JPH0526425A - Combustion air volume control method in ash melting furnace - Google Patents

Combustion air volume control method in ash melting furnace

Info

Publication number
JPH0526425A
JPH0526425A JP20737891A JP20737891A JPH0526425A JP H0526425 A JPH0526425 A JP H0526425A JP 20737891 A JP20737891 A JP 20737891A JP 20737891 A JP20737891 A JP 20737891A JP H0526425 A JPH0526425 A JP H0526425A
Authority
JP
Japan
Prior art keywords
amount
furnace
air amount
ash
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20737891A
Other languages
Japanese (ja)
Other versions
JP2617830B2 (en
Inventor
Hideki Shiozaki
秀喜 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP20737891A priority Critical patent/JP2617830B2/en
Publication of JPH0526425A publication Critical patent/JPH0526425A/en
Application granted granted Critical
Publication of JP2617830B2 publication Critical patent/JP2617830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To control an amount of combustion air to be supplied to an ash melting furnace to the most suitable amount corresponding to an actual amount of combustion air. CONSTITUTION:In the case that an amount of combustion air of an ash melting furnace 1 for electrically melting fed burnt ash is to be controlled, a supplied amount of electrical power for the ash melting furnace 1 and a theoretical amount of air calculated by the fed amount of ash are added with a correction of reduction of air volume proportional to a difference between the set value and a detected value of a furnace temperature when the furnace temperature is less than the set value, an increased correction of air volume proportional to a detected value of carbon mono-oxide at an outlet of the furnace and an increasing or decreasing corrected value proportional to an increasing or decreasing of the detected value of the oxygen gas at the outlet of the furnace from the set value so as to determine the amount of combustion air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼却炉から排出された
焼却灰を電気溶融する灰溶融炉の燃焼空気量制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion air amount control method for an ash melting furnace for electrically melting incineration ash discharged from an incinerator.

【0002】[0002]

【従来の技術】従来、ごみ焼却炉から排出された焼却灰
は、性状安定化を図って公害を防止するため、灰溶融炉
の電気溶融により水に溶けないようにスラグに加工され
る。この場合、灰溶融炉は電力の供給によって炉内の金
属が加熱溶融され、この状態で焼却灰が投入される。
2. Description of the Related Art Conventionally, incineration ash discharged from a refuse incinerator is processed into slag so as not to be dissolved in water by electric melting in an ash melting furnace in order to stabilize properties and prevent pollution. In this case, in the ash melting furnace, the metal in the furnace is heated and melted by the supply of electric power, and incinerated ash is put in this state.

【0003】そして、加熱溶融された金属により焼却灰
が加熱されてスラグが生成され、同時に、酸素ガス及び
一酸化炭素ガス,二酸化炭素ガスが発生する。したがっ
て、灰溶融炉を稼働する際は、有毒な一酸化炭素ガスの
発生を抑えて安定に動作するように、炉に供給する燃焼
空気量を調整する必要がある。
Then, the incinerated ash is heated by the heat-melted metal to generate slag, and at the same time, oxygen gas, carbon monoxide gas and carbon dioxide gas are generated. Therefore, when operating the ash melting furnace, it is necessary to adjust the amount of combustion air supplied to the furnace so as to suppress the generation of toxic carbon monoxide gas and operate stably.

【0004】そして、一酸化炭素ガスが少なく安定に動
作するために必要な燃焼空気量の理論値(理論空気量)
は、灰溶融炉の供給電力及び投入灰量から計算して求ま
る。そのため、この種灰溶融炉の燃焼空気量制御におい
ては、従来、供給電力及び投入灰量から理論空気量を求
め、これを必要な燃焼空気量とし、供給する燃焼空気量
が理論空気量になるように、燃焼空気管路の空気量をフ
ィードバック制御している。
The theoretical value of the combustion air amount (theoretical air amount) necessary for stable operation with less carbon monoxide gas
Is calculated from the power supplied to the ash melting furnace and the amount of ash input. Therefore, in controlling the combustion air amount of this seed ash melting furnace, conventionally, the theoretical air amount is obtained from the supplied power and the input ash amount, and this is set as the required combustion air amount, and the supplied combustion air amount becomes the theoretical air amount. Thus, the amount of air in the combustion air pipeline is feedback-controlled.

