JPH0526527B2 - - Google Patents

Info

Publication number
JPH0526527B2
JPH0526527B2 JP59137271A JP13727184A JPH0526527B2 JP H0526527 B2 JPH0526527 B2 JP H0526527B2 JP 59137271 A JP59137271 A JP 59137271A JP 13727184 A JP13727184 A JP 13727184A JP H0526527 B2 JPH0526527 B2 JP H0526527B2
Authority
JP
Japan
Prior art keywords
hollow fiber
hollow
fiber membrane
spinneret
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59137271A
Other languages
Japanese (ja)
Other versions
JPS6118404A (en
Inventor
Shoji Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13727184A priority Critical patent/JPS6118404A/en
Publication of JPS6118404A publication Critical patent/JPS6118404A/en
Publication of JPH0526527B2 publication Critical patent/JPH0526527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/082Hollow fibre membranes characterised by the cross-sectional shape of the fibre

Description

【発明の詳細な説明】 〈利用分野〉 本発明は、液体混合物,気体混合物等の流体混
合物の分離処理に用いられる中空糸膜に関するも
のである。 特に本発明は、血液処理効率の高い中空糸膜及
びその製造方法を提供することにある。 〈従来技術〉 腎不全患者の血液を浄化し、余剰の水分を除去
するために血液透析器が使用されている。これ
は、箇体の中に透析膜例えば中空糸膜を多数本収
納し、その中空内部に患者の血液を流し、外部即
ち中空糸膜間に透析液を流して中空糸膜を介して
透析によつて血液中の老廃物を除去し、電解質濃
度を調するとともに中空糸膜内外に圧力差を与
え、限外過によつて血液中の余剰水分を除去す
るものである。また限外過のみによつて多量の
水分とともに老廃物などを除去し、抜きすぎた水
分を電解質などの必要成分とともに補給する方法
(血液過)も液状に応じて適用されている。さ
らに、血液中から血漿を分離し、或いはその血漿
の中から特定の有害成分を除去して、自己免疫疾
患などを治療するために、中空糸膜を使用するこ
とも臨床的に試みられ始めた。 このように、血液処理用の中空糸膜は、目的に
応じて物質を選択的に透過しなければならない。
その特性は中空糸膜の素材,ポロシテイ(孔の大
きさ,数など)膜厚などによつて決定される。し
かし、それだけではなく、多数本の中空糸膜を如
何に集束して有効に作用させるかということも性
能を決定する重要なポイントとなる。例えば、透
析に際して中空糸膜どうしが長さ方向に沿つて接
触すると透析液がその近接で中空糸膜の囲りを均
等に流れずにある特定の流路を形成する結果とな
り、この流れにあずからないところでは、透析が
殆ど行なわれなくなつて、透析効率は低下する。
中空糸膜の両側の濃度差が透析のドライビング・
フオースとなるから透析液が中空糸膜の間を均等
に流れて境膜抵抗をできるだけ減少させ、血液側
との濃度差を増大させうるように中空糸膜を収納
し、また中空糸膜自体の形状を工夫することが必
要である。前者については、我々はさきに中空糸
を交差状に集束して筐体内に収能することによつ
て中空糸膜間の接触、従つて膜面積の減少を防止
するとともに、透析液を均等に流し、境膜抵抗を
減少させて、透析効率を向上させうることを見出
した(特公昭52−38837)。 また、後者については、例えが銅アンモニア再
生セルロースの中空糸膜の外側に突起をもたせる
ことによつて同様の効果を発揮させる方法が提案
されている(特開昭55−49107)。 しかし、この場合には突起の形状如何によつて
は中空糸膜どうしが、かみ合つて接触する形とな
つて必ずしも満足な効果を発揮できるとは云いが
たい。 〈発明の目的及び構成〉 本発明はこのような観点に立つて、選択透過性
中空糸膜における流体分離効率、特に血液処理効
率の向上を目的として鋭意研究した結果、到達し
たものである。 すなわち、本発明は、流体混合物の少なくとも
1成分に対して選択透過性を有する中空糸膜にお
いて、該中空糸膜の繊維軸に対して垂直な断面形
状が外側に湾曲した部分と内側に湾曲した部分を
少なくとも各々2箇所有したものあるいは該断面
形状が外側に湾曲した部分と内側に湾曲した部分
を少なくとも各々1箇所有し、且つ該中空糸膜の
外側に長手方向に延長された突起を少なくとも2
本有したものであつて、該湾曲部及び該突起部が
該繊維軸に沿つてラセン状に形成されている中空
糸膜を提供するものである。 さらに本発明は、流体混合物中の少なくとも1
成分に対して選択透過性を有する中空糸膜の製造
において、繊維形成性重合体を含有する紡糸原液
を異形中空糸紡糸用の紡糸口金から中空を保持す
る流体と共に吐出せしめた後、該異形中空糸の可
塑化状態において該異形中空糸に撚を加えること
を特徴とする中空糸膜の製造方法を提供するもの
である。 以下本発明に関して詳細に説明する。即ち図1
−1〜図1−3に示す如く、本発明の中空糸膜の
第1の特徴は、その繊維軸に対して垂直な断面形
状が、外側に湾曲した部分と内側に湾曲した部分
を少なくとも各々1箇所有することであり、該湾
曲部分の数としては各々2〜6が好ましく、特に
