JPH05267810A - Double-sided board and manufacture of the same - Google Patents

Double-sided board and manufacture of the same

Info

Publication number
JPH05267810A
JPH05267810A JP9723292A JP9723292A JPH05267810A JP H05267810 A JPH05267810 A JP H05267810A JP 9723292 A JP9723292 A JP 9723292A JP 9723292 A JP9723292 A JP 9723292A JP H05267810 A JPH05267810 A JP H05267810A
Authority
JP
Japan
Prior art keywords
resin layer
polyimide resin
linear expansion
double
thermoplastic polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9723292A
Other languages
Japanese (ja)
Inventor
Atsushi Hino
敦司 日野
Kazuo Ouchi
一男 大内
Masayuki Kaneto
正行 金戸
Munekazu Tanaka
宗和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9723292A priority Critical patent/JPH05267810A/en
Priority to US07/945,929 priority patent/US5374469A/en
Priority to EP19920116025 priority patent/EP0533198A3/en
Publication of JPH05267810A publication Critical patent/JPH05267810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To form conductive paths having excellent resistivity to chemicals and curl and bonding property to make conductive the copper foils in both surfaces in a board which is practically composed of copper foils and double- sided polyimide resin layer. CONSTITUTION:Copper foils 1, 1' are formed on both surfaces of an insulating resin layer providing a thermoplastic polyimide resin layer 3 between a couple of low linear expansion polyimide resin layers 2, 2' and a conductive path 4 is formed by providing a through hole only to the polyimide resin layer and then filling the hole with a metal substance. Excellent bonding characteristic can be realized by coating polyimide resin layer in the form of solution of polyimide precursor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は両面基板およびその製造
方法に関し、詳しくは両面に設けた銅箔を絶縁性樹脂層
の厚み方向に形成した貫通孔に金属物質を充填してなる
導通路によって、電気的に接続してなる両面基板および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-sided board and a method for manufacturing the same, and more particularly to a double-sided board having a conductive path formed by filling a through hole formed in the thickness direction of an insulating resin layer with a metal substance. The present invention relates to a double-sided board electrically connected and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、電子機器が軽量化や薄型化、小型
化するのに伴い、半導体素子や半導体装置を搭載する回
路基板も薄型化や高密度化する必要性が生じており、両
面に導電回路を設けた両面回路基板や、導電回路を多層
に積層した多層回路基板などが用いられている。
2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner, and smaller, it has become necessary to reduce the thickness and density of circuit boards on which semiconductor elements and semiconductor devices are mounted. A double-sided circuit board provided with a conductive circuit, a multilayer circuit board in which conductive circuits are stacked in multiple layers, and the like are used.

【0003】このような回路基板においては各回路を導
通させるため、一般的にはドリルなどを用いた機械的方
法や、薬液によるウエットエッチングや感光性樹脂のフ
ォトリソグラフィーなどを用いた化学的方法などによっ
て絶縁性樹脂層(基板)にスルーホールを形成してい
る。そして、形成したスルーホール内壁面にまず無電解
メッキや蒸着などの手法によって薄膜層(種層)を形成
したのち、さらに電解メッキなどによってこの薄膜層を
厚膜化して導通路を形成している。
In order to make each circuit conductive in such a circuit board, a mechanical method using a drill or the like, a chemical method using wet etching with a chemical solution or photolithography of a photosensitive resin, etc. are generally used. Through holes are formed in the insulating resin layer (substrate). Then, a thin film layer (seed layer) is first formed on the inner wall surface of the formed through hole by a method such as electroless plating or vapor deposition, and then this thin film layer is thickened by electrolytic plating or the like to form a conductive path. ..

【0004】しかしながら、このような方法ではスルー
ホールの孔径が小さい場合、スルーホール内壁面への薄
膜形成不良を生じるおそれがあり、また製造工程も煩雑
である。特に、スルーホール内壁面に形成された膜状
(層状)の導通路を目視確認することは容易ではなく、
導通路形成確認にはスルーホール両端の回路ランド部に
導通検査用の探針を接触させて行う必要があり、導通信
頼性に細心の注意を払う必要がある。さらに、スルーホ
ール形成においても、上記ドリルや薬液によるウエット
エッチングによる方法では孔径の微細化には限界があ
り、微細ピッチでのスルーホールを形成しがたいもので
ある。感光性樹脂を用いた場合には樹脂組成によっては
高アスペクト比が得られず、使用材料が限定される。ま
た、露光・現像やプリベーク、アフターベークなどが必
要となり工程も煩雑となるという問題もある。
However, in such a method, when the diameter of the through hole is small, there is a possibility that a thin film formation defect may occur on the inner wall surface of the through hole, and the manufacturing process is complicated. In particular, it is not easy to visually confirm the film-like (layer-like) conduction path formed on the inner wall surface of the through hole.
In order to confirm the formation of the conduction path, it is necessary to bring the probe for the continuity inspection into contact with the circuit lands at both ends of the through hole, and it is necessary to pay close attention to the conduction reliability. Further, also in the formation of through holes, there is a limit to the miniaturization of the hole diameter by the method using the above-mentioned drill or wet etching with a chemical solution, and it is difficult to form through holes at a fine pitch. When a photosensitive resin is used, a high aspect ratio cannot be obtained depending on the resin composition, and the materials used are limited. There is also a problem in that exposure / development, pre-baking, after-baking, etc. are required and the process becomes complicated.

【0005】一方、両面基板の構成面では高密度化や高
性能化の点から導電層と絶縁性樹脂層との積層を接着剤
を介して行う、所謂3層タイプから、接着剤を用いない
2層タイプが種々提案されている。
On the other hand, in terms of the structure of the double-sided board, the conductive layer and the insulating resin layer are laminated via an adhesive from the viewpoint of high density and high performance, so-called three-layer type, so no adhesive is used. Various two-layer types have been proposed.

【0006】このような両面基板を得る方法としては、
例えば絶縁性基板としての熱可塑性ポリイミド樹脂層の
両面から銅箔を加熱圧着するという方法が提案されてい
る。しかしながら、この方法では用いる熱可塑性ポリイ
ミド樹脂が通常、絶縁性基板に用いられている熱硬化性
ポリイミド樹脂と比べて、耐熱性や耐薬品性、寸法安定
性に劣るので、実用上問題を有するものである。特に、
熱可塑性ポリイミド樹脂は一般にその線膨張係数が銅箔
の線膨張係数の約2〜4倍もあるので、両面に設けた銅
箔に配線回路をパターニングした際、両面の銅箔のパタ
ーニング面積が異なると基板がカールする恐れがある。
As a method for obtaining such a double-sided board,
For example, a method has been proposed in which a copper foil is heat-pressed from both sides of a thermoplastic polyimide resin layer as an insulating substrate. However, since the thermoplastic polyimide resin used in this method is generally inferior in heat resistance, chemical resistance, and dimensional stability to the thermosetting polyimide resin used for the insulating substrate, there is a problem in practical use. Is. In particular,
Since the coefficient of linear expansion of thermoplastic polyimide resin is generally about 2 to 4 times that of copper foil, when the wiring circuit is patterned on the copper foil provided on both sides, the patterning area of the copper foil on both sides is different. The board may curl.

【0007】一方、上記方法に用いる熱可塑性ポリイミ
ド樹脂層に代えて熱硬化性ポリイミド樹脂層を用いて
も、熱硬化性ポリイミド樹脂層には接着機能がないの
で、両面基板を作製することができない。そこで、特開
昭61−22937号公報には、熱硬化性ポリイミド樹
脂層の両面に熱可塑性ポリイミド樹脂層を形成し、これ
に銅箔を加熱圧着するという方法が提案されている。し
かしながら、この方法によって得られた両面基板は、銅
箔に接する樹脂層が熱可塑性ポリイミド樹脂層であるの
で配線回路をパターニングする際などの耐薬品性に問題
を有する。また、通常、ポリイミド樹脂層表面は不活性
であるので、熱硬化性ポリイミド樹脂層と熱可塑性ポリ
イミド樹脂層との界面の接着性が乏しく、接着力向上の
ためには表面処理を行なう必要があり、製造工程が煩雑
となる。
On the other hand, even if a thermosetting polyimide resin layer is used in place of the thermoplastic polyimide resin layer used in the above method, the thermosetting polyimide resin layer does not have an adhesive function, so that a double-sided substrate cannot be produced. .. Therefore, Japanese Patent Application Laid-Open No. 61-22937 proposes a method in which thermoplastic polyimide resin layers are formed on both sides of a thermosetting polyimide resin layer and a copper foil is heated and pressure-bonded thereto. However, the double-sided board obtained by this method has a problem in chemical resistance when patterning a wiring circuit because the resin layer in contact with the copper foil is a thermoplastic polyimide resin layer. Moreover, since the polyimide resin layer surface is usually inactive, the adhesiveness at the interface between the thermosetting polyimide resin layer and the thermoplastic polyimide resin layer is poor, and it is necessary to perform a surface treatment to improve the adhesive strength. The manufacturing process becomes complicated.

