JPH05267232A - Semiconductor processing equipment - Google Patents

Semiconductor processing equipment

Info

Publication number
JPH05267232A
JPH05267232A JP9354792A JP9354792A JPH05267232A JP H05267232 A JPH05267232 A JP H05267232A JP 9354792 A JP9354792 A JP 9354792A JP 9354792 A JP9354792 A JP 9354792A JP H05267232 A JPH05267232 A JP H05267232A
Authority
JP
Japan
Prior art keywords
gas
pipe
gas supply
corrosion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9354792A
Other languages
Japanese (ja)
Inventor
Hideki Fujiwara
英樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9354792A priority Critical patent/JPH05267232A/en
Publication of JPH05267232A publication Critical patent/JPH05267232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent corrosion at the weld junction of a gas supply line even in the case of using a corrosive gas by a method wherein the gas supply line has a weld junction and is partially or all constituted of an austenite stainless steel. CONSTITUTION:In a semiconductor processing equipment provided with a gas supply line 6 having a weld junction W, a part or the whole including the weld junction W of the gas supply line 6 is constituted of an austenite stainless steel pipe containing Cr: 15.0-30.0wt.%, Ni: 15.0-30.0wt.%, Mo: 4.0-8.0wt.%, and further as necessary N: 0.05-0.25wt.% with an inner maximum roughness of 3mum. This process can prevent corrosion at the piping weld part even in the case where a corrosive gas is passed through the gas supply line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度ガスを使用する
半導体製造装置に関し、特に、そのガス供給系路が溶接
接合部を有する半導体製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus using high-purity gas, and more particularly to a semiconductor manufacturing apparatus whose gas supply system has a welded joint.

【0002】[0002]

【従来の技術】エッチング装置、CVD装置等の所謂半
導体製造装置は、通常、種々のガスを用いてウエハ処理
を行う。そのため、装置内にガス供給系路を有するのが
通例になっている。半導体製造装置に備わるガス供給系
路を、エッチング、CVD等に使用されるECRプラズ
マ装置について説明する。
2. Description of the Related Art A so-called semiconductor manufacturing apparatus such as an etching apparatus or a CVD apparatus usually processes wafers by using various gases. Therefore, it is customary to have a gas supply system passage in the device. A gas supply system path provided in a semiconductor manufacturing apparatus will be described for an ECR plasma apparatus used for etching, CVD and the like.

【0003】図1はECRプラズマ装置の概略構成図で
ある。励磁コイル1の内側に設けられたプラズマ生成室
2内には、ガス配管3を通じてプラズマ生成用ガスGが
供給される共に、導波管4を通してマイクロ波が導入さ
れる。プラズマ生成室2内で生成されたプラズマPは、
下方の反応室5内へ導入され、台上の試料Sの処理に使
用される。反応室5内に導入されたプラズマPには、先
端部が環状に形成されたガス配管6から、プラズマ生成
用ガスGが吹き付けられる。
FIG. 1 is a schematic configuration diagram of an ECR plasma device. Into the plasma generation chamber 2 provided inside the exciting coil 1, a plasma generation gas G is supplied through a gas pipe 3 and a microwave is introduced through a waveguide 4. The plasma P generated in the plasma generation chamber 2 is
It is introduced into the reaction chamber 5 below and used for processing the sample S on the table. The plasma generation gas G is blown to the plasma P introduced into the reaction chamber 5 from a gas pipe 6 having a ring-shaped tip.

【0004】図2はガス配管6の環状ヘッダを示す平面
図である。環状ヘッダ6aは、直管を環状に曲げ、両端
部を突き合わせ溶接することにより製作され、更に、母
管6bにも溶接により接続される。従って、環状ヘッダ
6aには2つの溶接接合部Wが存在する。
FIG. 2 is a plan view showing an annular header of the gas pipe 6. The annular header 6a is manufactured by bending a straight pipe in an annular shape and welding both ends to each other by butt welding, and is further connected to the mother pipe 6b by welding. Therefore, the annular header 6a has two welded joints W.

【0005】また、ガス配管3,6は、図 1に示すよう
に、ガスユニット7を介して複数のボンベ8に接続され
ている。複数のボンベ8には、異なるガスが充填されて
いる。ガスユニット7は、複数のボンベ8を切り換えて
使用目的に応じたガスをガス配管3,6に送給する。こ
のガスユニット7内には、多くの配管が複雑に組み合わ
さって組み込まれており、機械的な継手による接合はス
ペース面の制約から採用し難く、溶接接合が多用されて
いる。
Further, the gas pipes 3 and 6 are connected to a plurality of cylinders 8 via a gas unit 7 as shown in FIG. The plurality of cylinders 8 are filled with different gases. The gas unit 7 switches a plurality of cylinders 8 and sends the gas according to the purpose of use to the gas pipes 3 and 6. Many pipes are assembled intricately combined in the gas unit 7, and joining by a mechanical joint is difficult to adopt due to space limitations, and welding joining is often used.

【0006】このように、現状の半導体製造装置のガス
供給系路は、多くの溶接接合部を有する。
As described above, the gas supply path of the current semiconductor manufacturing apparatus has many welded joints.