2〜4が好ましい。尚、該数が例えば7以上と多
い場合には異形化の効果が少ない。第2の特徴
は、該中空糸膜の外側に長手方向に延長された突
起を少なくとも1本有することであり、該突起と
しては該中空糸膜の中心から最も遠い外側にある
ことが好ましく、その数としては2〜6が好まし
く、2〜4が特に好ましい。さらに第3の特徴
は、図2に示す如く、かかる湾曲部及び突起部が
該繊維軸に沿つてラセン状に形成されていること
である。かかるラセン状の形態については、該中
空糸を束状に集束した際に密着を防ぐ効果を有す
るものであれば特に限定されるものではない。 このような形状の中空糸膜は、集束にさいして
中空糸膜どうしの間に自ら一定の間隔を保つこと
になり、中空糸膜どうしの接触による膜面積の減
少を防止し、例えば透析液がそれぞれの中空糸膜
の囲りを均等にかつラセン状に流れて境膜抵抗を
減少させ、透析効率を大巾に向上させるのに役立
つ。 ここで、中空糸膜の断面形状を異形とした理由
は血液が通過する中空内部の容積を増大させて透
析時の血液凝固ないし残留を防止するとともに血
液と透析液とが接触する有効膜面積を増大させる
ことによつてそのような面からも透析効率を向上
させることを意図したものである。 かかる本発明の中空糸の異形断面に関する外側
に湾曲した部分と内側に湾曲した部分を各々2個
有する形状は、2〜4個の円を連結せしめてその
外周をなめらかになぞつた形に類似したものが適
する。その例として図示したのが図3−1〜3で
ある。即ち連結のしかたは、円が一部重なり合つ
た形(図3−1)でも、互いに接した形(図3−
2)でも、また若干はなれた形(図3−3)で
も、何れの形がベースとなつて異形断面を形成し
てもさしつかえない。尚、厳密に円をベースとす
るものでなくても、このような形状の異型中空糸
であれば、本発明の目的が達成されることはいう
までもない。 異型断面の大きさは、上記の円の連結という形
で考えるならば一つの円の内径は80〜500μ,膜
厚5〜100μ程度であることがのぞましい。断面
(中空部)の大きさは、これよりも小さければ血
液の凝固ないし残留を招きやすく、大きければ容
積あたりの血液処理効率が低下する。しかし、異
型断面の形状は必ずしも円をベースとしたもので
なくともよいからその大きさも上記の数字に限定
されるものではない。 突起の高さ及び巾としては、中空糸膜の内径及
び膜厚に応じ5〜70μであることがのぞましい。
これ以上突起が大きいことは中空糸膜の平均膜厚
が増加したり、筐体内での充墳密度を減少させる
ことになるし、形状と性能の均一な中空糸膜を安
定して製造することが困難である。また、それ以
上に突起が小さいときは、本目的の効果を十分発
揮させることができない。 次に、中空糸の捩れ及び突起のラセンのピツチ
は中空糸膜の長さ方向に1〜20cmであることが適
当である。これより短いときは、本目的の効果を
十分発揮させることができず、長いときは突起を
ラセン状にめぐらせる意味がないことが、実験の
結果見出された。 本発明の対象となる中空糸膜の素材としては、
セルロースエステル,セルロース,ポリアミド,
ポリアクリロニトリル,ポリメチルメタアクリレ
ート、ポリビニルアルコール,ポリカーボネート
及びこれらの共重合体混合物などである。中空糸
を捩らせラセン状の突起を形成させるためには、
流下紡糸であることがのぞましく、とくに熔融紡
糸によつて糸条を形成させうる素材が有効であ
る。しかし本発明はもとよりこれらに限定される
ものではない。 本中空糸膜を製造するには、下記の方式による
ことができる。即ち中空糸膜を形成するための繊
維形成性重合体を含有する紡糸原液(熔融物又は
溶液)を常法に従つて紡糸口金の中空状の孔から
気体又は防糸浴中に押出し、該紡糸口金の中空部
に膜素材と実質的に反応せず、またこれを溶かさ
ない気体又は液体をみたして中空を保持しながら
紡糸する。例えば、セルロース,ジアセテートフ
レークスにポリエチレングリコールなどの可塑剤
を加え、熔融して紡糸口金の中空状の孔から空気
中に押出し、中心部に窒素ガスを吹込みながら紡
糸して中空糸とする。この中空糸から可塑剤など
を除去し、要すればアルカリで鹸化して、血液処
理用の中空糸膜を製造する。そのさい膜素材の熔
融物を押出す紡糸口金としては、目的とする中空
糸膜に応じたものを用いればよい。即ち、外観に
湾曲した部分と内側に湾曲した部分を有する中空
糸膜の場合には、外側に湾曲した吐出部と、内側
に湾曲した吐出部を有した紡糸口金が適する。ま
た外側に突起部用吐出部を有した紡糸口金が使用
でき、場合によつてはこれらを組み合せた口金が
適する。特に、該中空糸膜の繊維軸に対して垂直
な断面形状が外側に湾曲した部分と内側に湾曲し
た部分を少なくとも各々2箇所有したもの、ある
いは該断面形状が外側に湾曲した部分と内側に湾
曲した部分を少なくとも各々1箇所有し、且つ該
中空糸膜の外観に長手方向に延長された突起を少
なくとも1本有したものであつて、該湾曲部及び
該突起部が該繊維軸に沿つてラセン状に形成され
た中空糸膜の製造に当つては、吐出後に該異形中
空糸の可塑化状態において該中空糸に撚を加える
ことが有効である。その場合の紡糸口金としては
少なくとも外観に突起部を有したものが好まし
く、特に突起部数が2以上のものが好ましい。こ
の様に紡糸原液を該口金より紡出した後、その突
起付き中空糸の可塑化温度において撚を与え、突
起部を中空糸外面にそつてラセン状に付与する。
加撚により中空糸自体が捩れ、内側に凹んだ異形
化を引き起す。紡出後の糸条にその可塑化温度に
おいて撚を与える方法としては、例えば口金から
紡糸原液を紡出後、冷却風で冷却され固化される
過程でその紡出糸の可塑化温度範囲で捲取側から
撚を与えることにより、中空糸に捩れを付与でき
る。又は、一度可塑化温度に冷却された糸条を再
度加熱し可塑化温度にまで上げ、糸条に撚を与え
ることも出来る。加撚手段としては、一般に用い
られる糸条とのマサツを利用して撚を与えるデイ
スク方式,ベルト方式又は空気の渦流により撚を
与える圧空ノズル方式又はスピンドルによる方式
などが用いられる。更に撚は中空系の単糸毎に与