【0008】また、銅箔と熱硬化性ポリイミド樹脂層か
らなる2層基板のポリイミド層同士を熱可塑性ポリイミ
ド樹脂層を介して接着するという方法も考えられるが、
上記したように充分な接着力が得られないという問題を
有する。
Further, a method of adhering the polyimide layers of the two-layer substrate consisting of the copper foil and the thermosetting polyimide resin layer via the thermoplastic polyimide resin layer is also conceivable.
As described above, there is a problem that a sufficient adhesive force cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記従来の問
題に鑑みてなされたものであって、実質的にポリイミド
樹脂層とからなる絶縁性樹脂層の両面に銅箔を形成して
なる両面基板であって、耐薬品性や耐カール性、接着性
に優れ、しかも両面に形成した銅箔を導通させる導通路
が微細ピッチに対応でき導通路の形成確認も容易に行え
る両面基板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is a double-sided structure in which a copper foil is formed on both surfaces of an insulating resin layer substantially consisting of a polyimide resin layer. Provided is a double-sided board having excellent chemical resistance, curl resistance, and adhesiveness, capable of accommodating a fine pitch of conductive paths for conducting copper foils formed on both sides and easily confirming formation of the conductive paths. The purpose is to

【0010】また、本発明の他の目的は、上記両面基板
を容易に製造することができる製造方法を提供すること
にある。
Another object of the present invention is to provide a manufacturing method capable of easily manufacturing the above double-sided substrate.

【0011】[0011]

【課題を解決するための手段】そこで、本発明者らは上
記目的を達成するために鋭意検討を重ねた結果、低線膨
張性ポリイミド樹脂層の片面に銅箔を形成した2枚の片
面基板の低線膨張性ポリイミド樹脂層同士を、熱可塑性
ポリイミド樹脂層を介して接着し、導通路にはポリイミ
ド樹脂層のみに貫通孔を形成し、この貫通孔に金属物質
を充填した導通路を用いることによって上記目的を達成
した両面基板が得られることを見い出し、本発明を完成
するに至った。また、このような両面基板を製造するに
あたって、ポリイミド前駆体を用いてポリイミド樹脂各
層の界面で樹脂成分を混合状態とすることによって、極
めて接着性に優れることも見い出した。
The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, two single-sided substrates each having a copper foil formed on one surface of a low linear expansion polyimide resin layer The low linear expansion polyimide resin layers are adhered to each other via the thermoplastic polyimide resin layer, a through hole is formed only in the polyimide resin layer in the conductive path, and a conductive path filled with a metal substance is used in the through hole. As a result, it was found that a double-sided board that achieves the above object can be obtained, and the present invention has been completed. In addition, in manufacturing such a double-sided substrate, it was also found that by using a polyimide precursor and mixing the resin components at the interface of each layer of the polyimide resin, the adhesiveness was extremely excellent.

【0012】即ち、本発明は熱可塑性ポリイミド樹脂層
の両面に低線膨張性ポリイミド樹脂層が形成され、層界
面において各層のポリイミド樹脂が混合状態にある絶縁
性樹脂層と、該絶縁性樹脂層の両面に形成された銅箔か
らなる両面基板であって、表裏面の銅箔が前記絶縁性樹
脂層の厚み方向に形成された貫通孔内に金属物質を充填
した導通路によって、電気的に接続されていることを特
徴とする両面基板を提供するものである。
That is, according to the present invention, a low linear expansion polyimide resin layer is formed on both sides of a thermoplastic polyimide resin layer, and an insulating resin layer in which the polyimide resins of the respective layers are in a mixed state at the layer interface, and the insulating resin layer. Which is a double-sided board made of copper foil formed on both sides, wherein the copper foil on the front and back surfaces is electrically connected by a conductive path filled with a metal substance in a through hole formed in the thickness direction of the insulating resin layer. The present invention provides a double-sided board characterized by being connected.

【0013】さらに、本発明は銅箔上に低線膨張性ポリ
イミド前駆体溶液を塗布、乾燥する第1の工程と、該塗
布面に熱可塑性ポリイミド前駆体溶液を塗布、乾燥する
第2の工程と、不活性ガス雰囲気下で400℃以上の温
度にて加熱して前駆体層をイミド化する第3の工程と、
低線膨張性ポリイミド樹脂層および熱可塑性ポリイミド
樹脂層の所定位置に貫通孔を形成して貫通孔底部に銅箔
を露出させる第4の工程と、貫通孔に金属物質を充填
し、さらに熱可塑性ポリイミド樹脂層表面から金属物質
をバンプ状に突出させる第5の工程とから第1の片面基
板を形成し、他方、上記第1〜第4の工程および必要に
応じて第5の工程を付加して第2の片面基板を形成し、
第1の片面基板および第2の片面基板の貫通孔形成部が
一致するように熱可塑性ポリイミド樹脂層を相対するよ
うに貼り合わせて導通路を形成することを特徴とする両
面基板の製造方法を提供するものである。
Further, according to the present invention, a first step of applying a low linear expansion polyimide precursor solution on a copper foil and drying it, and a second step of applying a thermoplastic polyimide precursor solution to the applied surface and drying it. And a third step of imidizing the precursor layer by heating at a temperature of 400 ° C. or higher in an inert gas atmosphere,
A fourth step of forming a through hole in a predetermined position of the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer to expose the copper foil at the bottom of the through hole, and filling the through hole with a metal substance A first single-sided substrate is formed from a fifth step of projecting a metal substance in a bump shape from the surface of the polyimide resin layer, while the first to fourth steps and a fifth step as necessary are added. To form a second single-sided board,
A method for manufacturing a double-sided board, which comprises forming a conductive path by laminating thermoplastic polyimide resin layers so as to face each other so that the through-hole forming portions of the first single-sided board and the second single-sided board match each other. Is provided.

【0014】本発明の両面基板に用いる絶縁性樹脂層は
実質的にポリイミド樹脂層からなるものであって、電気
的絶縁性を有するものである。このような絶縁性樹脂層
は低線膨張性ポリイミド樹脂層/熱可塑性ポリイミド樹
脂層/低線膨張性ポリイミド樹脂層の積層構造を有する
ものであって、低線膨張性ポリイミド樹脂層の外層には
銅箔が形成されている。本発明にて用いる低線膨張性ポ
リイミド樹脂は線膨張係数が2.0×10-5cm/cm
/℃以下の値を有するものであって、熱可塑性ポリイミ
ド樹脂はガラス転移温度が200℃以上で、しかも39
0℃における溶融粘度が1×109 ポイズ以下の性質を
有するものと定義される。これらのポリイミド樹脂は塗
工作業性や各樹脂層間の接着性を向上させるためにポリ
イミド前駆体溶液として塗布工程に供したのち、加熱、
脱水閉環してイミド化することが好ましい。
The insulating resin layer used for the double-sided substrate of the present invention is substantially composed of a polyimide resin layer and has electrical insulation. Such an insulating resin layer has a laminated structure of a low linear expansion polyimide resin layer / thermoplastic polyimide resin layer / low linear expansion polyimide resin layer, and an outer layer of the low linear expansion polyimide resin layer is Copper foil is formed. The low linear expansion polyimide resin used in the present invention has a linear expansion coefficient of 2.0 × 10 −5 cm / cm.
The thermoplastic polyimide resin has a glass transition temperature of 200 ° C. or higher, and 39% or less.
It is defined as having a melt viscosity at 0 ° C. of 1 × 10 9 poise or less. These polyimide resins are subjected to a coating step as a polyimide precursor solution in order to improve coating workability and adhesiveness between respective resin layers, and then heated,
It is preferable to perform dehydration ring closure and imidization.

【0015】上記低線膨張性ポリイミド樹脂および熱可
塑性ポリイミド樹脂は、上記定義に合致するものであれ
ば特に制限されないが、低線膨張性ポリイミド樹脂とし
てはテトラカルボン酸成分として3,3’,4,4’−
ビフェニルテトラカルボン酸二無水物、ピロメリット酸
二無水物、ビス(3,4−ジカルボキシフェニル)スル
ホン二無水物、2,2’3,3’−ビフェニルテトラカ
ルボン酸二無水物、3,3’,4,4’−ベンゾフェノ
ンテトラカルボン酸二無水物の少なくとも一種を用い、
ジアミン成分としてはp−フェニレンジアミン、4,
4’−ジアミノジフェニルエーテル、m−フェニレンジ
アミン、3,4’−ジアミノジフェニルエーテル、3,
3’−ジアミノジフェニルエーテル、4,4’−ジアミ
ノビフェニルの少なくとも一種を用いて重合反応させた
ものを用いることが好ましい。
The low linear expansion polyimide resin and the thermoplastic polyimide resin are not particularly limited as long as they meet the above definition, but the low linear expansion polyimide resin is 3,3 ', 4 as a tetracarboxylic acid component. , 4'-
Biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 2,2'3,3'-biphenyltetracarboxylic dianhydride, 3,3 Using at least one of ', 4,4'-benzophenone tetracarboxylic dianhydride,
As the diamine component, p-phenylenediamine, 4,
4'-diaminodiphenyl ether, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 3,
It is preferable to use a polymerized product of at least one of 3'-diaminodiphenyl ether and 4,4'-diaminobiphenyl.