【0007】ところで、このような半導体製造装置のガ
ス供給系路では、ガスの純度低下を防ぐために、その配
管の管内面からの微粒子の放出およびガスの放出を極力
抑える必要がある。そのために、配管にSUS316L
鋼管を使用する、その内面を光輝焼鈍(BA)や電解研
磨(EP)等で平坦に仕上げる、溶接接合部を減らすな
どの対策が講じられてきた。
By the way, in such a gas supply system passage of the semiconductor manufacturing apparatus, in order to prevent the deterioration of the purity of the gas, it is necessary to suppress the release of fine particles and the release of the gas from the inner surface of the pipe. Therefore, the pipe is made of SUS316L
Measures have been taken such as using a steel pipe, finishing its inner surface flat by bright annealing (BA) or electrolytic polishing (EP), and reducing welded joints.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、ガス供
給系路から溶接接合部を排除することは困難で、未だ多
くの溶接接合部が存在することは前述したとおりであ
る。本発明者らは、以前より溶接接合部の腐食の研究を
続けており、その研究の結果、高純度ガスの汚染に結び
つく興味ある腐食メカニズムが明らかになってきた。
However, as described above, it is difficult to eliminate the welded joint from the gas supply system passage, and there are still many welded joints. The present inventors have been continuing research on corrosion of welded joints, and as a result of that research, an interesting corrosion mechanism leading to contamination of high-purity gas has been clarified.

【0009】半導体製造装置に使用されるガスには、キ
ャリア用あるいはパージ用として、Ar,N2 が、また
反応ガスとして、特殊材料ガスと呼ばれるシラン類、臭
化水素(HBr)、塩化水素、塩素等が使用されてい
る。Ar,N2 といった不活性ガスは、配管材料である
SUS316L鋼に対してなんら悪影響を及ぼすもので
はない。しかし、反応ガスとして使用される特殊材料ガ
スは、その多くが不安定であり、微量の水蒸気と反応
し、SUS316L鋼をも腐食する。従って、反応ガス
配管にSUS316L鋼を使用する際は、管内の水蒸気
を極力低く維持しなければならず、また、使用時以外は
乾燥した高純度の不活性ガスを管内に密封状態にしてお
くのが普通になっている。
The gases used in the semiconductor manufacturing equipment are Ar and N 2 for carriers or purging, and as reaction gases, silanes called special material gases, hydrogen bromide (HBr), hydrogen chloride, Chlorine is used. Inert gases such as Ar and N 2 do not have any adverse effect on the SUS316L steel that is the piping material. However, most of the special material gases used as the reaction gas are unstable, react with a small amount of water vapor, and corrode SUS316L steel. Therefore, when using SUS316L steel for the reaction gas pipe, the water vapor in the pipe must be kept as low as possible, and dry high-purity inert gas should be kept sealed inside the pipe except when in use. Is becoming normal.

【0010】ところが、反応ガスは、ガス容器から各装
置に供給されるため、ガス容器の交換時には、微量とは
いえ、湿分を含む外気が配管内に混入するのを避け得
ず、それが反応ガスと反応することによって、SUS3
16L鋼管内面といえども、管内面が腐食されるおそれ
がある。この腐食は、本発明者らの調査によれば、配管
の溶接継手部、特に溶融境界から離れた熱影響部に優先
的に起こり、腐食が生じた場合は、その錆により、配管
内を流れるガスが汚染される。
However, since the reaction gas is supplied from the gas container to each device, it is unavoidable that the outside air containing moisture is mixed in the pipe when exchanging the gas container, although the amount is small. By reacting with the reaction gas, SUS3
Even with the inner surface of the 16L steel pipe, the inner surface of the pipe may be corroded. According to the investigation by the present inventors, this corrosion preferentially occurs in the welded joint portion of the pipe, particularly in the heat-affected zone away from the melting boundary, and when corrosion occurs, it flows in the pipe due to the rust. The gas is polluted.

【0011】本発明の目的は、腐食性ガスが使用される
場合にも、ガス供給系路の溶接接合部での腐食のおそれ
がない半導体製造装置を提供することにある。
An object of the present invention is to provide a semiconductor manufacturing apparatus in which there is no risk of corrosion at the welded joint of the gas supply system path even when corrosive gas is used.

【0012】[0012]

