二酸化
炭素および水蒸気の反応に600℃で極めて高い活性を
発現し、しかもカ−ボンの析出がないことを見いだし本
発明を達成した。
Means for Solving the Problems As a result of research on a catalyst which suppresses carbon precipitation as much as possible and has high activity at low temperature, the present inventors have found that a composite catalyst in which nickel and a rare earth metal oxide and a small amount of platinum group metal are supported on alumina. The present invention has achieved the present invention by discovering that a very high activity was exhibited in the reaction of methane with carbon dioxide and water vapor at 600 ° C. and that no carbon was deposited.

【0014】すなわち、本発明はメタンと二酸化炭素と
水蒸気を反応させて水素と一酸化炭素を合成する方法に
おいて、触媒としてアルミナにニッケルおよび希土類金
属酸化物の一種または二種以上の混合物および白金族金
属の一種または二種以上の混合物を担持したものを使用
することを特徴とする上記方法である。
That is, the present invention is a method of synthesizing hydrogen and carbon monoxide by reacting methane, carbon dioxide and water vapor, wherein alumina is used as a catalyst and a mixture of one or more of nickel and rare earth metal oxides and a platinum group metal. The above method is characterized by using a material carrying one kind or a mixture of two or more kinds of metals.

【0015】本発明における希土類金属酸化物としては
例えばランタン(La)、セリウム(Ce)、プラセオ
ジム(Pr)、ネオジム(Nd),サマリウム(Sm)
などの金属の酸化物を挙げることができる。このうちラ
ンタン、セリウムの酸化物が望ましい。
Examples of the rare earth metal oxide in the present invention include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) and samarium (Sm).
Examples thereof include metal oxides. Of these, lanthanum and cerium oxides are preferable.

【0016】本発明における白金族金属としては白金
(Pt)、パラジウム(Pd)、イリジウム(Ir)、
オスミウム(Os)が好ましい。ルテニウム(Ru)、
ロジウム(Rh)も使用可能であるがメタン化活性が強
く使用条件が制限される。
The platinum group metal in the present invention includes platinum (Pt), palladium (Pd), iridium (Ir),
Osmium (Os) is preferred. Ruthenium (Ru),
Rhodium (Rh) can also be used, but its methanation activity is strong and the use conditions are limited.

【0017】本発明における担体としてはアルミナ(A
23)が適している。シリカ(SiO2)は耐熱性が
低く実用には適さない。
As the carrier in the present invention, alumina (A
l 2 O 3 ) is suitable. Silica (SiO 2 ) has low heat resistance and is not suitable for practical use.

【0018】本発明の触媒を構成する各成分の好ましい
組成範囲としては、ニッケルの希土類酸化物に対するモ
ル比が1/10〜1/3の範囲が好ましく、特にモル比
1/5が適している。また白金族金属の希土類酸化物に
対するモル比は1/50〜1/10の範囲が好ましく、
特に好ましくは1/30〜1/10の範囲である。また
ニッケル、白金族金属および希土類酸化物の合計の担体
に対する重量比は1/100〜1/3が適している。
As a preferable composition range of each component constituting the catalyst of the present invention, the molar ratio of nickel to the rare earth oxide is preferably 1/10 to 1/3, and particularly 1/5 is suitable. .. The molar ratio of the platinum group metal to the rare earth oxide is preferably in the range of 1/50 to 1/10,
Particularly preferably, it is in the range of 1/30 to 1/10. The weight ratio of the total of nickel, platinum group metal and rare earth oxide to the carrier is suitably 1/100 to 1/3.