【0016】一方、熱可塑性ポリイミド樹脂としてはテ
トラカルボン酸成分としてビス(3,4−ジカルボキシ
フェニル)エーテル二無水物、ビス(3,4−ジカルボ
キシフェニル)スルホン二無水物、ビス(3,4−ジカ
ルボキシフェニル)ヘキサフルオロプロパン二無水物、
3,3’,4,4’−ベンゾフェノンテトラカルボン酸
二無水物、2,2−ビス(3,4−ジカルボキシフェニ
ル)プロパン二無水物、ビス(3,4−ジカルボキシフ
ェニル)ジフルオロメタン二無水物の少なくとも一種を
用い、ジアミン成分としてはビス〔4−(3−アミノフ
ェノキシ)フェニル〕スルホン、ビス〔4−(4−アミ
ノフェノキシ)フェニル〕スルホン、ビス〔4−(4−
アミノフェノキシ)フェニル〕ヘキサフルオロプロパ
ン、3,3’−ジアミノジフェニルスルホン、3,4’
−ジアミノジフェニルスルホン、4,4’−ジアミノジ
フェニルスルホン、ビス〔4−(3−アミノフェノキ
シ)フェニル〕エーテル、ビス〔4−(4−アミノフェ
ノキシ)フェニル〕エーテル、ビス〔4−(3−アミノ
フェノキシ)フェニル〕プロパン、ビス〔4−(4−ア
ミノフェノキシ)フェニル〕プロパン、3,3’−ジア
ミノジフェニルプロパン、3,3’−ジアミノベンゾフ
ェノンの少なくとも一種を用いて重合反応させたものを
用いることが好ましい。重合には有機溶媒としてN−メ
チル−2−ピロリドンや、N,N−ジメチルアセトアミ
ド、N,N−ジメチルホルムアミドなどを用いて上記各
成分を略等モル配合して行なう。
On the other hand, as the thermoplastic polyimide resin, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride as a tetracarboxylic acid component, bis (3,3 4-dicarboxyphenyl) hexafluoropropane dianhydride,
3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) difluoromethane dianhydride At least one of the anhydrides is used, and bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-
Aminophenoxy) phenyl] hexafluoropropane, 3,3′-diaminodiphenyl sulfone, 3,4 ′
-Diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-amino Phenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] propane, 3,3′-diaminodiphenylpropane, 3,3′-diaminobenzophenone used for polymerization reaction Is preferred. Polymerization is carried out by using N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide or the like as an organic solvent and mixing the above-mentioned components in approximately equimolar amounts.

【0017】本発明においては上記のようにして得られ
る低線膨張性ポリイミド前駆体を銅箔上にロールコータ
ーやコンマコーター、ナイフコーター、ドクターブレー
ドなどを用いて塗布乾燥する(第1の工程)。次いで、
該塗布面に熱可塑性ポリイミド前駆体溶液を塗布乾燥し
て銅箔/低線膨張性ポリイミド前駆体層/熱可塑性ポリ
イミド前駆体層の構造を有する片面基板を得る(第2の
工程)。なお、このときの乾燥工程は60〜180℃程
度の温度下で行い、溶剤除去のみを行なうようにしてポ
リイミド前駆体の脱水閉環、イミド化が進行しないよう
にする。また、このように熱可塑性ポリイミド前駆体溶
液を重ね塗りすることによって、先に塗布乾燥した低線
膨張性ポリイミド前駆体層の表層部が溶解して各ポリイ
ミド前駆体成分が混合されることになり、後の工程で加
熱イミド化した場合に各ポリイミド樹脂層の界面が混合
状態となり充分な界面接着力が得られるのである。
In the present invention, the low linear expansion polyimide precursor obtained as described above is coated and dried on a copper foil by using a roll coater, a comma coater, a knife coater, a doctor blade or the like (first step). .. Then
A thermoplastic polyimide precursor solution is applied to the coated surface and dried to obtain a single-sided substrate having a structure of copper foil / low linear expansion polyimide precursor layer / thermoplastic polyimide precursor layer (second step). The drying step at this time is performed at a temperature of about 60 to 180 ° C., and only solvent removal is performed so that dehydration ring closure and imidization of the polyimide precursor do not proceed. Further, by overcoating the thermoplastic polyimide precursor solution in this manner, the surface layer portion of the low linear expansion polyimide precursor layer previously coated and dried is dissolved to mix the respective polyimide precursor components. When heat imidization is performed in the subsequent step, the interfaces of the respective polyimide resin layers are in a mixed state and sufficient interfacial adhesive force can be obtained.

【0018】上記重ね塗りに際しては最終的に得られる
両面基板における熱可塑性ポリイミド樹脂層の線膨張係
数をa1 、熱可塑性ポリイミド樹脂層の厚みをt1 、低
線膨張性ポリイミド樹脂層の線膨張係数をa2 、二つの
低線膨張性ポリイミド樹脂層の合計厚みをt2 とした場
合、 a1 ・〔t1 /(t1 +t2 )〕+ a2 ・〔t2 /(t1 +t2 )〕 の値と銅の線膨張係数との差が、1.0×10-5cm/
cm/℃よりも小さい値に設定することによって、熱収
縮などによる回路パターンのズレや銅箔をエッチングし
た後のカールをさらに防ぐことができて好ましいもので
ある。
In the above double coating, the coefficient of linear expansion of the thermoplastic polyimide resin layer in the finally obtained double-sided substrate is a 1 , the thickness of the thermoplastic polyimide resin layer is t 1 , and the linear expansion of the low linear expansion polyimide resin layer. Assuming that the coefficient is a 2 and the total thickness of the two low linear expansion polyimide resin layers is t 2 , a 1 · [t 1 / (t 1 + t 2 )] + a 2 · [t 2 / (t 1 + t 2 )] and the coefficient of linear expansion of copper is 1.0 × 10 −5 cm /
By setting the value to be smaller than cm / ° C., it is possible to further prevent the deviation of the circuit pattern due to heat shrinkage or the like and the curl after etching the copper foil, which is preferable.

【0019】次いで、このようにして得られた銅箔/低
線膨張性ポリイミド前駆体層/熱可塑性ポリイミド前駆
体層の構造を有する片面基板を、不活性ガス雰囲気下で
400℃以上の温度に加熱することによって、ポリイミ
ド前駆体層を脱水、閉環してイミド化する(第3の工
程)。加熱には熱風循環式加熱炉、遠赤外線加熱炉など
の装置が用いられる。加熱温度が400℃以下である
と、充分にイミド化が進行せずにポリイミド特有の特性
が充分に発揮できない。また、イミド化時に酸素が存在
すると銅箔表面が酸化されるだけでなく、熱可塑性ポリ
イミド樹脂が熱分解を起こす恐れがあり好ましくない。
通常、酸素濃度は4%以下、好ましくは2%とする。
Next, the thus obtained single-sided substrate having the structure of copper foil / low linear expansion polyimide precursor layer / thermoplastic polyimide precursor layer is heated to a temperature of 400 ° C. or higher in an inert gas atmosphere. By heating, the polyimide precursor layer is dehydrated, ring-closed and imidized (third step). Devices such as a hot air circulation type heating furnace and a far infrared heating furnace are used for heating. When the heating temperature is 400 ° C. or lower, imidization does not proceed sufficiently and the characteristics peculiar to polyimide cannot be sufficiently exhibited. Further, the presence of oxygen during imidization is not preferable because not only the surface of the copper foil is oxidized but also the thermoplastic polyimide resin may be thermally decomposed.
Usually, the oxygen concentration is 4% or less, preferably 2%.

【0020】上記のようにして得られた銅箔/低線膨張
性ポリイミド樹脂層/熱可塑性ポリイミド樹脂層の構造
を有する片面基板の両ポリイミド樹脂層の所定位置に貫
通孔を形成して貫通孔底部に銅箔を露出させる(第4の
工程)。形成する貫通孔の孔径は両面基板の用途や回路
パターンの大きさなどによって任意に設定することがで
きるが、通常1〜200μm程度の大きさとする。
Through holes are formed at predetermined positions in both polyimide resin layers of a single-sided board having a structure of copper foil / low linear expansion polyimide resin layer / thermoplastic polyimide resin layer obtained as described above. The copper foil is exposed at the bottom (fourth step). The diameter of the through-hole to be formed can be arbitrarily set depending on the application of the double-sided board, the size of the circuit pattern, etc., but is usually about 1 to 200 μm.

【0021】貫通孔の形成方法としては、アルカリ溶液
などによるウエットエッチング法、レーザーやプラズマ
などによるドライエッチング法、パンチングやドリルな
どによる機械的加工法などが挙げられる。これらのう
ち、加工精度や加工速度、加工形状の多様性などを考慮
すると、レーザー加工法が好ましく、特に400nm以
下の発振波長を有する紫外光レーザーによるアブレーシ
ョンが好ましい。このような紫外光レーザーとしてはエ
キシマレーザーやYAGレーザーの第3高調波などがあ
る。
Examples of the method for forming the through hole include a wet etching method using an alkaline solution or the like, a dry etching method using laser or plasma, or a mechanical working method using punching or drilling. Among these, the laser processing method is preferable in consideration of the processing accuracy, the processing speed, and the variety of processing shapes, and the ablation with the ultraviolet laser having the oscillation wavelength of 400 nm or less is particularly preferable. Examples of such an ultraviolet laser include an excimer laser and a third harmonic of a YAG laser.