【課題を解決するための手段】SUS316L鋼からな
る高純度ガス配管に腐食性ガスを流通させた場合の腐食
挙動を明らかにするため、本発明者らは、腐食性ガスの
一つである臭化水素(HBr)ガスを用いて、次の腐食
試験を行った。SUS316L鋼製の内面電解研磨鋼管
からなる供試配管に、100ppmの水分を含む臭化水
素(HBr)ガスを2kg/cm2 封入し、これを液体
窒素で冷却することによって配管内の水分を結露させ、
その後、配管内を大気中に開放して、管内面の腐食状況
を観察した。その結果、供試配管の溶接部(突き合わせ
TIG溶接部)以外の部分に腐食は生じなかったが、溶
接部の特に熱影響部の表面は腐食を起こし、錆を生じて
いた。本発明者らは、この試験結果から、鋼組成面から
の腐食対策の重要性を確認し、その対策を見出すため
に、種々組成のオーステナイト・ステンレス鋼管を用い
て腐食試験を繰り返した。その結果、鋼中のCr,N
i,Mo及びN、特にMoが溶接熱膨張部の腐食防止に
有効であり、これらの規定により、前述の苛酷な腐食試
験でも、溶接熱影響部の腐食を防止できることが判明し
た。
In order to clarify the corrosion behavior when a corrosive gas is circulated in a high-purity gas pipe made of SUS316L steel, the inventors of the present invention have investigated the odor which is one of the corrosive gas. The following corrosion test was performed using hydrogen fluoride (HBr) gas. 2 kg / cm 2 of hydrogen bromide (HBr) gas containing 100 ppm of water was filled in a test pipe made of SUS316L steel inner surface electropolished steel pipe, and water in the pipe was condensed by cooling it with liquid nitrogen. Let
Then, the inside of the pipe was opened to the atmosphere and the corrosion state of the inner surface of the pipe was observed. As a result, corrosion did not occur in the portion other than the welded portion (butt TIG welded portion) of the test pipe, but the surface of the welded portion, particularly the heat affected zone, corroded and rusted. From these test results, the present inventors confirmed the importance of corrosion countermeasures from the viewpoint of steel composition, and repeated the corrosion test using austenitic stainless steel pipes of various compositions in order to find out the countermeasures. As a result, Cr, N in steel
It has been found that i, Mo and N, especially Mo, are effective in preventing corrosion of the weld thermal expansion portion, and by these regulations, even in the severe corrosion test described above, the corrosion of the welding heat affected portion can be prevented.

【0013】本発明はかかる知見に基づきなされたもの
で、溶接接合部を有するガス供給系路が設けられた半導
体製造装置において、前記ガス供給系路の溶接接合部を
含む一部または全部を、Cr:15.0〜30.0重量%、
Ni:15.0〜30.0重量%、Mo:4.0〜8.0重量%
と、更に必要に応じてN:0.05〜0.25重量%を含
み、内面の最大粗さが3μm未満であるオーステナイト
・ステンレス鋼管により構成したことを特徴とする半導
体製造装置を要旨とする。
The present invention has been made based on the above findings, and in a semiconductor manufacturing apparatus provided with a gas supply system passage having a welded joint, a part or all of the gas supply system passage including the welded joint is Cr: 15.0-30.0% by weight,
Ni: 15.0-30.0 wt%, Mo: 4.0-8.0 wt%
And a semiconductor manufacturing apparatus characterized by comprising an austenitic stainless steel pipe having a maximum inner surface roughness of less than 3 μm, further containing N: 0.05 to 0.25% by weight, if necessary. ..

【0014】即ち、本発明の半導体製造装置は、ガス供
給系路を具備する。そのガス供給系路は溶接接合部を有
し、その系路の一部または全部が上記オーステナイト・
ステンレス鋼管で構成される。ただし、溶接接合部は、
上記オーステナイト・ステンレス鋼管で構成された部分
に含まれる。これにより、ガス供給系路に腐食性ガスが
流通された場合も、溶接熱影響部での腐食を防ぐことが
できる。上記オーステナイト・ステンレス鋼管で構成さ
れない部分は、従来の高純度ガス用SUS316L鋼管
等で構成する。
That is, the semiconductor manufacturing apparatus of the present invention includes a gas supply system passage. The gas supply line has a welded joint, and part or all of the line is austenite
Composed of stainless steel pipe. However, the weld joint is
It is included in the portion composed of the austenitic stainless steel pipe. As a result, even when a corrosive gas is circulated in the gas supply system passage, it is possible to prevent corrosion in the welding heat affected zone. The portion not composed of the austenitic stainless steel pipe is composed of a conventional SUS316L steel pipe for high-purity gas or the like.

【0015】[0015]

【作用】本発明の半導体製造装置のガス供給系路に使用
されるオーステナイト・ステンレス鋼管を以下に詳述す
る。
The austenitic stainless steel pipe used in the gas supply system passage of the semiconductor manufacturing apparatus of the present invention will be described in detail below.

【0016】まず、オーステナイト・ステンレス鋼管に
おける鋼成分の作用および限定理由を説明する。
First, the action of the steel components in the austenitic stainless steel pipe and the reasons for limitation will be described.

【0017】Cr:15〜30重量% Crは耐食性向上の効果があり、高濃度ほどその効果が
大きい。溶接部の腐食を防ぐには15重量%以上のCr
が必要である。しかし、30重量%を超えて含有する場
合には、熱処理中あるいは熱間加工中に金属化合物相等
が析出し、脆化を発生させることより鋼管の加工が困難
となり、また溶接部の靱性も劣化する。従って、Crは
15〜30重量%とした。
Cr: 15 to 30 wt% Cr has the effect of improving corrosion resistance, and the higher the concentration, the greater the effect. 15% by weight or more of Cr to prevent corrosion of the weld
is necessary. However, when the content exceeds 30% by weight, the metal compound phase and the like precipitate during heat treatment or hot working to cause embrittlement, which makes it difficult to process the steel pipe and deteriorates the toughness of the welded part. To do. Therefore, Cr is set to 15 to 30% by weight.