えるのが望ましい。 〈発明の効果〉 本中空糸膜の効果は、その集束体を利用した中
空糸型流体分離装置において、中空糸膜間の密度
が非常に有効に防止でき、中空糸膜の外側におけ
る流体のよどみ,濃度分極及び流体のチヤンネリ
ング等が防止できて、分離効率が飛躍的に向上す
ることである。 かかる効果は、透析液を使用する透析(ダイア
リシス)及び過透析(ヘモダイアフイルトレー
シヨン)の場合にとくに顕著であるほか、血液
過(ヘモフイルトレーシヨン)血漿分離(プラズ
マフエレンス)などについても有効に作用する。 以下、実施例により本発明の効果を説明する。 〈実施例及び比較例〉 セルロースジアセテート100部に対し、ポリエ
チレングリコール(分子量200)を50部加えたも
のを混合し、その混合物を230℃で溶融し、3ケ
の突起付きの中空用口金及び通常の円環状口金か
ら紡出し、3ケの突起部を有する形状の円形中空
糸膜及び突起部を有しない形状の円形中空糸膜を
製造した。3種類の中空糸膜のいずれも、中空糸
膜の内径は210μ,膜厚は25μで突起部を有する中
空糸の場合、その長さは35μであつた。 3ケの突起部を有する中空糸膜については、紡
糸冷却過程でラセン流を発生させる圧空ノズルを
用いて撚を加える事により、中空糸膜の固化点近
傍で捩りが与えられ、突起部のラセン状に付与さ
れたものが得られた。そのピツチは長さ方向に
3.5cmであつた。 以上のように得られた3種類の中空糸膜を同一
寸法のケーシング内に同一本数充墳し、in vitro
で尿素の透析性能を測定した。血液側流量は200
ml/mm,透析液側流量は500ml/mmであつた。そ
の結果は第1表に示す通りで、本発明に得る中空
糸では明らかに透析性能が向上している。 【表】
DETAILED DESCRIPTION OF THE INVENTION <Field of Application> The present invention relates to a hollow fiber membrane used for separation treatment of fluid mixtures such as liquid mixtures and gas mixtures. In particular, the present invention is to provide a hollow fiber membrane with high blood processing efficiency and a method for manufacturing the same. <Prior Art> Hemodialyzers are used to purify the blood of renal failure patients and remove excess water. In this system, a large number of dialysis membranes, such as hollow fiber membranes, are housed inside the body, and the patient's blood is flowed inside the hollow fibers, and the dialysate is flowed outside, that is, between the hollow fiber membranes, and dialysis is performed through the hollow fiber membranes. Therefore, waste products in the blood are removed, electrolyte concentration is adjusted, and a pressure difference is applied between the inside and outside of the hollow fiber membrane, and excess water in the blood is removed by ultrafiltration. In addition, a method (blood filtration) in which a large amount of water and waste products are removed by ultrafiltration alone, and excess water is replenished along with necessary components such as electrolytes (blood filtration) is also applied depending on the liquid state. Furthermore, clinical trials have begun to use hollow fiber membranes to separate plasma from blood or remove specific harmful components from the plasma to treat autoimmune diseases. . In this way, hollow fiber membranes for blood treatment must selectively permeate substances depending on the purpose.