【0022】次に、形成された貫通孔に金属物質を充填
し、さらに熱可塑性ポリイミド樹脂層表面からバンプ状
に金属物質を突出させる(第5の工程)。金属物質の充
填は銅箔を陰極に接続することによる電解メッキによる
方法が充填しやすさや充填の確実性の点から好ましく、
充填する金属物質としては、金、銀、銅、ニッケル、コ
バルト、錫、鉛、インジウムなどの金属やこれらを主成
分とする各種合金などが例示される。また、熱可塑性ポ
リイミド樹脂層から金属突出物を突出させるには、メッ
キ時間を調整することによって容易に行うことができる
が、突出高さは通常、1〜20μm程度に調整すること
が、後の工程で2枚の片面基板を貼り合わせて両面基板
を作製する際の位置合わせや、確実な導通路形成の点か
ら好ましい。
Next, the formed through holes are filled with a metal substance, and the metal substance is projected in bumps from the surface of the thermoplastic polyimide resin layer (fifth step). The filling of the metal substance is preferably a method by electrolytic plating by connecting a copper foil to the cathode from the viewpoint of ease of filling and reliability of filling,
Examples of the metal substance to be filled include metals such as gold, silver, copper, nickel, cobalt, tin, lead and indium, and various alloys containing these as the main components. Further, the metal protrusion can be easily protruded from the thermoplastic polyimide resin layer by adjusting the plating time, but the protrusion height is usually adjusted to about 1 to 20 μm. It is preferable from the viewpoint of positioning when a two-sided substrate is produced by bonding two single-sided substrates in the step and reliable conduction path formation.

【0023】本発明では以上のように、第1〜第5の工
程から得られる第1の片面基板と、同様にして第1〜第
4の工程および必要に応じて第5の工程を付加した第2
の片面基板とを貫通孔形成部が一致するように位置合わ
せし、熱可塑性ポリイミド樹脂層を相対するように貼り
合わせる。次いで、ラミネートロールや熱圧プレスなど
によって加熱圧着することによって熱可塑性ポリイミド
樹脂層の接着性が発現し、第1の片面基板と第2の片面
基板が強固に接着して、本発明の両面基板が得られるの
である。なお、第1の片面基板と第2の片面基板に形成
する貫通孔の孔径は、確実な導通路の形成のために略同
じにしておく必要がある。加熱圧着には熱可塑性ポリイ
ミド樹脂のガラス転移温度よりも約30〜150℃高い
温度で、約5〜500kg/cm2 程度の圧力で不活性
ガス雰囲気下で行うことが確実に接着させるために好ま
しい。
In the present invention, as described above, the first to fourth steps and, if necessary, the fifth step are added in the same manner as the first single-sided substrate obtained from the first to fifth steps. Second
The single-sided substrate is aligned so that the through-hole forming portions are aligned with each other, and the thermoplastic polyimide resin layers are bonded so as to face each other. Then, the adhesiveness of the thermoplastic polyimide resin layer is developed by thermocompression bonding with a laminating roll, a hot press or the like, and the first single-sided substrate and the second single-sided substrate are firmly adhered to each other to form the double-sided substrate of the present invention. Is obtained. The diameters of the through holes formed in the first single-sided substrate and the second single-sided substrate need to be substantially the same in order to form a reliable conduction path. It is preferable to perform thermocompression bonding at a temperature about 30 to 150 ° C. higher than the glass transition temperature of the thermoplastic polyimide resin at a pressure of about 5 to 500 kg / cm 2 in an inert gas atmosphere for reliable bonding. ..

【0024】なお、上記のようにして作製する片面基板
における絶縁性樹脂層や銅箔の厚みは、最終的に本発明
の両面基板が得られるのであれば、特に同一にする必要
はないことは云うまでもない。
The thicknesses of the insulating resin layer and the copper foil in the single-sided board manufactured as described above need not be the same as long as the double-sided board of the present invention can be finally obtained. Needless to say.

【0025】以下に本発明の両面基板およびその製造方
法を図面を用いて説明する。
The double-sided board and the method for manufacturing the same according to the present invention will be described below with reference to the drawings.

【0026】図1は本発明の両面基板を断面図であり、
銅箔1および1’を片面に形成した低線膨張性ポリイミ
ド樹脂層2および2’が、熱可塑性ポリイミド樹脂層3
にて接着されており、両面の銅箔は貫通孔に金属物質を
充填して形成した導通路4によって電気的に接続してい
る。
FIG. 1 is a sectional view of a double-sided board of the present invention.
The low linear expansion polyimide resin layers 2 and 2 ′ having the copper foils 1 and 1 ′ formed on one side are thermoplastic polyimide resin layers 3
The copper foils on both sides are electrically connected by a conductive path 4 formed by filling a through hole with a metal substance.

【0027】図2は上記にて説明した本発明の両面基板
の製造方法を説明するための各工程の断面図であり、図
2(a)のように銅箔1上に低線膨張性ポリイミド前駆
体溶液を塗布し、これを乾燥して低線膨張性ポリイミド
前駆体層12を形成する。
FIG. 2 is a cross-sectional view of each step for explaining the method of manufacturing the double-sided board of the present invention described above. As shown in FIG. 2A, a low linear expansion polyimide is formed on the copper foil 1. The precursor solution is applied and dried to form the low linear expansion polyimide precursor layer 12.

【0028】さらに、図2(b)に示すように、その上
から熱可塑性ポリイミド前駆体溶液を重ね塗り、乾燥し
て熱可塑性ポリイミド前駆体層13を形成する。
Further, as shown in FIG. 2B, a thermoplastic polyimide precursor solution is overlaid thereon and dried to form a thermoplastic polyimide precursor layer 13.

【0029】次いで、加熱炉にて乾燥して前駆体層12
および13をイミド化し、低線膨張性ポリイミド樹脂層
2および熱可塑性ポリイミド樹脂層3とする。
Then, the precursor layer 12 is dried in a heating furnace.
And 13 are imidized to form the low linear expansion polyimide resin layer 2 and the thermoplastic polyimide resin layer 3.

【0030】次に、図2(c)に示すように、低線膨張
性ポリイミド樹脂層2および熱可塑性ポリイミド樹脂層
3の所定位置(導通路形成領域)に貫通孔を形成する。
Next, as shown in FIG. 2C, a through hole is formed at a predetermined position (conductive path forming region) in the low linear expansion polyimide resin layer 2 and the thermoplastic polyimide resin layer 3.

【0031】形成した貫通孔に電解メッキによって金属
物質を充填し、さらに図2(d)に示すように、熱可塑
性ポリイミド樹脂層3の表面から金属物質をバンプ状に
突出させて第1の片面基板を作製する。
The formed through-hole is filled with a metal substance by electrolytic plating, and further, as shown in FIG. 2D, the metal substance is projected in a bump shape from the surface of the thermoplastic polyimide resin layer 3 to form a first surface. Make a substrate.

【0032】一方、上記と同様にして第2の片面基板を
作製し、図2(e)に示すように、上記第1の片面基板
と貫通孔形成部(導通路)が一致するように位置合わせ
し、加熱圧着することによって熱可塑性ポリイミド樹脂
層3および3’の接着力によって貼り合わせ、本発明の
両面基板が得られる。
On the other hand, a second single-sided substrate was produced in the same manner as described above, and as shown in FIG. 2 (e), the first single-sided substrate was positioned so that the through hole forming portion (conduction path) was aligned. The two-sided substrate of the present invention is obtained by combining and thermocompressing the thermoplastic polyimide resin layers 3 and 3 ′ and adhering them together.

【0033】図3は本発明の両面基板の製造方法の他の
実例を説明するための各工程の断面図である。第1の片
面基板の作製方法(図3(a)〜(d))は上記図2の
場合と同様であるが、第2の片面基板は貫通孔に金属物
質を充填せず、図3(e)に示すように、第2の片面基
板の貫通孔内に第1の片面基板に形成したバンプ状の金
属突出部を挿入するようにして本発明の両面基板を得る
ものである。
FIG. 3 is a sectional view of each step for explaining another example of the method for manufacturing a double-sided board of the present invention. The method for manufacturing the first single-sided substrate (FIGS. 3A to 3D) is the same as that in the case of FIG. As shown in e), the double-sided substrate of the present invention is obtained by inserting the bump-shaped metal protrusion formed on the first single-sided substrate into the through hole of the second single-sided substrate.

【0034】[0034]

【実施例】以下に、本発明を実施例にて具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0035】実施例1 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンの略等モルを、N−メ
チル−2−ピロリドン中で重合して低線膨張性ポリイミ
ド前駆体溶液を得、これを圧延銅箔(厚み35μm)上
にコンマコーターを用いて均一に流延塗布し、100℃
で乾燥した。
Example 1 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and approximately equimolar amounts of p-phenylenediamine were polymerized in N-methyl-2-pyrrolidone to have a low linear expansion coefficient. Of a water-soluble polyimide precursor solution is uniformly cast on a rolled copper foil (thickness: 35 μm) using a comma coater, and the temperature is 100 ° C.
Dried in.