【0018】Ni:15〜30重量% Niも耐食性を向上させる上で有効な元素であり、また
鋼組成をオーステナイト単相とする点で不可欠である。
鋼組成がオーステナイト単相でない場合は、溶接部の耐
食性及び靱性が著しく低下する。Niが15重量%未満
ではオーステナイト単相とならず、一方30重量%を超
えて含有する場合には経済性が悪化し、また熱間での加
工性が著しく低下する。従ってNiは15〜30重量%
とした。
Ni: 15 to 30 wt% Ni is also an element effective in improving the corrosion resistance, and is indispensable in that the steel composition is austenite single phase.
If the steel composition is not an austenite single phase, the corrosion resistance and toughness of the welded part will be significantly reduced. When Ni is less than 15% by weight, it does not form an austenite single phase, while when it exceeds 30% by weight, economical efficiency is deteriorated and hot workability is remarkably reduced. Therefore, Ni is 15 to 30% by weight.
And

【0019】Mo:4〜8重量% Moは溶接継手の熱影響部における耐食性を向上させる
上で最も重要な元素である。このMoは、一般の高純度
ガス配管用オーステナイト・ステンレス鋼管では多くて
も4重量%未満、最も多用されるSUS316L鋼で2
〜3重量%が含有されているに過ぎない。この程度のM
o含有量では不活性ガスあるいは水蒸気、酸素等の混入
する不活性ガスに対する耐食性は確保できても、臭化水
素(HBr)ガス等の腐食性ガスに対する耐食性、特に
溶接熱影響部の耐食性を確保することはできない。本発
明使用の鋼管では、臭化水素(HBr)ガス等の腐食性
ガスによっても溶接熱影響部が腐食されないという優れ
た耐食性を確保するため、Moは4重量%以上が必要で
ある。また、Moはその含有量が高いほど耐食性はより
一層改善されるが、8重量%を超えて含有させると、金
属間化合物の析出が起こり易く、加工性および溶接部靱
性の劣化が顕著になる。従って、Moは4〜8重量%と
した。なお、このような高Mo含有鋼は、SUS316
Lに代表される従来の低Mo含有鋼に比べて、耐食性以
外の性質、即ち加工性および靱性等は何ら劣化すること
がない。
Mo: 4 to 8 wt% Mo is the most important element for improving the corrosion resistance in the heat affected zone of the welded joint. This Mo is less than 4% by weight at most in general austenitic stainless steel pipes for high-purity gas pipes, and 2 in the most frequently used SUS316L steel.
Only ~ 3% by weight is contained. M of this degree
o content can secure corrosion resistance to inert gas or inactive gas mixed with water vapor, oxygen, etc., but secures corrosion resistance to corrosive gas such as hydrogen bromide (HBr) gas, especially in heat affected zone You cannot do it. In the steel pipe used in the present invention, Mo is required to be 4% by weight or more in order to secure excellent corrosion resistance that the weld heat affected zone is not corroded by corrosive gas such as hydrogen bromide (HBr) gas. Further, the higher the content of Mo is, the more the corrosion resistance is improved, but if the content of Mo exceeds 8% by weight, precipitation of intermetallic compounds is likely to occur, and workability and weld zone toughness are significantly deteriorated. .. Therefore, Mo is set to 4 to 8% by weight. In addition, such high Mo content steel is SUS316.
Compared to the conventional low Mo content steel represented by L, properties other than corrosion resistance, that is, workability and toughness do not deteriorate at all.

【0020】N:0.05〜0.25重量% NはNiと同様にオーステナイト単相化に有効であり、
また、Cr,Moと同様に耐食性向上の効果がある。本
発明使用の鋼管では必要に応じてこのNを0.05〜0.2
5重量%含有させる。N含有量が0.05重量%未満では
N添加の効果が顕著とならず、一方、0.25重量%を超
えて含有する場合には熱間での加工性が低下し、鋼管の
製造が困難となる。
N: 0.05 to 0.25% by weight N, like Ni, is effective for forming an austenite single phase,
Further, it has an effect of improving the corrosion resistance as in the case of Cr and Mo. In the steel pipe used in the present invention, this N is 0.05 to 0.2 if necessary.
5 wt% is contained. If the N content is less than 0.05% by weight, the effect of N addition is not remarkable, while if it is more than 0.25% by weight, the hot workability is deteriorated and the steel pipe is not manufactured. It will be difficult.