【0005】[0005]

【発明が解決しようとする課題】前記従来の灰溶融炉の
燃焼空気量制御方法の場合、供給する燃焼空気量(供給
空気量)を供給電力及び投入灰量に基づく理論空気量に
制御するのみで、炉の状態,灰質等によって変化する炉
温,発生ガスの状態を考慮しないため、実際の燃焼状態
に応じた最適な燃焼空気量制御が行われない問題点があ
る。
In the conventional method for controlling the combustion air amount in the ash melting furnace, the combustion air amount to be supplied (supply air amount) is controlled only to the theoretical air amount based on the supplied power and the input ash amount. However, since the temperature of the furnace and the state of the generated gas, which change depending on the state of the furnace, the ash quality, etc., are not taken into consideration, there is a problem that the optimum combustion air amount control according to the actual combustion state is not performed.

【0006】本発明は、実際の燃焼状態に応じた最適な
燃焼空気量制御が行える灰溶融炉の燃焼空気量制御方法
を提供することを目的とする。
An object of the present invention is to provide a method for controlling the combustion air amount in an ash melting furnace, which enables optimum control of the combustion air amount according to the actual combustion state.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の灰溶融炉の燃焼空気量制御方法において
は、灰溶融炉の供給電力量及び投入灰量から求まる理論
空気量に、炉温が設定値以下のときの前記設定値と前記
炉温の検出値との差に比例した空気量減少補正と、炉出
口の一酸化炭素ガスの検出値に比例した空気量増加補正
と、炉出口の酸素ガスの検出値の設定値からの増減に逆
比例した空気量減増補正とを加えて前記燃焼空気量を決
定する。
In order to achieve the above object, in the method for controlling the combustion air amount of an ash melting furnace of the present invention, the theoretical air amount obtained from the power supply amount of the ash melting furnace and the input ash amount is set. The air amount decrease correction proportional to the difference between the set value and the detected value of the furnace temperature when the furnace temperature is equal to or lower than the set value, and the air amount increase correction proportional to the detected value of the carbon monoxide gas at the furnace outlet, The amount of combustion air is determined by adding an increase / decrease correction of the air amount that is inversely proportional to the increase / decrease in the detected value of the oxygen gas at the furnace outlet from the set value.

【0008】[0008]

【作用】前記のように構成された本発明の灰溶融炉の燃
焼空気量制御方法の場合、理論空気量に、供給過剰によ
る炉温低下時は空気量減少補正を加え、供給不足による
炉出口の一酸化炭素ガスの増加時は空気量増加補正を加
え、さらに、供給過剰,不足に伴なう炉出口の酸素ガス
の増減にしたがって空気量の減増補正を加えて供給する
燃焼空気量が決定される。
In the method for controlling the combustion air amount of the ash melting furnace according to the present invention having the above-described structure, the theoretical air amount is corrected when the temperature of the furnace is decreased due to excessive supply, and the air outlet is corrected due to insufficient supply. When the amount of carbon monoxide gas increases, the amount of combustion air supplied is corrected by increasing the amount of air, and by increasing or decreasing the amount of oxygen gas at the furnace outlet due to excess or insufficient supply It is determined.

【0009】そのため、炉の状態,焼却灰の灰質等に基
づく実際の炉温及び排出ガス中の一酸化炭素ガス,酸素
ガスの濃度により理論空気量を補正して燃焼空気量が決
定され、決定された空気量の供給により、実際の燃焼状
態に応じた最適な空気量制御が行われる。
Therefore, the theoretical air amount is corrected and the combustion air amount is determined by the actual furnace temperature based on the condition of the furnace, the ash quality of the incinerated ash, etc. and the concentrations of carbon monoxide gas and oxygen gas in the exhaust gas. By the supplied air amount, the optimum air amount control according to the actual combustion state is performed.