【0036】次に、上記前駆体層の上に、ビス(3,4
−ジカルボキシフェニル)エーテル二無水物とビス〔4
−(4−アミノフェノキシ)フェニル〕スルホンの略等
モルを、N−メチル−2−ピロリドン中で重合して得た
熱可塑性ポリイミド前駆体溶液を上記と同様の方法にて
流延塗布して100℃で乾燥して熱可塑性ポリイミド前
駆体層を形成した。
Next, bis (3,4) is formed on the precursor layer.
-Dicarboxyphenyl) ether dianhydride and bis [4
A thermoplastic polyimide precursor solution obtained by polymerizing approximately equimolar amounts of-(4-aminophenoxy) phenyl] sulfone in N-methyl-2-pyrrolidone was cast and applied in the same manner as above to obtain 100. A thermoplastic polyimide precursor layer was formed by drying at ° C.

【0037】このようにして得られた片面基板を、窒素
ガス置換によって酸素濃度を1.5%以下にした連続加
熱炉にて450℃に加熱して脱水閉環を行いイミド化処
理を行なった。得られた低線膨張性ポリイミド樹脂層の
厚みは20μm、熱可塑性ポリイミド樹脂層の厚みは5
μmであった。
The single-sided substrate thus obtained was heated at 450 ° C. in a continuous heating furnace having an oxygen concentration of 1.5% or less by nitrogen gas substitution to perform dehydration ring closure and imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer was 20 μm, and the thickness of the thermoplastic polyimide resin layer was 5 μm.
was μm.

【0038】次いで、低線膨張性ポリイミド樹脂層およ
び熱可塑性ポリイミド樹脂層のみに200mJ/パル
ス、発振波長248nmのKrFエキシマレーザー光を
照射して、両層に直径50μmの貫通孔を形成し、下層
の銅箔表面を露出させた。
Then, only the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer are irradiated with KrF excimer laser light having an oscillation wavelength of 248 nm at 200 mJ / pulse to form a through hole having a diameter of 50 μm in both layers to form a lower layer. The copper foil surface was exposed.

【0039】そして、銅箔を陰極としてニッケルメッキ
浴にて電解メッキを行い、貫通孔内にニッケルを充填
し、熱可塑性ポリイミド樹脂層表面からニッケルが25
μm高さまでメッキ成長した際に電解メッキを終了して
第1の片面基板を作製した。
Then, electrolytic plating is performed in a nickel plating bath using the copper foil as a cathode, the through holes are filled with nickel, and 25
When the plating was grown to a height of μm, the electroplating was terminated to prepare a first single-sided substrate.

【0040】一方、上記第1の片面基板の作製において
ニッケル充填工程を行わなかった以外は、同様にして第
2の片面基板を作製した。
On the other hand, a second single-sided substrate was produced in the same manner except that the nickel filling step was not performed in the production of the first single-sided substrate.

【0041】以上のようにして得られた第1の片面基板
および第2の片面基板を、熱可塑性ポリイミド樹脂層同
士を向かい合わせ、貫通孔形成部が一致するようにして
位置合わせしたのち、真空熱圧プレスにて350℃、1
00kg/cm2 の条件で加熱圧着して熱可塑性ポリイ
ミド樹脂層同士を接着し、本発明の両面基板を得た。
The first single-sided substrate and the second single-sided substrate obtained as described above are aligned so that the thermoplastic polyimide resin layers face each other and the through-hole forming portions are aligned with each other, and then a vacuum is formed. 350 ° C with hot press, 1
The thermoplastic polyimide resin layers were adhered by thermocompression bonding under the condition of 00 kg / cm 2 to obtain a double-sided substrate of the present invention.

【0042】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層の
厚みは40μm、熱可塑性ポリイミド樹脂層の厚みは1
0μmであり、低線膨張性ポリイミド樹脂層と熱可塑性
ポリイミド樹脂層との界面は明瞭に存在せず、各樹脂成
分が混合していることが確認できた。また、両面の銅箔
の導通検査の結果、確実に導通していた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the low linear expansion polyimide resin layer had a thickness of 40 μm, and the thermoplastic polyimide resin layer had a thickness of 1.
It was 0 μm, and the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer did not exist clearly, and it was confirmed that each resin component was mixed. Further, as a result of the continuity inspection of the copper foils on both sides, it was confirmed that the copper foils were electrically connected.

【0043】また、この両面基板の導通路を含まない部
分の両側の銅箔をエッチング除去して熱機械分析を行な
ったところ、積層構造体である絶縁性樹脂層の線膨張係
数は2.0×10-5cm/cm/℃であり、各ポリイミ
ド樹脂層単独の線膨張係数は、低線膨張性ポリイミド樹
脂層が1.0×10-5cm/cm/℃、熱可塑性ポリイ
ミド樹脂層が5.8×10-5cm/cm/℃であった。
さらに、得られた両面基板の引き剥がし強度は1.6k
g/cmであり、剥離は銅箔との界面で起こり、低線膨
張性ポリイミド樹脂層と熱可塑性ポリイミド樹脂層との
界面では起こらなかった。なお、銅の線膨張係数は1.
6×10-5cm/cm/℃である。また、400℃、3
0秒の半田ディップ試験でもボイドの発生はなく、耐熱
性においても全く問題はなかった。
The copper foil on both sides of the portion of the double-sided substrate not including the conductive path was removed by etching and thermomechanical analysis was performed. As a result, the linear expansion coefficient of the insulating resin layer as the laminated structure was 2.0. × a 10 -5 cm / cm / ℃, linear expansion coefficient of each polyimide resin layer alone, low linear expansion polyimide resin layer is 1.0 × 10 -5 cm / cm / ℃, thermoplastic polyimide resin layer is It was 5.8 × 10 −5 cm / cm / ° C.
Furthermore, the peeling strength of the obtained double-sided board is 1.6 k.
The peeling occurred at the interface with the copper foil and did not occur at the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer. The coefficient of linear expansion of copper is 1.
It is 6 × 10 −5 cm / cm / ° C. Also, 400 ° C, 3
No void was generated even in the 0 second solder dip test, and there was no problem in heat resistance.

【0044】実施例2 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミン/4,4’−ジアミノ
ジフェニルエーテル(60:40モル比)から得た低線
膨張性ポリイミド前駆体溶液を圧延銅箔(厚み18μ
m)上に実施例1と同様にして塗布、乾燥し、この上に
実施例1にて用いた熱可塑性ポリイミド前駆体溶液を流
延塗布、乾燥してイミド化処理を行った。得られた低線
膨張性ポリイミド樹脂層の厚みは15μm、熱可塑性ポ
リイミド樹脂層の厚みは10μmであった。
Example 2 Low linear expansion obtained from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine / 4,4'-diaminodiphenyl ether (60:40 molar ratio). Copper foil solution (thickness 18μ
m) was coated and dried in the same manner as in Example 1, and the thermoplastic polyimide precursor solution used in Example 1 was flow-cast coated and dried on this to perform imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer was 15 μm, and the thickness of the thermoplastic polyimide resin layer was 10 μm.

【0045】上記以外は実施例1と同様にして第1の片
面基板および第2の片面基板を作製し、貼り合わせて本
発明の両面基板を得た。
A first single-sided substrate and a second single-sided substrate were prepared in the same manner as in Example 1 except for the above, and they were bonded to obtain a double-sided substrate of the present invention.

【0046】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層の
厚みは30μm、熱可塑性ポリイミド樹脂層の厚みは2
0μmであり、低線膨張性ポリイミド樹脂層と熱可塑性
ポリイミド樹脂層との界面は明瞭に存在せず、各樹脂成
分が混合していることが確認できた。また、両面の銅箔
の導通検査の結果、確実に導通していた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the low linear expansion polyimide resin layer had a thickness of 30 μm and the thermoplastic polyimide resin layer had a thickness of 2.
It was 0 μm, and the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer did not exist clearly, and it was confirmed that each resin component was mixed. Further, as a result of the continuity inspection of the copper foils on both sides, it was confirmed that the copper foils were electrically connected.

【0047】また、この両面基板の導通路を含まない部
分の両側の銅箔をエッチング除去して熱機械分析を行な
ったところ、積層構造体である絶縁性樹脂層の線膨張係
数は2.4×10-5cm/cm/℃であり、各ポリイミ
ド樹脂層単独の線膨張係数は、低線膨張性ポリイミド樹
脂層が1.6×10-5cm/cm/℃、熱可塑性ポリイ
ミド樹脂層が4.0×10-5cm/cm/℃であった。
さらに、得られた両面基板の引き剥がし強度は1.6k
g/cmであり、剥離は銅箔との界面で起こり、ポリイ
ミド樹脂層間では起こらなかった。また、400℃、3
0秒の半田ディップ試験でもボイドの発生はなく、耐熱
性においても全く問題はなかった。
Further, when the copper foil on both sides of the portion of the double-sided substrate not including the conductive path was removed by etching and thermomechanical analysis was performed, the linear expansion coefficient of the insulating resin layer as the laminated structure was 2.4. × a 10 -5 cm / cm / ℃, linear expansion coefficient of each polyimide resin layer alone, low linear expansion polyimide resin layer is 1.6 × 10 -5 cm / cm / ℃, thermoplastic polyimide resin layer is It was 4.0 × 10 −5 cm / cm / ° C.
Furthermore, the peeling strength of the obtained double-sided board is 1.6 k.
The peeling occurred at the interface with the copper foil and did not occur between the polyimide resin layers. Also, 400 ° C, 3
No void was generated even in the 0 second solder dip test, and there was no problem in heat resistance.