【0021】Cr,Ni,Mo,N以外の成分として
は、オーステナイト・ステンレス鋼に通常使用される元
素が含有される。また、必要に応じてS,Pb,Se,
Te等の被削性改善成分、Ca,Ce,Mg,B,RE
M等、更には微量のTi,Nb,Zr等のC安定化元素
が選択的に含有される。耐食性に関しては、Cr,N
i,Mo更にはNの5成分であるが、更なる向上のため
にW,Cu等を添加してもよい。また、高純度ガス配管
用ステンレス鋼管で問題となる鋼中非金属介在物による
管内面から発塵を防ぐために、介在物を形成するSi,
Mn,Al,O,Sを極力低減させるのがよい。これら
元素の簡単な作用および望ましい含有量を以下に説明す
る。
Elements other than Cr, Ni, Mo, and N include elements normally used in austenitic stainless steel. If necessary, S, Pb, Se,
Machinability improving components such as Te, Ca, Ce, Mg, B, RE
M and the like, and further, trace amounts of C stabilizing elements such as Ti, Nb, and Zr are selectively contained. Regarding corrosion resistance, Cr, N
Although there are five components of i, Mo and N, W, Cu and the like may be added for further improvement. Further, in order to prevent dust generation from the inner surface of the pipe due to non-metallic inclusions in the steel, which is a problem in stainless steel pipes for high-purity gas piping, Si that forms inclusions,
It is preferable to reduce Mn, Al, O and S as much as possible. The simple actions and desirable contents of these elements are described below.

【0022】Si,Mn,Al これ等の元素は、鋼の精錬時に脱酸剤として使用され、
鋼中の酸化物系介在物を低減するのに有効であり、通
常、Si,Mnは2.0重量%以下、Alは0.2重量%以
下含有してもよい。
Si, Mn, Al These elements are used as deoxidizers during refining of steel,
It is effective in reducing oxide-based inclusions in steel, and usually, Si and Mn may be contained in an amount of 2.0% by weight or less and Al may be contained in an amount of 0.2% by weight or less.

【0023】P,S これ等の元素は不純物元素で、加工性および耐食性を劣
化させる。従って、極力低減するのが望ましく、Pは0.
03重量%以下、Sは0.01重量%以下とするのが望ま
しい。
P, S These elements are impurity elements and deteriorate workability and corrosion resistance. Therefore, it is desirable to reduce as much as possible, and P is 0.
It is desirable that the content of S is not more than 03% by weight and the content of S is not more than 0.01% by weight.

【0024】C Cは溶接および不適切な熱処理により、Cr炭化物を析
出させ、耐食性および靱性を劣化させる。従って、Cは
低い方がよく、0.08重量%以下、より望ましくは0.0
3重量%以下にするのがよい。
C C causes precipitation of Cr carbide due to welding and improper heat treatment, and deteriorates corrosion resistance and toughness. Therefore, the lower the C, the better, 0.08% by weight or less, and more preferably 0.0.
It is preferable to set it to 3% by weight or less.

【0025】Pb,Se,Te,Sn,(S) これ等の元素は、本発明使用の鋼管を加工して所用形状
の配管部品とするに当たって切削性が必要とされる場合
に、切削性改善目的に添加してもよく、含有量として、
Sは前述の理由から0.01重量%以下、その他の元素は
それぞれ1.0重量%以下を1種または2種以上を添加し
てもよい。
Pb, Se, Te, Sn, (S) These elements improve the machinability when machinability is required in processing the steel pipe of the present invention into a pipe part having a desired shape. May be added for the purpose, as the content,
For the above reason, S may be added in an amount of 0.01% by weight or less, and the other elements may be added in an amount of 1.0% by weight or less, respectively, or one or more of them may be added.

【0026】Ca,Ce,Mg,B,REM これ等の元素は、本発明使用の鋼管、特に継目無鋼管を
製造する場合における熱間加工性向上目的に1種または
2種以上を合計で0.03重量%以下添加してもよい。な
お、その合計量が0.03重量%を超えると逆に加工性お
よび耐食性が劣化する。
Ca, Ce, Mg, B, REM One or more of these elements are added for the purpose of improving hot workability in the production of steel pipes used in the present invention, particularly seamless steel pipes. You may add less than 0.03 weight%. If the total amount exceeds 0.03% by weight, workability and corrosion resistance will be deteriorated.

【0027】Ti,Nb,Zr これ等の元素は強力な炭化物生成元素で、Cの安定化を
図ってCr炭化物の析出を抑制・防止し、もって耐食性
および靱性を向上させる効果を有し、1種または2種以
上を合計で1.0重量%以下添加してもよい。これによっ
て、本発明使用の鋼管が500〜800℃の熱処理を施
して使用される場合でも、Cr炭化物が析出するのを効
果的に抑制・防止でき、耐食性および靱性の劣化を確実
に防止することが可能となる。
Ti, Nb, Zr These elements are strong carbide-forming elements and have the effect of stabilizing C and suppressing / preventing the precipitation of Cr carbides, thereby improving corrosion resistance and toughness. One kind or two or more kinds may be added in a total amount of 1.0% by weight or less. With this, even when the steel pipe of the present invention is used after being subjected to heat treatment at 500 to 800 ° C., it is possible to effectively suppress / prevent precipitation of Cr carbide, and reliably prevent deterioration of corrosion resistance and toughness. Is possible.

【0028】W,Cu これ等の元素は、耐食性を向上させる元素であり、1種
または2種以上を合計で2.0重量%以下添加してもよ
い。但し、合計で2.0重量%を超えて含有させると加工
性が著しく劣化する。
W, Cu These elements are elements for improving the corrosion resistance, and one kind or two or more kinds may be added in a total amount of 2.0% by weight or less. However, if the total content exceeds 2.0% by weight, the workability deteriorates remarkably.