【0010】[0010]

【実施例】1実施例について、図1を参照して説明す
る。同図において、1は灰溶融炉、2は燃焼空気の供給
管路であり、制御弁3,流量センサ4が設けられてい
る。5は排気管路であり、一酸化炭素検出用のガスセン
サ6、酸素検出用のガスセンサ7が設けられている。8
は炉温センサ、9は制御弁3を調整する流量コントロー
ラである。
EXAMPLE One example will be described with reference to FIG. In the figure, 1 is an ash melting furnace, 2 is a combustion air supply pipe, and a control valve 3 and a flow rate sensor 4 are provided. An exhaust pipe 5 is provided with a gas sensor 6 for detecting carbon monoxide and a gas sensor 7 for detecting oxygen. 8
Is a furnace temperature sensor, and 9 is a flow rate controller for adjusting the control valve 3.

【0011】10は炉1の供給電力量α及び焼却灰の投
入灰量βから燃焼に必要な理論空気量を算出する理論空
気量演算器、11,12,13はセンサ8,6,7の検
出値T,CO,O2 それぞれに基づく補正値を算出する
関数発生器、14,15,16,17は係数乗算用の乗
算器、18は補正値減算用の減算器、19,20は補正
値加算用の加算器、21は関数発生器11〜13の出力
モニタ用の表示器である。
Reference numeral 10 is a theoretical air amount calculator for calculating the theoretical air amount required for combustion from the power supply amount α of the furnace 1 and the input ash amount β of incinerated ash, and 11, 12, 13 are sensors 8, 6, 7 of the sensors 8, 6, 7. A function generator for calculating a correction value based on each of the detected values T, CO, O 2 , 14, 15, 16, 17 is a multiplier for coefficient multiplication, 18 is a subtractor for subtraction of correction value, and 19 and 20 are corrections. An adder for adding values, and a reference numeral 21 for an output monitor of the function generators 11 to 13.

【0012】そして、炉1は電力供給により内部の金属
が例えば約1000℃に加熱溶融された状態で焼却灰が
投入され、この焼却灰が加熱されてスラグが生成され
る。また、スラグ生成中には炉1内で酸素ガス及び一酸
化炭素ガス,二酸化炭素ガスが発生し、これらのガスが
排気管路5から大気に放出される。
Then, in the furnace 1, the incineration ash is charged in a state where the metal inside is heated and melted to, for example, about 1000 ° C. by the power supply, and the incineration ash is heated to generate slag. Further, oxygen gas, carbon monoxide gas, and carbon dioxide gas are generated in the furnace 1 during the generation of slag, and these gases are released from the exhaust pipe line 5 to the atmosphere.

【0013】一方、供給管路2を介して炉1に供給され
る燃焼空気量は、コントローラ9による制御弁3の調整
でフィードバック制御される。さらに、炉1の供給電力
量α,投入灰量βに基づき、演算器10は従来と同様に
して燃焼空気量の理論値(理論空気量)を求める。
On the other hand, the amount of combustion air supplied to the furnace 1 via the supply line 2 is feedback-controlled by adjusting the control valve 3 by the controller 9. Further, based on the supplied electric power amount α of the furnace 1 and the input ash amount β, the calculator 10 determines the theoretical value of the combustion air amount (theoretical air amount) in the same manner as in the conventional case.

【0014】そして、演算器10の理論空気量は乗算器
14により空燃比(係数)が乗算され、従来はそのまま
コントローラ9に燃焼空気量の制御の目標値として供給
される。しかし、この実施例においては乗算器14を介
した理論空気量につぎに説明する炉温及び炉出口の一酸
化炭素ガス,酸素ガスの濃度に応じた補正を施した空気
量が、燃焼空気量の制御の目標値としてコントローラ9
に供給される。
Then, the theoretical air amount of the arithmetic unit 10 is multiplied by the air-fuel ratio (coefficient) by the multiplier 14, and conventionally supplied to the controller 9 as it is as a target value for controlling the combustion air amount. However, in this embodiment, the theoretical air amount that has passed through the multiplier 14 is the amount of air that has been corrected according to the furnace temperature and the concentration of carbon monoxide gas and oxygen gas at the furnace outlet described below. Controller 9 as the target value for the control of
Is supplied to.