【0048】実施例3 実施例1にて用いた低線膨張性ポリイミド前駆体溶液を
電解銅箔(厚み35μm)上に流延塗布、乾燥し、この
上にビス(3,4−ジカルボキシフェニル)スルホン二
無水物とビス〔4−(4−アミノフェノキシ)フェニ
ル〕ヘキサフルオロプロパンから得た熱可塑性ポリイミ
ド前駆体溶液を流延塗布、乾燥してイミド化処理を行っ
た。得られた低線膨張性ポリイミド樹脂層の厚みは15
μm、熱可塑性ポリイミド樹脂層の厚みは5μmであっ
た。
Example 3 The low linear expansion polyimide precursor solution used in Example 1 was cast-coated on an electrolytic copper foil (thickness: 35 μm) and dried, and bis (3,4-dicarboxyphenyl) was applied on this. ) A thermoplastic polyimide precursor solution obtained from sulfone dianhydride and bis [4- (4-aminophenoxy) phenyl] hexafluoropropane was cast-coated, dried, and imidized. The thickness of the obtained low linear expansion polyimide resin layer is 15
μm, and the thickness of the thermoplastic polyimide resin layer was 5 μm.

【0049】上記以外は実施例1と同様にして得られた
第1の片面基板および第2の片面基板を、チャンバー中
の気圧を1Torrまで脱気した連続ラミネートロール
にて370℃、50kg/cmの条件で加熱圧着して本
発明の両面基板を得た。
The first single-sided substrate and the second single-sided substrate obtained in the same manner as in Example 1 except for the above were 370 ° C. and 50 kg / cm with a continuous laminating roll in which the atmospheric pressure in the chamber was degassed to 1 Torr. The two-sided substrate of the present invention was obtained by heat-pressing under the conditions.

【0050】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層の
厚みは30μm、熱可塑性ポリイミド樹脂層の厚みは1
0μmであり、低線膨張性ポリイミド樹脂層と熱可塑性
ポリイミド樹脂層との界面は明瞭に存在せず、各樹脂成
分が混合していることが確認できた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the thickness of the low linear expansion polyimide resin layer was 30 μm and the thickness of the thermoplastic polyimide resin layer was 1 μm.
It was 0 μm, and the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer did not exist clearly, and it was confirmed that each resin component was mixed.

【0051】また、この両面基板の導通路を含まない部
分の両側の銅箔をエッチング除去して熱機械分析を行な
ったところ、ポリイミド樹脂層の積層体である絶縁性樹
脂層の線膨張係数は1.7×10-5cm/cm/℃であ
り、各ポリイミド樹脂層単独の線膨張係数は、低線膨張
性ポリイミド樹脂層が0.6×10-5cm/cm/℃、
熱可塑性ポリイミド樹脂層が5.5×10-5cm/cm
/℃であった。さらに、得られた両面基板の引き剥がし
強度は2.6kg/cmであり、剥離は銅箔との界面で
起こり、ポリイミド樹脂層間では起こらなかった。ま
た、400℃、30秒の半田ディップ試験でもボイドの
発生はなく、耐熱性においても全く問題はなかった。
Further, when the copper foil on both sides of the portion of the double-sided substrate not including the conductive path was removed by etching and thermomechanical analysis was performed, the linear expansion coefficient of the insulating resin layer, which is a laminate of polyimide resin layers, was found to be 1.7 × 10 −5 cm / cm / ° C., and the linear expansion coefficient of each polyimide resin layer is 0.6 × 10 −5 cm / cm / ° C. for the low linear expansion polyimide resin layer.
Thermoplastic polyimide resin layer is 5.5 × 10 -5 cm / cm
/ ° C. Further, the peel strength of the obtained double-sided substrate was 2.6 kg / cm, and the peeling occurred at the interface with the copper foil and did not occur between the polyimide resin layers. Further, no void was generated even in the solder dip test at 400 ° C. for 30 seconds, and there was no problem in heat resistance.

【0052】実施例4 ピロメリット酸二無水物と、p−フェニレンジアミン/
4,4’−ジアミノジフェニルエーテル(50/50モ
ル比)から得た低線膨張性ポリイミド前駆体溶液と、圧
延銅箔(厚み18μm)と、ビス(3,4−ジカルボキ
シフェニル)ヘキサフルオロプロパン二無水物と、ビス
〔4−(4−アミノフェノキシ)フェニル〕スルホンか
ら得た熱可塑性ポリイミド前駆体溶液を用い、窒素ガス
置換によって酸素濃度を1.0%以下にした連続加熱炉
にて500℃に加熱して脱水閉環を行いイミド化処理を
行なった。得られた低線膨張性ポリイミド樹脂層の厚み
は10μm、熱可塑性ポリイミド樹脂層の厚みは3μm
であった。
Example 4 Pyromellitic dianhydride and p-phenylenediamine /
Low linear expansion polyimide precursor solution obtained from 4,4′-diaminodiphenyl ether (50/50 molar ratio), rolled copper foil (thickness 18 μm), and bis (3,4-dicarboxyphenyl) hexafluoropropane di A thermoplastic polyimide precursor solution obtained from an anhydride and bis [4- (4-aminophenoxy) phenyl] sulfone was used, and the oxygen concentration was reduced to 1.0% or less by nitrogen gas substitution in a continuous heating furnace at 500 ° C. The mixture was heated to a temperature for dehydration ring closure to perform imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer is 10 μm, and the thickness of the thermoplastic polyimide resin layer is 3 μm.
Met.

【0053】次いで、実施例1と同様にして第1の片面
基板および第2の片面基板として本発明の両面基板を得
た。
Then, in the same manner as in Example 1, a double-sided substrate of the present invention was obtained as a first single-sided substrate and a second single-sided substrate.

【0054】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層の
厚みは20μm、熱可塑性ポリイミド樹脂層の厚みは6
μmであり、低線膨張性ポリイミド樹脂層と熱可塑性ポ
リイミド樹脂層との界面は明瞭に存在せず、各樹脂成分
が混合していることが確認できた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the thickness of the low linear expansion polyimide resin layer was 20 μm and the thickness of the thermoplastic polyimide resin layer was 6 μm.
μm, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer did not exist clearly, and it was confirmed that each resin component was mixed.

【0055】また、この両面基板の導通路を含まない部
分の両側の銅箔をエッチング除去して熱機械分析を行な
ったところ、ポリイミド樹脂層の積層体である絶縁性樹
脂層の線膨張係数は2.2×10-5cm/cm/℃であ
り、各ポリイミド樹脂層単独の線膨張係数は、低線膨張
性ポリイミド樹脂層が1.6×10-5cm/cm/℃、
熱可塑性ポリイミド樹脂層が5.4×10-5cm/cm
/℃であった。さらに、得られた両面基板の引き剥がし
強度は1.5kg/cmであり、剥離は銅箔との界面で
起こり、ポリイミド樹脂層間では起こらなかった。ま
た、400℃、30秒の半田ディップ試験でもボイドの
発生はなく、耐熱性においても全く問題はなかった。
Further, when the copper foil on both sides of the portion not including the conductive path of the double-sided board was removed by etching and thermomechanical analysis was performed, the linear expansion coefficient of the insulating resin layer, which is a laminate of polyimide resin layers, was found to be 2.2 × 10 −5 cm / cm / ° C., the linear expansion coefficient of each polyimide resin layer is 1.6 × 10 −5 cm / cm / ° C. for the low linear expansion polyimide resin layer,
Thermoplastic polyimide resin layer is 5.4 × 10 -5 cm / cm
/ ° C. Further, the peeling strength of the obtained double-sided substrate was 1.5 kg / cm, and peeling occurred at the interface with the copper foil and not between the polyimide resin layers. Further, no void was generated even in the solder dip test at 400 ° C. for 30 seconds, and there was no problem in heat resistance.

【0056】実施例5 3,3’4,4’−ビフェニルテトラカルボン酸二無水
物/ビス(3,4−ジカルボキシフェニル)スルホン二
無水物(80/20モル比)と、p−フェニレンジアミ
ンから得た低線膨張性ポリイミド前駆体溶液と、電解銅
箔(厚み12μm)と、ビス(3,4−ジカルボキシフ
ェニル)スルホン二無水物と、ビス〔4−(3−アミノ
フェノキシ)フェニル〕スルホンから得た熱可塑性ポリ
イミド前駆体溶液を用いてイミド化処理を行ない、実施
例4と同様にして本発明の両面基板を得た。。得られた
低線膨張性ポリイミド樹脂層の厚みは21μm、熱可塑
性ポリイミド樹脂層の厚みは4μmであった。
Example 5 3,3'4,4'-biphenyltetracarboxylic dianhydride / bis (3,4-dicarboxyphenyl) sulfone dianhydride (80/20 molar ratio) and p-phenylenediamine From the low linear expansion polyimide precursor solution, electrolytic copper foil (thickness 12 μm), bis (3,4-dicarboxyphenyl) sulfone dianhydride, and bis [4- (3-aminophenoxy) phenyl] An imidization treatment was performed using a thermoplastic polyimide precursor solution obtained from sulfone, and a double-sided substrate of the present invention was obtained in the same manner as in Example 4. . The obtained low linear expansion polyimide resin layer had a thickness of 21 μm, and the thermoplastic polyimide resin layer had a thickness of 4 μm.