【0029】次に、本発明の半導体製造装置のガス供給
系路に使用されるオーステナイト・ステンレス鋼管の今
1つの条件である管内面粗さについて説明する。
Next, the inner surface roughness of the pipe, which is another condition of the austenitic stainless steel pipe used in the gas supply system passage of the semiconductor manufacturing apparatus of the present invention, will be described.

【0030】本発明使用の鋼管においても、管内面に微
少な塵が残留するのを防ぎ、高純度ガス配管として必要
な清浄性を確保するために、管内面最大粗さを3μm未
満にする。これは、冷間加工、光輝焼鈍、研磨のいずれ
か、あるいはこれらの組み合わせにより実現できる。冷
間加工の具体的な加工方法としては、冷間圧延、冷間抽
伸などが挙げられるが、管内面の平滑化の観点からは冷
間圧延が好ましい。光輝焼鈍及び研磨は、冷間加工後に
さらに内面を平滑化するために行う。研磨方法の方法と
しては機械研磨、電解研磨、化学研磨、及びそれらのを
組み合わせからなる複合研磨がある。管内面平滑化の具
体的な組み合わせとしては、冷間圧延+冷間抽伸+光輝
焼鈍+電解研磨、冷間抽伸+電解研磨が例示される。
Also in the steel pipe used in the present invention, in order to prevent minute dust from remaining on the inner surface of the pipe and to ensure the cleanliness required as a high-purity gas pipe, the maximum roughness of the inner surface of the pipe is less than 3 μm. This can be achieved by any one of cold working, bright annealing, polishing, or a combination thereof. Specific examples of the cold working method include cold rolling and cold drawing. Cold rolling is preferable from the viewpoint of smoothing the inner surface of the pipe. Bright annealing and polishing are performed to further smooth the inner surface after cold working. Examples of the polishing method include mechanical polishing, electrolytic polishing, chemical polishing, and complex polishing including a combination thereof. Specific examples of the combination of smoothing the inner surface of the tube include cold rolling + cold drawing + bright annealing + electrolytic polishing, and cold drawing + electrolytic polishing.

【0031】なお、素管は、溶接部のない継目無鋼管を
好適とするが、本発明使用の鋼管では、鋼組成の改良に
より溶接部の耐食性を高めているので、電縫鋼管等の継
目のある鋼管でもよい。
It is preferable to use a seamless steel pipe having no welded portion as the raw pipe. However, in the steel pipe used in the present invention, since the corrosion resistance of the welded portion is improved by improving the steel composition, a seam of an electric resistance welded steel pipe or the like is used. It may be a steel pipe with.

【0032】[0032]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0033】表1に示す化学組成を有する外径40mm
×肉厚3mmの熱間製管継目無オーステナイト・ステン
レス鋼管を素管に用い、これに冷間圧延、冷間抽伸を施
して外径6.35mm×肉厚1mmの鋼管とし、更に、光
輝焼鈍後、管内面を電解研磨によって平滑化した。平滑
化後の管内面最大粗さを表1に併示する。No. 8は、N
o. 2の鋼管の内面平滑性を低下させたものである。
40 mm outer diameter having the chemical composition shown in Table 1.
× Hot-rolled seamless austenitic stainless steel pipe with a wall thickness of 3 mm is used as a raw pipe, and this is cold-rolled and cold-drawn to obtain a steel pipe with an outer diameter of 6.35 mm × wall thickness of 1 mm, and further bright annealing After that, the inner surface of the tube was smoothed by electrolytic polishing. The maximum roughness of the inner surface of the pipe after smoothing is also shown in Table 1. No. 8 is N
The steel pipe of No. 2 has reduced inner surface smoothness.

【0034】これらの鋼管を表2に示す条件で突き合わ
せ溶接した後、溶接部の耐食性を調査した。耐食性は、
前述した臭化水素(HBr)ガス使用の腐食試験での腐
食の有無を50倍の光学顕微鏡観察により評価した。腐
食試験のプロセスを表3に示し、試験結果を表4に示
す。○は全く腐食が観察されなかったもの、△は軽微な
腐食の発生が観察されたもの、×は表面が錆で覆われて
いて激しい腐食の発生が観察されたもの、をそれぞれ示
す。
After these steel pipes were butt-welded under the conditions shown in Table 2, the corrosion resistance of the welded portion was investigated. Corrosion resistance is
The presence or absence of corrosion in the above-described corrosion test using hydrogen bromide (HBr) gas was evaluated by observing with a 50 times optical microscope. The corrosion test process is shown in Table 3 and the test results are shown in Table 4. O indicates that no corrosion was observed at all, Δ indicates that slight corrosion was observed, and × indicates that severe corrosion was observed because the surface was covered with rust.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】表4に明らかなように、本発明半導体製造
装置がガス供給系路に使用する鋼管No. 1〜4は、母材
部並びに溶接部の両方共に腐食は全く認められなかっ
た。これに対し、比較用鋼管中、内表面が極めて平滑な
No. 5で母材部には腐食の発生がないが、Mo含有量が
少ないために溶接部に著しく腐食が発生した。また、充
分な量のMoを含有するが、内表面平滑度の悪いNo. 8
では母材部および溶接部の両方に著しい腐食が発生して
おり、内表面平滑度が耐食性確保の面から重要であるこ
とがわかる。
As is clear from Table 4, in the steel pipes Nos. 1 to 4 used in the gas supply system passage of the semiconductor manufacturing apparatus of the present invention, no corrosion was observed in both the base metal portion and the welded portion. In contrast, the inner surface of the comparative steel pipe is extremely smooth.
In No. 5, no corrosion occurred in the base metal part, but significant corrosion occurred in the welded part due to the low Mo content. It also contains a sufficient amount of Mo, but has poor inner surface smoothness No. 8
Shows that significant corrosion occurs in both the base metal and welds, and that the inner surface smoothness is important in terms of ensuring corrosion resistance.