Its characteristics are determined by the hollow fiber membrane material, porosity (pore size, number, etc.), membrane thickness, and other factors. However, not only that, but also how to focus a large number of hollow fiber membranes and make them work effectively is an important point that determines performance. For example, when hollow fiber membranes come into contact with each other along their length during dialysis, the dialysate does not flow evenly around the hollow fiber membranes in close proximity, but forms a specific flow path, and this flow is affected. In areas where dialysis is not performed, dialysis is hardly performed and dialysis efficiency decreases.
The concentration difference on both sides of the hollow fiber membrane is the driving force for dialysis.
The hollow fiber membranes are housed in such a way that the dialysate flows evenly between the hollow fiber membranes, reducing membrane resistance as much as possible and increasing the concentration difference with the blood side. It is necessary to devise a shape. Regarding the former, we first focused the hollow fibers in a crosswise manner and housed them in the housing, thereby preventing contact between the hollow fiber membranes and thus reducing the membrane area, and evenly distributing the dialysate. It was discovered that the dialysis efficiency could be improved by reducing the membrane resistance (Japanese Patent Publication No. 52-38837). Regarding the latter, a method has been proposed in which a similar effect is achieved by providing protrusions on the outside of a hollow fiber membrane of copper ammonia-regenerated cellulose (Japanese Patent Laid-Open No. 55-49107). However, in this case, depending on the shape of the protrusions, the hollow fiber membranes may come into contact with each other, and it is difficult to say that a satisfactory effect can be achieved. <Objects and Structure of the Invention> The present invention has been achieved from the above viewpoint, as a result of intensive research aimed at improving fluid separation efficiency, particularly blood processing efficiency, in permselective hollow fiber membranes. That is, the present invention provides a hollow fiber membrane having permselectivity for at least one component of a fluid mixture, in which a cross-sectional shape perpendicular to the fiber axis of the hollow fiber membrane has an outwardly curved portion and an inwardly curved portion. The hollow fiber membrane has at least two portions each, or the cross-sectional shape has at least one portion each curved outwardly and one portion curved inwardly, and at least a protrusion extending in the longitudinal direction on the outside of the hollow fiber membrane. 2
The present invention provides a hollow fiber membrane in which the curved portion and the protrusion are formed in a helical shape along the fiber axis. Furthermore, the present invention provides at least one in the fluid mixture.