【0057】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層の
厚みは42μm、熱可塑性ポリイミド樹脂層の厚みは8
μmであり、低線膨張性ポリイミド樹脂層と熱可塑性ポ
リイミド樹脂層との界面は明瞭に存在せず、各樹脂成分
が混合していることが確認できた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the thickness of the low linear expansion polyimide resin layer was 42 μm and the thickness of the thermoplastic polyimide resin layer was 8 μm.
μm, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer did not exist clearly, and it was confirmed that each resin component was mixed.

【0058】また、この両面基板の両側の導通路を含ま
ない部分の銅箔をエッチング除去して熱機械分析を行な
ったところ、ポリイミド樹脂層の積層体である絶縁性樹
脂層の線膨張係数は2.5×10-5cm/cm/℃であ
り、各ポリイミド樹脂層単独の線膨張係数は、低線膨張
性ポリイミド樹脂層が1.8×10-5cm/cm/℃、
熱可塑性ポリイミド樹脂層が5.2×10-5cm/cm
/℃であった。さらに、得られた両面基板の引き剥がし
強度は1.6kg/cmであり、剥離は銅箔との界面で
起こり、ポリイミド樹脂層間では起こらなかった。ま
た、400℃、30秒の半田ディップ試験でもボイドの
発生はなく、耐熱性においても全く問題はなかった。
Further, when the copper foils on both sides of the double-sided substrate not including the conductive paths were removed by etching and thermomechanical analysis was performed, the linear expansion coefficient of the insulating resin layer, which is a laminate of polyimide resin layers, was found to be 2.5 × 10 −5 cm / cm / ° C., and the linear expansion coefficient of each polyimide resin layer is 1.8 × 10 −5 cm / cm / ° C. for the low linear expansion polyimide resin layer.
Thermoplastic polyimide resin layer is 5.2 × 10 -5 cm / cm
/ ° C. Further, the peel strength of the obtained double-sided substrate was 1.6 kg / cm, and the peeling occurred at the interface with the copper foil and did not occur between the polyimide resin layers. Further, no void was generated even in the solder dip test at 400 ° C. for 30 seconds, and there was no problem in heat resistance.

【0059】比較例1 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンから得た低線膨張性ポ
リイミド前駆体溶液を、圧延銅箔(厚み18μm)上に
均一に流延塗布し乾燥した。次いで窒素ガス雰囲気下で
450℃に加熱して脱水閉環してイミド化処理を行なっ
た。
Comparative Example 1 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and a low linear expansion polyimide precursor solution obtained from p-phenylenediamine were rolled on a rolled copper foil (thickness 18 μm). It was uniformly cast and applied to the plate and dried. Then, it was heated to 450 ° C. in a nitrogen gas atmosphere to perform dehydration ring closure and imidization treatment.

【0060】次に、上記ポリイミド樹脂層の上に、ビス
(3,4−ジカルボキシフェニル)エーテル二無水物と
ビス〔4−(4−アミノフェノキシ)フェニル〕スルホ
ンから得た熱可塑性ポリイミド前駆体溶液を同様に流延
塗布、乾燥しての熱可塑性ポリイミド前駆体層を形成し
た。
Next, a thermoplastic polyimide precursor obtained from bis (3,4-dicarboxyphenyl) ether dianhydride and bis [4- (4-aminophenoxy) phenyl] sulfone was formed on the polyimide resin layer. Similarly, the solution was cast-coated and dried to form a thermoplastic polyimide precursor layer.

【0061】このようにして得られた片面基板を、窒素
ガス置換によって酸素濃度を1.5%以下にした連続加
熱炉にて450℃に加熱して脱水閉環を行いイミド化処
理を行なった。得られた低線膨張性ポリイミド樹脂層の
厚みは20μm、熱可塑性ポリイミド樹脂層の厚みは5
μmであった。
The single-sided substrate thus obtained was heated at 450 ° C. in a continuous heating furnace having an oxygen concentration of 1.5% or less by nitrogen gas substitution to perform dehydration ring closure and imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer was 20 μm, and the thickness of the thermoplastic polyimide resin layer was 5 μm.
was μm.

【0062】上記以外は実施例1と同様にして両面基板
を作製した。
A double-sided board was manufactured in the same manner as in Example 1 except for the above.

【0063】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層と
熱可塑性ポリイミド樹脂層との界面は明瞭に存在し、各
樹脂成分が混合されていないことが確認できた。
When the cross section of the obtained double-sided substrate was observed by a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer was clearly present, and each resin component was mixed. It was confirmed that there was no.

【0064】また、得られた両面基板の引き剥がし強度
は0.1kg/cmであり、ポリイミド樹脂層間で容易
に剥離し、ほとんど接着性はなかった。
Further, the peel strength of the obtained double-sided substrate was 0.1 kg / cm, which easily peeled between the polyimide resin layers and had almost no adhesiveness.

【0065】比較例2 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンから得た低線膨張性ポ
リイミド前駆体溶液を、圧延銅箔(厚み35μm)上に
均一に流延塗布し乾燥した。次いで窒素ガス雰囲気下で
450℃に加熱して脱水閉環してイミド化処理を行なっ
た。
Comparative Example 2 A low linear expansion polyimide precursor solution obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine was applied onto a rolled copper foil (thickness: 35 μm). It was uniformly cast and applied to the plate and dried. Then, it was heated to 450 ° C. in a nitrogen gas atmosphere to perform dehydration ring closure and imidization treatment.

【0066】次に、上記ポリイミド樹脂層の上に、ビス
(3,4−ジカルボキシフェニル)スルホン二無水物と
ビス〔4−(4−アミノフェノキシ)フェニル〕スルホ
ンから得た熱可塑性ポリイミド前駆体溶液を同様に流延
塗布、乾燥して熱可塑性ポリイミド前駆体層を形成し
た。
Next, on the above-mentioned polyimide resin layer, a thermoplastic polyimide precursor obtained from bis (3,4-dicarboxyphenyl) sulfone dianhydride and bis [4- (4-aminophenoxy) phenyl] sulfone. Similarly, the solution was cast-coated and dried to form a thermoplastic polyimide precursor layer.

【0067】このようにして得られた片面基板を、窒素
ガス置換によって酸素濃度を2.0%以下にした連続加
熱炉にて450℃に加熱して脱水閉環を行いイミド化処
理を行なった。得られた低線膨張性ポリイミド樹脂層の
厚みは20μm、熱可塑性ポリイミド樹脂層の厚みは1
5μmであった。
The single-sided substrate thus obtained was heated at 450 ° C. in a continuous heating furnace having an oxygen concentration of 2.0% or less by nitrogen gas substitution to perform dehydration ring closure and imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer is 20 μm, and the thickness of the thermoplastic polyimide resin layer is 1
It was 5 μm.

【0068】上記以外は実施例1と同様にして両面基板
を作製した。
A double-sided substrate was prepared in the same manner as in Example 1 except for the above.

【0069】得られた両面基板の断面を走査型電子顕微
鏡にて観察したところ、低線膨張性ポリイミド樹脂層と
熱可塑性ポリイミド樹脂層との界面は明瞭に存在し、各
樹脂成分が混合されていないことが確認できた。
When the cross section of the obtained double-sided substrate was observed with a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer was clearly present, and each resin component was mixed. It was confirmed that there was no.

【0070】また、得られた両面基板の引き剥がし強度
は0.4kg/cmであり、ポリイミド樹脂層間で容易
に剥離し、ほとんど接着性はなかった。また、400℃
の半田ディップを行なったところ、全面に発泡が発生し
た。
Further, the peeling strength of the obtained double-sided substrate was 0.4 kg / cm, it was easily peeled between the polyimide resin layers, and there was almost no adhesiveness. Also, 400 ℃
When solder dipping was performed, foaming occurred on the entire surface.

【0071】[0071]

【発明の効果】以上のように、本発明の両面基板は低線
膨張性ポリイミド前駆体および熱可塑性ポリイミド前駆
体を銅箔上に層状に形成したのち、イミド化することに
よって各層の界面のポリイミド樹脂を混合しているで、
銅箔と低線膨張性ポリイミド樹脂層、低線膨張性ポリイ
ミド樹脂層と熱可塑性ポリイミド樹脂層の接着強度が強
く、また加熱時の線膨張係数も銅箔と近似しているの
で、基板がカールするおそれがない。
INDUSTRIAL APPLICABILITY As described above, the double-sided substrate of the present invention is formed by layering a low linear expansion polyimide precursor and a thermoplastic polyimide precursor on a copper foil and then imidizing the polyimide at the interface of each layer. Because the resin is mixed,
The adhesive strength between the copper foil and the low linear expansion polyimide resin layer, the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer is strong, and the linear expansion coefficient at the time of heating is similar to that of the copper foil. There is no danger of

【0072】また、本発明の製造方法によれば、片面基
板に金属物質を充填した導通路を予め形成しているので
導通検査も比較的簡単に行え、しかもレーザーによる穿
孔処理を行うと導通路の微細化も可能となり、高密度化
が可能となる。
Further, according to the manufacturing method of the present invention, since the conducting path filled with the metal substance is formed in advance on the one-sided substrate, the conducting inspection can be performed relatively easily, and the conducting path can be obtained by the laser perforation process. It is also possible to miniaturize, and high density is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の両面基板の断面図である。FIG. 1 is a cross-sectional view of a double-sided board of the present invention.