【0015】すなわち、排ガス中の一酸化炭素ガス濃度
を例えば1%未満に保って電気溶融するためには、燃焼
空気量が、 (a) 供給電力量α,投入灰量βから求まる理論空気量を
基礎とする。 (b) 炉温を一酸化炭素の燃焼に十分な所定の高温度に維
持する。 (c) 排ガス中の酸素ガス濃度を6〜7%に維持する。 の3条件を満足する必要がある。
That is, in order to perform the electric melting while maintaining the carbon monoxide gas concentration in the exhaust gas at less than 1%, for example, the combustion air amount is (a) the theoretical air amount obtained from the supplied power amount α and the input ash amount β. Based on. (b) The furnace temperature is maintained at a predetermined high temperature sufficient to burn carbon monoxide. (c) The oxygen gas concentration in the exhaust gas is maintained at 6 to 7%. It is necessary to satisfy the above three conditions.

【0016】そこで、センサ8の炉温の検出値Tが関数
発生器11に供給され、炉の状態,灰質等に基づき燃焼
空気量が供給過剰になり、冷却作用が生じて検出値Tが
設定値T0以下になるときは、発生器11により差|T
−T0|に比例した補正値(≧0)が形成され、この補
正値が乗算器15を介して減算器18に供給され、この
減算器18により理論空気量から補正値が減算され、理
論空気量が炉温の低下量に相当する量だけ減少補正され
る。
Therefore, the detected value T of the furnace temperature of the sensor 8 is supplied to the function generator 11, the amount of combustion air becomes excessively supplied based on the condition of the furnace, the ash quality, etc., and the detected value T is set due to the cooling action. When the value becomes less than T0, the difference | T
A correction value (≧ 0) proportional to −T0 | is formed, and this correction value is supplied to the subtractor 18 via the multiplier 15. The subtractor 18 subtracts the correction value from the theoretical air amount to obtain the theoretical air amount. The amount is reduced and corrected by an amount corresponding to the amount of decrease in the furnace temperature.

【0017】また、センサ6の一酸化炭素ガスの検出値
COが関数発生器12に供給され、燃焼空気量の不足に
より検出値COが増加するときは、発生器12により検
出値COに比例した補正値(≧0)が形成され、この補
正値が乗算器16,加算器20,19を介して理論空気
量に加算され、理論空気量が炉出口の一酸化炭素ガス濃
度の増加量に相当する量だけ増加補正される。
Further, when the detected value CO of the carbon monoxide gas of the sensor 6 is supplied to the function generator 12 and the detected value CO increases due to the shortage of the combustion air amount, it is proportional to the detected value CO by the generator 12. A correction value (≧ 0) is formed, and this correction value is added to the theoretical air amount via the multiplier 16 and the adders 20 and 19, and the theoretical air amount corresponds to the increase amount of the carbon monoxide gas concentration at the furnace outlet. The amount is increased and corrected.

【0018】さらに、センサ7の酸素ガスの検出値O2
が関数発生器13に供給され、燃焼空気量の過剰,不足
により検出値O2 が例えば7%の設定値以上,以下にな
るときに、発生器13により検出値O2 の設定値からの
増,減により正,負に変化する補正値が形成され、この
補正値が乗算器17,加算器20,19を介して理論空
気量に加算され、理論空気量が炉出口の酸素ガス濃度の
増減の逆に減増補正される。
Further, the oxygen gas detection value O 2 of the sensor 7
Is supplied to the function generator 13, and when the detected value O 2 becomes, for example, 7% or more and below the set value due to excess or shortage of the combustion air amount, the generator 13 increases the detected value O 2 from the set value. , A correction value that changes positively and negatively by the decrease is formed, and this correction value is added to the theoretical air amount through the multiplier 17 and the adders 20 and 19, and the theoretical air amount increases or decreases the oxygen gas concentration at the furnace outlet. On the contrary, the increase and decrease are corrected.