In the production of hollow fiber membranes that have selective permselectivity for components, after a spinning dope containing a fiber-forming polymer is discharged from a spinneret for spinning irregularly shaped hollow fibers together with a fluid that maintains the hollow space, the irregularly shaped hollow fibers are The present invention provides a method for producing a hollow fiber membrane, characterized in that twisting is applied to the irregularly shaped hollow fibers while the fibers are in a plasticized state. The present invention will be explained in detail below. That is, Figure 1
1 to 1-3, the first feature of the hollow fiber membrane of the present invention is that the cross-sectional shape perpendicular to the fiber axis has at least an outwardly curved portion and an inwardly curved portion. The number of curved portions is preferably 2 to 6, particularly preferably 2 to 4. Incidentally, when the number is large, for example 7 or more, the effect of irregular shape is small. The second feature is that the hollow fiber membrane has at least one protrusion extending in the longitudinal direction on the outside thereof, and the protrusion is preferably located on the outside farthest from the center of the hollow fiber membrane. The number is preferably 2 to 6, particularly preferably 2 to 4. A third feature is that, as shown in FIG. 2, the curved portion and protrusion are formed in a spiral shape along the fiber axis. The spiral shape is not particularly limited as long as it has the effect of preventing close contact when the hollow fibers are bundled together. Hollow fiber membranes with such a shape maintain a certain distance between themselves during convergence, which prevents a decrease in membrane area due to contact between hollow fiber membranes, and prevents, for example, the dialysate It flows evenly and spirally around each hollow fiber membrane, reducing membrane resistance and greatly improving dialysis efficiency. Here, the reason why the cross-sectional shape of the hollow fiber membrane is made into an irregular shape is to increase the volume of the hollow interior through which blood passes, to prevent blood from coagulating or remaining during dialysis, and to reduce the effective membrane area where blood and dialysate come into contact. By increasing the dialysis efficiency, it is intended to improve the dialysis efficiency from this point of view as well. The shape of the irregular cross section of the hollow fiber of the present invention having two each of two outwardly curved parts and two inwardly curved parts is similar to a shape in which two to four circles are connected and the outer periphery is smoothly traced. things are suitable. Examples of this are shown in FIGS. 3-1 to 3-3. In other words, the connection method can be either a shape in which the circles partially overlap (Figure 3-1) or a shape in which the circles touch each other (Figure 3-1).
2) or a slightly separated shape (FIG. 3-3), either shape may serve as a base to form an irregular cross section. It goes without saying that the object of the present invention can be achieved even if the hollow fibers are not strictly circular-based as long as they are shaped like this. Considering the size of the irregular cross-section in terms of the above-mentioned connection of circles, it is preferable that the inner diameter of one circle is 80 to 500 μm and the film thickness is about 5 to 100 μm. If the size of the cross section (hollow part) is smaller than this, blood tends to coagulate or remain, and if it is larger, the blood processing efficiency per volume decreases. However, since the shape of the irregular cross section does not necessarily have to be based on a circle, its size is not limited to the above numbers. The height and width of the projections are preferably 5 to 70 μm depending on the inner diameter and thickness of the hollow fiber membrane.