【0019】原料中の二酸化炭素とメタンの濃度比は従
来の触媒については、反応時、触媒表面にカーボンが析
出して触媒活性が低下する現象がしばしば見られるた
め、二酸化炭素のメタンに対するモル比を3以上にする
ことが適切とされたが、本発明の触媒を使用する場合に
おいては特に制限はない。
Regarding the concentration ratio of carbon dioxide and methane in the raw material, in the case of conventional catalysts, a phenomenon in which carbon is often deposited on the surface of the catalyst during the reaction and the catalytic activity lowers, so the molar ratio of carbon dioxide to methane is often found. It was considered appropriate to set the ratio to 3 or more, but there is no particular limitation when the catalyst of the present invention is used.

【0020】本発明の合成条件は従来の触媒の反応条件
で使用できるが、さらに穏和な条件も選択できる。
The synthesis conditions of the present invention can be used under the reaction conditions of conventional catalysts, but milder conditions can also be selected.

【0021】すなわち、反応温度は400〜1000℃
の範囲が好ましい。400℃より低い温度では円滑な反
応の進行が確保できないことがあり、また1000℃を
越えると触媒が劣化し易くなる。
That is, the reaction temperature is 400 to 1000 ° C.
Is preferred. If the temperature is lower than 400 ° C., smooth progress of the reaction may not be ensured, and if it exceeds 1000 ° C., the catalyst is likely to deteriorate.

【0022】反応圧力は減圧下、常圧下、加圧下のいず
れの条件下でも行うことができる。特に本発明では、反
応圧力は1〜100気圧の範囲内にするのがよい。
The reaction pressure may be any of reduced pressure, normal pressure and increased pressure. Particularly in the present invention, the reaction pressure is preferably in the range of 1 to 100 atm.

【0023】また、メタン、二酸化炭素、水蒸気(さら
に希釈ガス用いた場合には希釈ガス)の原料ガス全体の
触媒への接触時間はW/Fを尺度として通常0.000
1〜1.0g/(Ncc/分)の範囲内とされる。
The contact time of methane, carbon dioxide and water vapor (diluting gas when a diluting gas is used) with the catalyst is generally 0.000 on the basis of W / F.
It is set within the range of 1 to 1.0 g / (Ncc / min).

【0024】[0024]

【実施例】 実施例1 (触媒の調製)直径8mmの円盤状ファイバーフラック
ス(カーボランダム社製の耐熱性シリカ・アルミナファ
イバー、厚さ1mm)を硝酸アルミニウム水溶液に浸漬
後、アンモニアガスと接触させてゲル化させ、さらに加
熱脱硝してファイバーフラックスの表面にアルミナ層を
形成させてこれを担体とした。生成したAl23はファ
イバーフラックスに対して15重量%であった。次に塩
化白金酸水溶液に上記担体を浸漬後、乾燥させた。次に
硝酸ニッケルと硝酸セリウムの混合水溶液に浸漬して乾
燥させた。分析の結果、Pt,NiおよびCeO2とし
て各成分の担持量は担体に対してそれぞれ1.6重量
%、10.0重量%、5.6重量%であった。すなわ
ち、Pt/CeO2のモル比は1/30、Ni/CeO2
のモル比は1/5であった。
Example 1 (Preparation of catalyst) A disk-shaped fiber flux having a diameter of 8 mm (heat-resistant silica / alumina fiber manufactured by Carborundum Co., 1 mm in thickness) was immersed in an aqueous solution of aluminum nitrate, and then contacted with ammonia gas. The mixture was gelled and further heated and denitrated to form an alumina layer on the surface of the fiber flux, which was used as a carrier. The produced Al 2 O 3 was 15% by weight with respect to the fiber flux. Next, the carrier was immersed in a chloroplatinic acid aqueous solution and then dried. Next, it was immersed in a mixed aqueous solution of nickel nitrate and cerium nitrate and dried. As a result of the analysis, the loaded amounts of Pt, Ni and CeO 2 of the respective components were 1.6% by weight, 10.0% by weight and 5.6% by weight based on the carrier. That is, the molar ratio of Pt / CeO 2 is 1/30, Ni / CeO 2
Was 1/5.