【図2】 (a)〜(e)は本発明の両面基板の製造方
法を説明するための各工程の断面図である。
2A to 2E are cross-sectional views of respective steps for explaining the method for manufacturing a double-sided substrate of the present invention.

【図3】 (a)〜(e)は本発明の両面基板の製造方
法の他の実例を説明するための各工程の断面図である。
3A to 3E are cross-sectional views of respective steps for explaining another example of the method for manufacturing a double-sided board of the present invention.

【符号の説明】[Explanation of symbols]

1,1’ 銅箔 2,2’ 低線膨張性ポリイミド樹脂層 3 熱可塑性ポリイミド樹脂層 4 導通路 12 低線膨張性ポリイミド前駆体層 13 熱可塑性ポリイミド前駆体層 1,1 'Copper foil 2,2' Low linear expansion polyimide resin layer 3 Thermoplastic polyimide resin layer 4 Conducting path 12 Low linear expansion polyimide precursor layer 13 Thermoplastic polyimide precursor layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/38 E 7011−4E 3/40 K 7511−4E (72)発明者 田中 宗和 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H05K 3/38 E 7011-4E 3/40 K 7511-4E (72) Inventor Munekazu Tanaka Osaka Prefecture Nitto Denko Corporation 1-2 1-2 Shimohozumi, Ibaraki City

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性ポリイミド樹脂層の両面に低線
膨張性ポリイミド樹脂層が形成され、層界面において各
層のポリイミド樹脂が混合状態にある絶縁性樹脂層と、
該絶縁性樹脂層の両面に形成された銅箔からなる両面基
板であって、表裏面の銅箔が前記絶縁性樹脂層の厚み方
向に形成された貫通孔内に金属物質を充填した導通路に
よって、電気的に接続されていることを特徴とする両面
基板。
1. An insulating resin layer in which a low linear expansion polyimide resin layer is formed on both surfaces of a thermoplastic polyimide resin layer, and the polyimide resin of each layer is in a mixed state at the layer interface,
A double-sided board comprising copper foils formed on both sides of the insulating resin layer, wherein the copper foils on the front and back surfaces are filled with a metal substance in through holes formed in the thickness direction of the insulating resin layer. A double-sided board, which is electrically connected by.
【請求項2】 熱可塑性ポリイミド樹脂層の線膨張係数
をa1 、熱可塑性ポリイミド樹脂層の厚みをt1 、低線
膨張性ポリイミド樹脂層の線膨張係数をa2 、二つの低
線膨張性ポリイミド樹脂層の合計厚みをt2 とした場
合、 a1 ・〔t1 /(t1 +t2 )〕+ a2 ・〔t2 /(t1 +t2 )〕 の値と銅の線膨張係数との差が、1.0×10-5cm/
cm/℃よりも小さい請求項1記載の両面基板。
2. A linear expansion coefficient of the thermoplastic polyimide resin layer is a 1 , a thickness of the thermoplastic polyimide resin layer is t 1 , a linear expansion coefficient of the low linear expansion polyimide resin layer is a 2 , two low linear expansion coefficients. When the total thickness of the polyimide resin layer is t 2 , the value of a 1 · [t 1 / (t 1 + t 2 )] + a 2 · [t 2 / (t 1 + t 2 )] and the coefficient of linear expansion of copper Is 1.0 × 10 -5 cm /
The double-sided board according to claim 1, which is smaller than cm / ° C.
【請求項3】 銅箔上に低線膨張性ポリイミド前駆体溶
液を塗布、乾燥する第1の工程と、該塗布面に熱可塑性
ポリイミド前駆体溶液を塗布、乾燥する第2の工程と、
不活性ガス雰囲気下で400℃以上の温度にて加熱して
前駆体層をイミド化する第3の工程と、低線膨張性ポリ
イミド樹脂層および熱可塑性ポリイミド樹脂層の所定位
置に貫通孔を形成して貫通孔底部に銅箔を露出させる第
4の工程と、貫通孔に金属物質を充填し、さらに熱可塑
性ポリイミド樹脂層表面から金属物質をバンプ状に突出
させる第5の工程とから第1の片面基板を形成し、他
方、上記第1〜第4の工程および必要に応じて第5の工
程を付加して第2の片面基板を形成し、第1の片面基板
および第2の片面基板の貫通孔形成部が一致するように
熱可塑性ポリイミド樹脂層を相対するように貼り合わせ
て導通路を形成することを特徴とする両面基板の製造方
法。
3. A first step of coating and drying a low linear expansion polyimide precursor solution on a copper foil, and a second step of coating and drying the thermoplastic polyimide precursor solution on the coated surface.
Third step of imidizing the precursor layer by heating at a temperature of 400 ° C. or higher in an inert gas atmosphere, and forming a through hole at a predetermined position of the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer The fourth step of exposing the copper foil to the bottom of the through hole and filling the through hole with a metal substance, and further projecting the metal substance in a bump shape from the surface of the thermoplastic polyimide resin layer. No. 1-sided substrate is formed, and on the other hand, the above-mentioned first to fourth steps and, if necessary, the fifth step are added to form a second one-sided substrate. 2. A method for manufacturing a double-sided board, comprising: forming a conductive path by laminating thermoplastic polyimide resin layers so as to face each other so that the through-hole forming portions of the two are aligned.
JP9723292A 1991-09-19 1992-03-23 Double-sided board and manufacture of the same Pending JPH05267810A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9723292A JPH05267810A (en) 1992-03-23 1992-03-23 Double-sided board and manufacture of the same
US07/945,929 US5374469A (en) 1991-09-19 1992-09-17 Flexible printed substrate
EP19920116025 EP0533198A3 (en) 1991-09-19 1992-09-18 Flexible printed substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9723292A JPH05267810A (en) 1992-03-23 1992-03-23 Double-sided board and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH05267810A true JPH05267810A (en) 1993-10-15

Family

ID=14186882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9723292A Pending JPH05267810A (en) 1991-09-19 1992-03-23 Double-sided board and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH05267810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190967A (en) * 1992-09-11 1994-07-12 Mitsui Toatsu Chem Inc Production of flexible extremely thin metal foil laminated sheet
JP2002240194A (en) * 2001-02-16 2002-08-28 Dainippon Printing Co Ltd Laminate capable of being subjected to wet etching, insulating film, and electronic circuit part
JP2008172268A (en) * 2008-02-28 2008-07-24 Nippon Mektron Ltd Method of producing multilayer circuit board, and circuit base material
JP2012006149A (en) * 2010-06-22 2012-01-12 Toyobo Co Ltd Polyimide board, metal-laminated polyimide board, and printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190967A (en) * 1992-09-11 1994-07-12 Mitsui Toatsu Chem Inc Production of flexible extremely thin metal foil laminated sheet
JP2002240194A (en) * 2001-02-16 2002-08-28 Dainippon Printing Co Ltd Laminate capable of being subjected to wet etching, insulating film, and electronic circuit part
JP4562110B2 (en) * 2001-02-16 2010-10-13 大日本印刷株式会社 Laminated body limited to applications to which wet etching is applied, electronic circuit component using the same, and manufacturing method thereof
US8066891B2 (en) 2001-02-16 2011-11-29 Dai Nippon Printing Co., Ltd. Wet etchable laminated body, insulation film, and electronic circuit part using the laminated body and the film
JP2008172268A (en) * 2008-02-28 2008-07-24 Nippon Mektron Ltd Method of producing multilayer circuit board, and circuit base material
JP2012006149A (en) * 2010-06-22 2012-01-12 Toyobo Co Ltd Polyimide board, metal-laminated polyimide board, and printed wiring board

Similar Documents

Publication Publication Date Title
US5374469A (en) Flexible printed substrate
US6591491B2 (en) Method for producing multilayer circuit board
US6662442B1 (en) Process for manufacturing printed wiring board using metal plating techniques
JP5290455B2 (en) Manufacturing method of laminate
US6904674B2 (en) Process for manufacturing a printed wiring board
JP3188856B2 (en) Manufacturing method of multilayer printed wiring board
JP3059556B2 (en) Multilayer substrate and method of manufacturing the same
JP4448610B2 (en) Circuit board manufacturing method
JPH10303561A (en) Multi-layer wiring board and its manufacture
JP3596374B2 (en) Manufacturing method of multilayer printed wiring board
JPH06283866A (en) Multilayer circuit board and manufacture thereof
JP3339422B2 (en) Wiring board and manufacturing method thereof
JP3356298B2 (en) Printed wiring board and method of manufacturing the same
JPH05267810A (en) Double-sided board and manufacture of the same
JP3142951B2 (en) Manufacturing method of double-sided board
JPH0955568A (en) Thin film wiring sheet, multilayer wiring board and their production
JP3969902B2 (en) Manufacturing method of interposer for chip size package
WO2001056339A1 (en) Flexible printed wiring board and its production method
JP2003198122A (en) Method of manufacturing printed wiring board
JP2919672B2 (en) Double-sided circuit board and method of manufacturing the same
JP4199957B2 (en) Manufacturing method of multilayer wiring board
JP2905331B2 (en) Double-sided board
JPH0730212A (en) Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board
JP3107535B2 (en) Wiring board, circuit component mounted body, and method of manufacturing wiring board
JP2000294933A (en) Multilayer circuit substrate and manufacture thereof