If the protrusions are larger than this, the average thickness of the hollow fiber membrane will increase and the packing density within the housing will decrease, making it difficult to stably manufacture hollow fiber membranes with uniform shape and performance. is difficult. Furthermore, if the protrusions are smaller than that, the desired effect cannot be sufficiently exhibited. Next, it is appropriate that the twist of the hollow fibers and the helical pitch of the projections be 1 to 20 cm in the length direction of the hollow fiber membrane. As a result of experiments, it was found that when the length is shorter than this, the desired effect cannot be fully exhibited, and when it is longer, there is no point in spirally winding the protrusions. Materials for hollow fiber membranes that are the subject of the present invention include:
cellulose ester, cellulose, polyamide,
These include polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, polycarbonate, and copolymer mixtures thereof. In order to twist the hollow fibers and form helical protrusions,
Drift spinning is preferred, and materials that can be formed into threads by melt spinning are particularly effective. However, the present invention is not limited to these. The present hollow fiber membrane can be manufactured by the following method. That is, a spinning stock solution (melt or solution) containing a fiber-forming polymer for forming a hollow fiber membrane is extruded through a hollow hole of a spinneret into a gas or anti-thread bath in accordance with a conventional method. The hollow part of the spinneret is filled with gas or liquid that does not substantially react with or dissolve the membrane material, and spinning is carried out while maintaining the hollow part. For example, a plasticizer such as polyethylene glycol is added to cellulose or diacetate flakes, melted and extruded into the air through a hollow hole in a spinneret, and spun into hollow fibers while blowing nitrogen gas into the center. Plasticizers and the like are removed from the hollow fibers, and if necessary, they are saponified with alkali to produce hollow fiber membranes for blood treatment. At this time, as a spinneret for extruding the melt of the membrane material, one suitable for the intended hollow fiber membrane may be used. That is, in the case of a hollow fiber membrane having an outwardly curved portion and an inwardly curved portion, a spinneret having an outwardly curved discharge portion and an inwardly curved discharge portion is suitable. Further, a spinneret having a discharge part for the protrusion on the outside can be used, and in some cases, a spinneret having a combination of these is suitable. In particular, the cross-sectional shape perpendicular to the fiber axis of the hollow fiber membrane has at least two outwardly curved parts and two inwardly curved parts, or the cross-sectional shape has at least two outwardly curved parts and an inwardly curved part. Each hollow fiber membrane has at least one curved portion and at least one protrusion extending in the longitudinal direction on the exterior of the hollow fiber membrane, and the curved portion and the protrusion extend along the fiber axis. When manufacturing hollow fiber membranes formed in a helical shape, it is effective to twist the irregularly shaped hollow fibers in a plasticized state after discharge. In this case, the spinneret is preferably one having at least projections on its appearance, particularly preferably one having two or more projections. After the spinning dope is spun from the spindle in this manner, the hollow fibers with projections are twisted at the plasticizing temperature to provide projections in a helical shape along the outer surface of the hollow fibers.
The twisting twists the hollow fibers themselves, causing them to become irregularly shaped and concave inward. As a method for twisting the spun yarn at its plasticizing temperature, for example, after spinning the spinning dope from a spinneret, it is cooled by cooling air and wound in the plasticizing temperature range of the spun yarn during the process of solidification. Twisting can be imparted to the hollow fibers by applying twist from the take-up side. Alternatively, it is also possible to twist the yarn by heating the yarn once cooled to the plasticizing temperature again to reach the plasticizing temperature. As the twisting means, there may be used a commonly used disk method which applies twist by utilizing the mass of yarn, a belt method, a compressed air nozzle method which applies twist by an air vortex, or a spindle method. Furthermore, it is preferable to apply twist to each single yarn of the hollow system. <Effect of