【0025】(触媒の前処理)内径8mmの石英製流通
式反応器に上記触媒3枚を充填し、400℃に加熱して
水素を30分間流通させ、還元した(還元後の重量72
mgであった。)。
(Catalyst pretreatment) A quartz flow reactor having an inner diameter of 8 mm was filled with the above three catalysts, heated to 400 ° C., and hydrogen was allowed to flow therethrough for 30 minutes for reduction (weight after reduction 72.
It was mg. ).

【0026】(反応試験)触媒を充填した上記反応器に
メタン(10vol%)、二酸化炭素(5vol%)、
水蒸気(7vol%),窒素(78vol%)の混合ガ
スを25Ncc/分を流通させ、反応温度350〜70
0℃の範囲、常圧で反応させた。空間速度は10000
-1であった。また、触媒上へのカーボンの析出は認め
られなかった。反応試験結果を表1に示す。
(Reaction test) Methane (10 vol%), carbon dioxide (5 vol%),
A mixed gas of water vapor (7 vol%) and nitrogen (78 vol%) was passed through at 25 Ncc / min at a reaction temperature of 350 to 70.
The reaction was carried out in the range of 0 ° C. and normal pressure. Space velocity is 10,000
It was h -1 . No carbon deposition was observed on the catalyst. The reaction test results are shown in Table 1.

【0027】表1に示すように500℃までは反応
(3)の水性ガスシフト反応がかなりの割合で併発する
ために反応(1)および(2)で生成したCOがCO2
に転化するが、600℃以上になると反応(1)および
(2)が優先的に進行しCO、水素の生成量はほぼ
(4)式で表わされる。
As shown in Table 1, since up to 500 ° C., the water gas shift reaction of the reaction (3) occurs in a considerable proportion, and therefore CO produced in the reactions (1) and (2) is CO 2.
However, at temperatures above 600 ° C., reactions (1) and (2) proceed preferentially, and the amounts of CO and hydrogen produced are approximately expressed by equation (4).

【0028】 2CH4+CO2+H2O=3CO+5H2 (4)2CH 4 + CO 2 + H 2 O = 3CO + 5H 2 (4)

【0029】[0029]

【表1】 CO、水素の生成率はメタンが100%反応した場合に
(4)の反応式にしたがうものとして各生成量を換算し
た値である。
[Table 1] The production rates of CO and hydrogen are the values obtained by converting the respective production amounts by following the reaction formula (4) when methane reacts 100%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料としてメタンと二酸化炭素と水蒸気
を反応させて水素と一酸化炭素を合成する方法におい
て、触媒としてアルミナにニッケルおよび希土類金属酸
化物の一種または二種以上の混合物および白金族金属の
一種または二種以上の混合物を担持したものを使用する
ことを特徴とする上記方法。
1. A method for synthesizing hydrogen and carbon monoxide by reacting methane, carbon dioxide and water vapor as a raw material, wherein as a catalyst, a mixture of nickel and one or more kinds of rare earth metal oxides and a platinum group metal are used. The method as described above, characterized in that one carrying one kind or a mixture of two or more kinds thereof is used.
JP4065955A 1992-03-24 1992-03-24 Production of synthetic gas from methane and carbon dioxide as source material Pending JPH05270803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065955A JPH05270803A (en) 1992-03-24 1992-03-24 Production of synthetic gas from methane and carbon dioxide as source material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065955A JPH05270803A (en) 1992-03-24 1992-03-24 Production of synthetic gas from methane and carbon dioxide as source material

Publications (1)

Publication Number Publication Date
JPH05270803A true JPH05270803A (en) 1993-10-19

Family

ID=13301920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065955A Pending JPH05270803A (en) 1992-03-24 1992-03-24 Production of synthetic gas from methane and carbon dioxide as source material

Country Status (1)