【0040】なお、TIG溶接鋼管に同様の試験を実施
したが、その製管溶接部を含めた全ての溶接部に腐食は
認められなかった。
A similar test was carried out on the TIG welded steel pipe, but no corrosion was observed on all welds including the pipe weld.

【0041】本発明使用の鋼管が有効な腐食性ガスは、
臭化水素(HBr)以外に、例えば、塩素、塩化水素、
クロロシラン類、ハロゲン化ホウ素類、ハロゲン化リン
類等を挙げることができる。
The corrosive gas for which the steel pipe of the present invention is effective is
Other than hydrogen bromide (HBr), for example, chlorine, hydrogen chloride,
Examples include chlorosilanes, boron halides, phosphorus halides and the like.

【0042】次に、半導体製造装置のガス供給系路のク
リーン度を評価するために、図3に示す測定系を使用し
た。
Next, in order to evaluate the cleanliness of the gas supply system passage of the semiconductor manufacturing apparatus, the measurement system shown in FIG. 3 was used.

【0043】半導体製造装置内のガス供給系路を構成す
る配管の腐食の影響を調べるためには、ウエハ処理部内
のウエハを直接分析する必要がある。しかし、この分析
を行っても、他のパラメータの影響があるため、正確な
腐食の影響を知ることは難しい。そこで、図3の測定系
でパーティクル数を測定した。
In order to investigate the influence of the corrosion of the pipes forming the gas supply system passage in the semiconductor manufacturing equipment, it is necessary to directly analyze the wafer in the wafer processing section. However, even if this analysis is performed, it is difficult to know the exact influence of corrosion because of the influence of other parameters. Therefore, the number of particles was measured by the measurement system shown in FIG.

【0044】この測定系は、ガスを減圧弁11、フィル
タ12(0.01μm)および大気開放用のクリーンバル
ブ13を順次配した配管を分岐後、空気作動弁14a,
14bを通して配管A、Bに供給する。配管Aは表1の
No. 6に示す比較用の鋼管を1箇所のみ突き合わせ溶接
Waして構成し、配管Bは表1のNo. 4に示す本発明使
用の鋼管を配管Aと同様に1箇所のみ突き合わせ溶接W
bして構成し、その他の部分は差し込み管継手等で構成
したものである。いずれの鋼管も溶接は表2の条件で行
い、溶接後、表5に示す手順で腐食環境に曝す操作の大
気暴露を3回繰り返し、その繰り返しの都度、空気作動
弁14a,14bを切り換えて配管A,Bに高純度のN
2 ガスを送給してフィルタ12およびフィルタ15a,
15b(いずれも0.01μm)を通してパーティクルカ
ウンタ16に送り、ガス中のパーティクル数を測定し
た。パーティクルカウンタ16は、レーザ散乱方式の測
定器を使用した。測定結果を表6に示す。なお、配管
A,Bの寸法は内径6mmである。また、図3中の17
は排気ポンプである。
In this measuring system, a gas pressure reducing valve 11, a filter 12 (0.01 μm) and a clean valve 13 for opening to the atmosphere are sequentially arranged in a pipe, and the air-operated valve 14a,
Supply to the pipes A and B through 14b. Pipe A is shown in Table 1.
The steel pipe for comparison shown in No. 6 is constructed by butt welding Wa at only one place, and the pipe B is the steel pipe of the present invention shown in No. 4 of Table 1 only at one place like the pipe A.
b, and the other parts are plugged pipe joints and the like. Welding of all steel pipes was performed under the conditions shown in Table 2, and after welding, the operation of exposing to a corrosive environment was repeated three times in the atmosphere shown in Table 5, and the air actuated valves 14a and 14b were switched each time the pipes were opened. High purity N for A and B
2 gas is fed to filter 12 and filter 15a,
It was sent to the particle counter 16 through 15b (all 0.01 μm) and the number of particles in the gas was measured. As the particle counter 16, a laser scattering type measuring instrument was used. The measurement results are shown in Table 6. The pipes A and B have an inner diameter of 6 mm. In addition, 17 in FIG.
Is an exhaust pump.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】比較用の鋼管で構成した配管Aでは、大気
暴露を重ねる毎にパーティクル数が増加し、配管内の腐
食が進んでいることが類推できる。これに対し、本発明
使用の鋼管で構成した配管Bでは大気暴露を重ねた後に
おいてもパーティクル数は検出されず、配管内に腐食が
生じてないと判断できる。なお、表6には示さないが、
配管A,B共に臭化水素を封入する前におけるパーティ
クル数は、いずれも皆無であった。
It can be inferred that in the pipe A made of a steel pipe for comparison, the number of particles increases each time it is exposed to the atmosphere, and corrosion in the pipe progresses. On the other hand, in the pipe B made of the steel pipe of the present invention, the number of particles was not detected even after repeated exposure to the atmosphere, and it can be determined that corrosion did not occur in the pipe. Although not shown in Table 6,
The number of particles before enclosing hydrogen bromide in both pipes A and B was none at all.