the invention> The effect of the present hollow fiber membrane is that in a hollow fiber type fluid separation device using the bundle, density between the hollow fiber membranes can be very effectively prevented, and fluid stagnation on the outside of the hollow fiber membrane can be prevented. , concentration polarization, fluid channeling, etc. can be prevented, and separation efficiency can be dramatically improved. This effect is particularly noticeable in dialysis and hyperdialysis using dialysate, as well as in hemofiltration, plasma separation, etc. also works effectively. Hereinafter, the effects of the present invention will be explained with reference to Examples. <Examples and Comparative Examples> 100 parts of cellulose diacetate was mixed with 50 parts of polyethylene glycol (molecular weight 200), the mixture was melted at 230°C, and a hollow cap with 3 protrusions and a A circular hollow fiber membrane having three protrusions and a circular hollow fiber membrane having no protrusions were produced by spinning from a conventional annular die. In all three types of hollow fiber membranes, the inner diameter of the hollow fiber membrane was 210μ, the membrane thickness was 25μ, and in the case of the hollow fiber having protrusions, the length was 35μ. For hollow fiber membranes with three protrusions, by applying twist using a compressed air nozzle that generates a helical flow during the spinning cooling process, twist is given near the solidification point of the hollow fiber membrane, and the helix of the protrusions is twisted. The result was as follows: The pitch is in the length direction
It was 3.5cm. The same number of the three types of hollow fiber membranes obtained as described above were packed in a casing of the same size, and an in vitro
The dialysis performance of urea was measured. Blood side flow rate is 200
ml/mm, and the flow rate on the dialysate side was 500 ml/mm. The results are shown in Table 1, and the hollow fiber obtained according to the present invention clearly has improved dialysis performance. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図1−1,図1−2,図1−3は、本発明に係
わる中空糸膜の拡大断面図である。図2はその拡
大斜視図である。図3−1,図3−2,図3−3
は、図1−2の変形実施例を示す。
1-1, FIG. 1-2, and FIG. 1-3 are enlarged sectional views of hollow fiber membranes according to the present invention. FIG. 2 is an enlarged perspective view thereof. Figure 3-1, Figure 3-2, Figure 3-3
shows a modified embodiment of FIGS. 1-2.

Claims (1)

【特許請求の範囲】 1 流体混合物中の少なくとも1成分に対して選
択透過性を有する中空糸膜において、該中空糸膜
の繊維軸に対して垂直な断面形状が外側に湾曲し
た部分と内側に湾曲した部分を少なくとも各々2
箇所有したもの、あるいは該断面形状が外側に湾
曲した部分と内側に湾曲した部分を少なくとも
各々1箇所有し且つ該中空糸膜の外側に長手方向
に延長された突起を少なくとも1本有したもので
あつて、該湾曲部及び該突起部が該繊維軸に沿つ
てラセン状に形成されていることを特徴とする中
空糸膜。 2 流体混合物中の少なくとも1成分に対して選
択透過性を有する中空糸膜の製造において、繊維
形成性重合体を含有する紡糸原液を異形中空糸紡
糸用の紡糸口金から中空を保持する流体と共に吐
出せしめた後、該異形中空糸の可塑化状態におい
て該異形中空糸に撚を加えることを特徴とする中
空糸膜の製造方法。 3 該紡糸口金が、外側に湾曲した部分と内側に
湾曲した部分を少なくとも各々1箇所有した異形
中空糸の紡糸に用いられるものであることを特徴
とする特許請求の範囲第2項記載の中空糸膜の製
造方法。 4 該紡糸口金が、該中空糸の外側に長手方向に
延長された突起を少なくとも1本有した異形中空
糸の紡糸に用いられるものであることを特徴とす
る特許請求の範囲第2項記載の中空糸膜の製造方
法。
[Scope of Claims] 1. A hollow fiber membrane having selective permselectivity for at least one component in a fluid mixture, in which a cross-sectional shape perpendicular to the fiber axis of the hollow fiber membrane has an outwardly curved portion and an inwardly curved portion. At least 2 curved parts each
or one in which the cross-sectional shape has at least one outwardly curved part and one inwardly curved part, and has at least one protrusion extending in the longitudinal direction on the outside of the hollow fiber membrane. A hollow fiber membrane characterized in that the curved portion and the protruding portion are formed in a helical shape along the fiber axis. 2. In the production of a hollow fiber membrane having permselectivity for at least one component in a fluid mixture, a spinning stock solution containing a fiber-forming polymer is discharged from a spinneret for spinning irregularly shaped hollow fibers together with a fluid that maintains hollowness. 1. A method for producing a hollow fiber membrane, which comprises twisting the irregularly shaped hollow fibers while the irregularly shaped hollow fibers are in a plasticized state. 3. The hollow spinneret according to claim 2, wherein the spinneret is used for spinning irregularly shaped hollow fibers each having at least one outwardly curved portion and one inwardly curved portion. Method for manufacturing thread membrane. 4. The spinneret according to claim 2, wherein the spinneret is used for spinning irregularly shaped hollow fibers having at least one protrusion extending in the longitudinal direction on the outside of the hollow fibers. Method for manufacturing hollow fiber membranes.