Country Link
JP (1) JPH05270803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004201A1 (en) * 1994-08-04 1996-02-15 Süd-Chemie AG Catalyst for methane steam reforming and/or methane oxidation
JP2001342003A (en) * 2000-05-30 2001-12-11 Mitsubishi Heavy Ind Ltd Method of production for gasoline, gas oil and synthesis gas for kerosene
KR20100022070A (en) * 2007-06-21 2010-02-26 유니버시티 오브 써던 캘리포니아 Conversion of carbon dioxide to dimethyl ether using bi-reforming of methane or natural gas
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
US7820140B2 (en) 2004-12-23 2010-10-26 Saudi Arabian Oil Company Thermo-neutral reforming of petroleum-based liquid hydrocarbons
CN108607566A (en) * 2018-05-02 2018-10-02 昆明理工大学 A kind of preparation method and application of nickel/ceria catalyst
WO2023030367A1 (en) * 2021-09-01 2023-03-09 中国石油大学(北京) Method for preparing synthesis gas with high carbon monoxide concentration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004201A1 (en) * 1994-08-04 1996-02-15 Süd-Chemie AG Catalyst for methane steam reforming and/or methane oxidation
JP2001342003A (en) * 2000-05-30 2001-12-11 Mitsubishi Heavy Ind Ltd Method of production for gasoline, gas oil and synthesis gas for kerosene
US7820140B2 (en) 2004-12-23 2010-10-26 Saudi Arabian Oil Company Thermo-neutral reforming of petroleum-based liquid hydrocarbons
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
KR20100022070A (en) * 2007-06-21 2010-02-26 유니버시티 오브 써던 캘리포니아 Conversion of carbon dioxide to dimethyl ether using bi-reforming of methane or natural gas
JP2010530878A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to methanol using methane or natural gas reforming.
JP2010530879A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to dimethyl ether using methane or natural gas reforming.
CN108607566A (en) * 2018-05-02 2018-10-02 昆明理工大学 A kind of preparation method and application of nickel/ceria catalyst
WO2023030367A1 (en) * 2021-09-01 2023-03-09 中国石油大学(北京) Method for preparing synthesis gas with high carbon monoxide concentration

Similar Documents

Publication Publication Date Title
RU2126376C1 (en) Process of partial catalytic oxidation of natural gas, process of synthesis of methanol and process of fischer- tropsch syntheses
US5149464A (en) Catalytic gas conversion method
EP1222024B1 (en) Process for preparing synthesis gas employing a nickel-rhodium based catalysts
JP3345784B2 (en) Production method of synthesis gas by auto thermal reforming method
EP1333009A1 (en) Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
CZ20004900A3 (en) Catalyst and partial catalytic oxidation process by making use of two catalytically active metals
JP3514826B2 (en) Method for catalytic partial oxidation of hydrocarbons
EP1513613A2 (en) Catalyst
JPH09502414A (en) Process for producing hydrogen / carbon monoxide mixture or hydrogen from methane
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JPH05270803A (en) Production of synthetic gas from methane and carbon dioxide as source material
JP3225078B2 (en) Catalyst for syngas production
Zhang et al. CO 2 Conversion to Value‐Added Gas‐Phase Products: Technology Overview and Catalysts Selection
KR102225612B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
JPH10192708A (en) Catalyst for reforming of carbon dioxide and reforming method
JPH05208134A (en) Oxidation process and catalyst for catalytic partial oxidation of hydrocarbon
JP4890057B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same
RU2320408C1 (en) Catalyst, method for preparation thereof, and synthesis gas generation process
US20070254805A1 (en) Reforming Catalyst
WO2018206376A1 (en) Process for steam reforming of oxygenates and catalysts for use in the process
JPH07187605A (en) Method for reforming lower hydrocarbon fuel
KR100293200B1 (en) Nickel based catalyst used in carbon dioxide reforming(cdr) reaction of methane and reforming method using the same
JP2023145884A (en) carbon dioxide reduction catalyst