【0019】そして、理論空気量に炉温の低下に伴う空
気量減少補正,一酸化炭素ガス濃度の増加に伴う空気量
増加補正及び酸素ガス濃度の増減に伴う空気量減増補正
が施されて燃焼空気量が決定され、この決定された空気
量がコントローラ9に制御の目標値として供給されるた
め、制御の目標値が炉の状態,焼却灰の灰質等に基づく
実際の燃焼状態に応じて調整される。
Then, the theoretical air amount is subjected to an air amount decrease correction accompanying a decrease in furnace temperature, an air amount increase correction accompanying an increase in carbon monoxide gas concentration, and an air amount decrease increase correction associated with an increase or decrease in oxygen gas concentration. The combustion air amount is determined, and the determined air amount is supplied to the controller 9 as a control target value. Therefore, the control target value depends on the state of the furnace, the actual combustion state based on the ash quality of the incineration ash, and the like. Adjusted.

【0020】さらに、コントローラ9によりセンサ4の
検出値が目標値に引込まれるように制御弁3がフィード
バック制御され、炉1に供給される燃焼空気量が目標値
に制御される。したがって、実際の燃焼状態に応じた最
適な燃焼空気量制御が行われ、炉1が最適な状態で稼働
される。
Further, the control valve 3 is feedback-controlled by the controller 9 so that the detection value of the sensor 4 is pulled to the target value, and the amount of combustion air supplied to the furnace 1 is controlled to the target value. Therefore, the optimal combustion air amount control according to the actual combustion state is performed, and the furnace 1 is operated in the optimal state.

【0021】なお、乗算器15〜17は発生器11〜1
3の補正値に炉1の条件等に応じた微調用の係数1,係
数2,係数3それぞれを乗算するために設けられ、係数
1,係数2,係数3は手動で調整されて設定される。ま
た、各発生器11〜13の出力は表示器21に表示され
て監視され、例えば異常の発生,理論空気量の設定ミス
等で各発生器11〜13の出力(補正値)が異常に大き
くなると、必要な対策が迅速に施される。
The multipliers 15-17 are generators 11-1.
It is provided to multiply the correction value of No. 3 by each of the coefficient 1, coefficient 2, and coefficient 3 for fine adjustment according to the conditions of the furnace 1 and the coefficient 1, coefficient 2, and coefficient 3 are manually adjusted and set. .. The outputs of the generators 11 to 13 are displayed and monitored on the display 21, and the outputs (correction values) of the generators 11 to 13 are abnormally large due to, for example, the occurrence of an abnormality or the theoretical air amount setting error. Then, necessary measures will be taken promptly.

【0022】[0022]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。灰溶融炉1
の供給電力量及び投入灰量から求まる理論空気量に、供
給過剰による炉温低下時は空気量減少補正を加え、供給
不足による炉出口の一酸化炭素ガスの増加時は空気量増
加補正を加え、さらに、供給過剰,不足に伴なう炉出口
の酸素ガスの増減にしたがって空気量の減増補正を加え
て供給する燃焼空気量を決定したため、炉の状態,焼却
灰の灰質等に基づく実際の炉温及び排出ガス中の一酸化
炭素ガス,酸素ガスの濃度により理論空気量を補正して
燃焼空気量を決定し、実際の燃焼状態に応じた最適な空
気量制御を行うことができる。
Since the present invention is configured as described above, it has the following effects. Ash melting furnace 1
The theoretical air amount calculated from the supplied power amount and the input ash amount is corrected by a decrease in the air amount when the furnace temperature decreases due to excessive supply, and by an increase in the air amount when the carbon monoxide gas at the furnace outlet increases due to insufficient supply. In addition, since the amount of combustion air to be supplied was determined by adjusting the amount of combustion gas to be increased or decreased in accordance with the increase or decrease in oxygen gas at the furnace outlet due to excess or insufficient supply, the actual condition based on the condition of the furnace, the ash quality of incineration ash, etc. It is possible to correct the theoretical air amount by the furnace temperature and the concentrations of carbon monoxide gas and oxygen gas in the exhaust gas, determine the combustion air amount, and perform the optimum air amount control according to the actual combustion state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の灰溶融炉の燃焼空気量制御方法の1実
施例のブロック図である。
FIG. 1 is a block diagram of an embodiment of a combustion air amount control method for an ash melting furnace of the present invention.