JP13727184A 1984-07-04 1984-07-04 Hollow yarn membrane and its preparation Granted JPS6118404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13727184A JPS6118404A (en) 1984-07-04 1984-07-04 Hollow yarn membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13727184A JPS6118404A (en) 1984-07-04 1984-07-04 Hollow yarn membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS6118404A JPS6118404A (en) 1986-01-27
JPH0526527B2 true JPH0526527B2 (en) 1993-04-16

Family

ID=15194769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13727184A Granted JPS6118404A (en) 1984-07-04 1984-07-04 Hollow yarn membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS6118404A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2934389A (en) * 1988-01-20 1989-08-11 Terumo Kabushiki Kaisha Hollow fiber membrane and fluid processor using the same
JPH10504228A (en) * 1994-06-10 1998-04-28 バクスター インターナショナル インコーポレイテッド Monofilament spacing of hollow fiber membrane and blood oxygen supplementation device incorporating the same
KR19980030357A (en) * 1996-10-29 1998-07-25 구광시 Hollow fiber membrane and its manufacturing method
WO2003029744A2 (en) * 2001-10-01 2003-04-10 Mykrolis Corporation A thermoplastic heat exchanger and method of making the same
AU2003209410A1 (en) * 2002-01-29 2003-09-02 Amersham Biosciences Membrane Separations Corp. Convoluted surface hollow fiber membranes
WO2006012920A1 (en) * 2004-07-29 2006-02-09 Inge Ag Filtration membrane and method for producing the same
JP2009195833A (en) * 2008-02-21 2009-09-03 Junkosha Co Ltd Gas permeable tube and degassing module
EP3808435A1 (en) * 2019-10-16 2021-04-21 DWI - Leibniz-Institut für Interaktive Materialien e.V. Membrane system, spinneret for manufacturing the membrane system, device including the spinneret and method for forming the membrane system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56308A (en) * 1979-03-17 1981-01-06 Akzo Nv Hollow fiber made of synthetic polymer and heat transfer device using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56308A (en) * 1979-03-17 1981-01-06 Akzo Nv Hollow fiber made of synthetic polymer and heat transfer device using same

Also Published As

Publication number Publication date
JPS6118404A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
CA1272139A (en) Fluid separator, hollow fiber to be used for construction thereof and process for preparation of said hollow fibers
US4291096A (en) Non-uniform cross-sectional area hollow fibers
JPH0526527B2 (en)
US4288494A (en) Non-uniform cross-sectional area hollow fibers
US4333906A (en) Process for producing hollow fibers having a non-uniform wall thickness and a non-uniform cross-sectional area
JP2542572B2 (en) Hollow fiber
US4380520A (en) Process for producing hollow fibres having a uniform wall thickness and a non-uniform cross-sectional area
WO1989006566A1 (en) Hollow fiber membrane and fluid processor using the same
JP2005246192A (en) Hollow fiber membrane, hollow fiber membrane module and manufacturing method for them
JPS62216605A (en) Hollow fiber type cellulose dialytic membrane and its production
JP2894133B2 (en) Hollow fiber and method for producing the same
US5505859A (en) Hollow fiber for dialysis and process of manufacturing
EP0321447B1 (en) Cellulose type hollow fibers
JPH031054B2 (en)
JPS6132041B2 (en)
JPS6132042B2 (en)
JPS60110938A (en) Hollow yarn bundle, production thereof and body fluids treating device using same
JPS60110305A (en) Hollow fiber film and body fluid treating device using the same
JPS61268304A (en) Fluid separator
JPS61215710A (en) Multiple tube hollow fiber
JPS5962304A (en) Permselective hollow yarn membrane
JP2009078121A (en) Blood purifier and its production method
JPH0445209B2 (en)
JPH05228345A (en) Preparation of membrane separation element
JPS60241904A (en) Hollow fiber-seaped porous membrane