【0048】[0048]

【発明の効果】以上の説明から明らかなように、本発明
の半導体製造装置は、ガス供給系路に腐食性ガスを通す
場合も配管溶接部での腐食がなく、腐食部から生じるパ
ーティクル等の汚染物質によるガス純度の低下を防ぐ。
従って、高品質の半導体を製造できる。
As is clear from the above description, the semiconductor manufacturing apparatus of the present invention does not corrode at the welded portion of the pipe even when a corrosive gas is passed through the gas supply system passage, and prevents particles generated from the corroded portion. Prevents deterioration of gas purity due to pollutants.
Therefore, a high quality semiconductor can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】ECRプラズマ装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an ECR plasma device.

【図2】ECRプラズマ装置のガス供給系路に使用され
る環状ヘッダの平面図である。
FIG. 2 is a plan view of an annular header used in a gas supply system passage of an ECR plasma device.

【図3】本発明の効果を調査するために使用した実験装
置の系統図である。
FIG. 3 is a systematic diagram of an experimental device used for investigating the effect of the present invention.

【符号の説明】[Explanation of symbols]

3,6 ガス配管 3,6 gas piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶接接合部を有するガス供給系路が設け
られた半導体製造装置において、前記ガス供給系路の溶
接接合部を含む一部または全部を、Cr:15.0〜30.
0重量%、Ni:15.0〜30.0重量%、Mo:4.0〜
8.0重量%と、更に必要に応じてN:0.05〜0.25重
量%を含み、内面の最大粗さが3μm未満であるオース
テナイト・ステンレス鋼管により構成したことを特徴と
する半導体製造装置。
1. In a semiconductor manufacturing apparatus provided with a gas supply system passage having a welded joint, a part or the whole of the gas supply system passage including the welded joint is Cr: 15.0 to 30.
0% by weight, Ni: 15.0 to 30.0% by weight, Mo: 4.0
Semiconductor manufacturing characterized in that it is composed of an austenitic stainless steel pipe having a maximum inner surface roughness of less than 3 μm, containing 8.0% by weight and, if necessary, N: 0.05 to 0.25% by weight. apparatus.
JP9354792A 1992-03-18 1992-03-18 Semiconductor processing equipment Pending JPH05267232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9354792A JPH05267232A (en) 1992-03-18 1992-03-18 Semiconductor processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9354792A JPH05267232A (en) 1992-03-18 1992-03-18 Semiconductor processing equipment

Publications (1)

Publication Number Publication Date
JPH05267232A true JPH05267232A (en) 1993-10-15

Family

ID=14085294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9354792A Pending JPH05267232A (en) 1992-03-18 1992-03-18 Semiconductor processing equipment

Country Status (1)

Country Link
JP (1) JPH05267232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021153119A (en) * 2020-03-24 2021-09-30 信越半導体株式会社 Piping connection method and semiconductor wafer heat treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021153119A (en) * 2020-03-24 2021-09-30 信越半導体株式会社 Piping connection method and semiconductor wafer heat treatment device

Similar Documents

Publication Publication Date Title
US5830408A (en) Stainless steel for high-purity gases
EP0612580B1 (en) Corrosion resistant welding of stainless steel
CN115341144B (en) Austenitic stainless steel material and welded joint
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
JP7277752B2 (en) Austenitic stainless steel material
EP0810295B1 (en) Use of a stainless steel in or for containing ozone added water
JPWO2005023478A1 (en) Welded structure with excellent stress corrosion cracking resistance
KR20090066000A (en) Austenitic stainless steel for the high vacuum or high purity gas tube application
JPH1088288A (en) Duplex stainless steel material for high purity gas, and its production
JPH05267232A (en) Semiconductor processing equipment
JPH07197207A (en) Austenitic stainless steel, piping system, and contact fluid parts
JP3596234B2 (en) Ozone-containing stainless steel for water and method for producing the same
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JPH0673507A (en) Austenitic stainless steel pipe for high purity gas piping
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
JP2001140044A (en) Low dust generation and high corrosion resistant stainless steel pipe for piping
JP2000176643A (en) Method for forming oxidized passive state film in weld zone
JP2021074738A (en) Two-phase stainless steel weld joint and two-phase stainless steel welding method
JP2663859B2 (en) Stainless steel for high-purity gas with excellent dust resistance during welding
JP3227805B2 (en) High corrosion resistance stainless steel for high purity gas
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JP2992977B2 (en) High Cr stainless steel for high purity gas
JPH07118808A (en) Stainless steel for high purity gas excellent in weldability and corrosion resistance
JP2932966B2 (en) Ferritic stainless steel for high purity gas