【符号の説明】[Explanation of symbols]

1 灰溶融炉 6,7 ガスセンサ 8 炉温センサ 10 理論空気量演算器 11,12,13 補正値算出用の関数発生器 1 Ash melting furnace 6,7 Gas sensor 8 Furnace temperature sensor 10 Theoretical air amount calculator 11, 12, 13 Function generator for calculating correction value

Claims (1)

【特許請求の範囲】 【請求項1】 投入された焼却灰を電気溶融する灰溶融
炉の燃焼空気量を制御する際、 前記灰溶融炉の供給電力量及び投入灰量から求まる理論
空気量に、 炉温が設定値以下のときの前記設定値と前記炉温の検出
値との差に比例した空気量減少補正と、 炉出口の一酸化炭素ガスの検出値に比例した空気量増加
補正と、 炉出口の酸素ガスの検出値の設定値からの増減に逆比例
した空気量減増補正とを加えて前記燃焼空気量を決定す
ることを特徴とする灰溶融炉の燃焼空気量制御方法。
Claim: What is claimed is: 1. When controlling the combustion air amount of an ash melting furnace for electrically melting the incinerated ash that has been charged, the theoretical air amount obtained from the amount of power supplied to the ash melting furnace and the amount of input ash is used. , An air amount decrease correction proportional to the difference between the set value and the detected value of the furnace temperature when the furnace temperature is less than or equal to a set value, and an air amount increase correction proportional to the detected value of carbon monoxide gas at the furnace outlet, A method for controlling the combustion air amount in an ash melting furnace, comprising: determining the combustion air amount by adding an air amount decrease / increase correction that is inversely proportional to an increase / decrease in the detected value of oxygen gas at the furnace outlet.
JP20737891A 1991-07-23 1991-07-23 Control method of combustion air volume in ash melting furnace Expired - Lifetime JP2617830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20737891A JP2617830B2 (en) 1991-07-23 1991-07-23 Control method of combustion air volume in ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20737891A JP2617830B2 (en) 1991-07-23 1991-07-23 Control method of combustion air volume in ash melting furnace

Publications (2)

Publication Number Publication Date
JPH0526425A true JPH0526425A (en) 1993-02-02
JP2617830B2 JP2617830B2 (en) 1997-06-04

Family

ID=16538740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20737891A Expired - Lifetime JP2617830B2 (en) 1991-07-23 1991-07-23 Control method of combustion air volume in ash melting furnace

Country Status (1)

Country Link
JP (1) JP2617830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066264A (en) * 1998-01-23 1999-08-16 이해규 Control Method of Waste Treatment Facility Using Plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066264A (en) * 1998-01-23 1999-08-16 이해규 Control Method of Waste Treatment Facility Using Plasma

Also Published As

Publication number Publication date
JP2617830B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP2001229941A (en) Fuel cell system
JP2011099608A (en) Boiler combustion control device
JP2617830B2 (en) Control method of combustion air volume in ash melting furnace
JP2004190913A (en) Automatic calorific power correction device for coal fired boiler
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH06333587A (en) Method and device for controlling combustion air quantity of fuel cell fuel off gas
JPH028213B2 (en)
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP2002146366A (en) Self-learning fuzzy controlling method for coal gasification unit
JP2003056828A (en) Combustion type detoxifying apparatus
JPH01150715A (en) Device for controlling concentration of constituent of discharged gas of combustion boiler
JPH025222Y2 (en)
JP2872378B2 (en) Boiler furnace outlet temperature control device
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JP4249086B2 (en) Heating means output control method for melting furnace
JPH0152653B2 (en)
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
JP3068936B2 (en) Incinerator combustion control device and control method
JPH04208306A (en) Method for controlling combustion in solid item combustion device
JP3023255B2 (en) Exhaust gas concentration control device
JPH11108327A (en) Garbage incinerator and combustion control method
JPS6125969B2 (en)
JPS5813809B2 (en) Combustion control method using low excess air
JPH11125414A (en) Method for controling combustion of combustion chamber of waste melting furnace
JP3946170B2 (en) Combustion control device and combustion control method for sludge incinerator