JP2002146366A - Self-learning fuzzy controlling method for coal gasification unit - Google Patents

Self-learning fuzzy controlling method for coal gasification unit

Info

Publication number
JP2002146366A
JP2002146366A JP2000346334A JP2000346334A JP2002146366A JP 2002146366 A JP2002146366 A JP 2002146366A JP 2000346334 A JP2000346334 A JP 2000346334A JP 2000346334 A JP2000346334 A JP 2000346334A JP 2002146366 A JP2002146366 A JP 2002146366A
Authority
JP
Japan
Prior art keywords
coal
oxygen
self
gasifier
gas temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000346334A
Other languages
Japanese (ja)
Inventor
Okikazu Ishiguro
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000346334A priority Critical patent/JP2002146366A/en
Publication of JP2002146366A publication Critical patent/JP2002146366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-learning fuzzy controlling method for a coal gasification unit capable of suppressing the change of gasification furnace outlet gas temperature against a load change and maintaining a stable slag discharge. SOLUTION: This controlling method is provided by calculating a deviation z between the furnace outlet gas temperature measured by a temperature- measuring device 30 and a set temperature 31 with a subtracting tool 25a for correcting oxygen/coal ratio for deciding an oxygen supplying amount demand against a coal supplying amount demand 20, obtaining a changing rate Δz of the deviation z with a differentiating tool 33, obtaining a correcting amount of oxygen/coal ratio by using z and Δz with a self-learning fuzzy controlling tool 24 according to a fuzzy rule, deciding the oxygen amount demand for feeding to the gasification furnace from the oxygen/coal ratio corrected by feeding back the above correcting amount and the coal supplying amount demand 20 with the subtracting tool 25b, adjusting an oxygen flow rate with a control valve 26 and thus suppressing the gas temperature change for maintaining it constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石炭ガス化装置の制
御方法に係わり、特にガス化炉の温度を一定に維持し安
定したスラグ排出を行なうため、ガス化炉に供給する酸
素量を決定するのに好適な自己学習ファジィ制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a coal gasifier, and more particularly, to an amount of oxygen to be supplied to a gasifier in order to maintain a constant temperature of the gasifier and perform stable slag discharge. And a self-learning fuzzy control method suitable for

【0002】[0002]

【従来の技術】図4は石炭ガス化プラントの一例を示す
系統構成図である。石炭1は石炭前処理装置2で粉砕さ
れ微粉炭12となり、空気分離装置5で分離された酸素
13とともにガス化炉3に供給される。ガス化炉3で生
成したガス、灰及びチャーは熱回収ボイラ6で熱回収さ
れ、脱じん装置7で脱じんされ、ガス精製装置8で浄化
され、ガスタービン9で燃焼し、その排ガスは排熱回収
ボイラ10で熱回収され、排熱回収ボイラ10で発生し
た蒸気は蒸気タービン11で仕事をする。なお、ガスタ
ービン9の排ガスの一部は空気分離装置5に回収され
る。
2. Description of the Related Art FIG. 4 is a system configuration diagram showing an example of a coal gasification plant. The coal 1 is pulverized by the coal pretreatment device 2 to become pulverized coal 12 and supplied to the gasifier 3 together with the oxygen 13 separated by the air separation device 5. The gas, ash and char generated in the gasification furnace 3 are recovered in a heat recovery boiler 6, removed in a dust removal device 7, purified in a gas purification device 8, burned in a gas turbine 9, and the exhaust gas is discharged. The heat recovered by the heat recovery boiler 10 and the steam generated by the exhaust heat recovery boiler 10 works in a steam turbine 11. A part of the exhaust gas from the gas turbine 9 is collected by the air separation device 5.

【0003】このような石炭ガス化プラントにおいて、
ガス化炉3には、微粉炭(石炭)12と酸素13が供給
されるが、石炭中の灰はスラグとなって炉壁に付着す
る。このスラグの熱抵抗は大きいので、ガス化炉のガス
温度に大きな影響を及ぼす。なお、スラグの炉壁への付
着量はガス温度、すなわちスラグの温度により大きな影
響を受ける。
In such a coal gasification plant,
The pulverized coal (coal) 12 and oxygen 13 are supplied to the gasifier 3, and the ash in the coal becomes slag and adheres to the furnace wall. Since the thermal resistance of this slag is large, it has a large effect on the gas temperature of the gasifier. The amount of slag adhering to the furnace wall is greatly affected by the gas temperature, that is, the slag temperature.

【0004】したがって、ガス化炉3に供給する酸素/
石炭比を適切に制御することにより、負荷変動時におい
ても炉壁に付着するスラグの厚さの変動を抑えて、ガス
化炉のガス温度をほぼ一定の値に保持し、安定したスラ
グの排出を確保するとともに、安定したガス化性能を維
持することが必要不可欠である。
Accordingly, the oxygen / gas supplied to the gasifier 3
Appropriate control of the coal ratio suppresses fluctuations in the thickness of slag adhering to the furnace wall even when the load fluctuates, maintains the gas temperature of the gasifier at a nearly constant value, and ensures stable slag discharge. It is indispensable to secure a stable gasification performance while maintaining the gasification performance.

【0005】この酸素/石炭比は、従来技術において
は、基本的には図5に示すような制御方法が、採用され
ていた。この方式は、石炭量デマンド20に対して、関
数発生器21において酸素/石炭比27を設定し、これ
に乗算器23で石炭量デマンド20に系数器22を介し
た信号を掛け合わせて酸素流量デマンド28を求める。
In the prior art, the control method for the oxygen / coal ratio is basically the one shown in FIG. In this method, an oxygen / coal ratio 27 is set in a function generator 21 with respect to a coal amount demand 20, and a multiplier 23 multiplies the coal amount demand 20 by a signal via a coefficient unit 22 to obtain an oxygen flow rate. Demand 28 is requested.

【0006】減算器25では、酸素流量デマンド28と
酸素流量計24の出力信号との間の偏差を演算し、調節
計29で信号処理して酸素流量調整弁26を開閉するこ
とにより酸素流量を調節している。なお、関数発生器2
1では、酸素/石炭比を炭種毎に設定する。
The subtractor 25 calculates the deviation between the oxygen flow demand 28 and the output signal of the oxygen flow meter 24, processes the signal with the controller 29, and opens and closes the oxygen flow control valve 26 to reduce the oxygen flow. I am adjusting. Note that the function generator 2
At 1, the oxygen / coal ratio is set for each coal type.

【0007】上記した従来の酸素/石炭比制御方式で
は、定常状態においては、ガス化炉出口のガス温度を目
標値近傍に維持できるが、フィードバック機構がないた
め、負荷の変動及び炭種の性情変化等の外乱に対して
は、ガス化炉出口におけるガス温度の変動を抑えること
ができないので、温度が低下した場合に、ガス化炉炉壁
に石炭中の灰分がスラグとして大量に付着して安定した
スラグの排出が困難な状態となる可能性があるという問
題があった。
In the above-described conventional oxygen / coal ratio control system, in a steady state, the gas temperature at the gasifier outlet can be maintained near the target value. For disturbances such as changes, fluctuations in gas temperature at the gasifier outlet cannot be suppressed, so when the temperature drops, a large amount of ash in the coal adheres to the gasifier furnace wall as slag. There has been a problem that stable discharge of slag may be difficult.

【0008】このように、従来技術においては、ガス化
炉運転上の外乱に対しても安定した運転を確保するとい
う点については配慮されていなかった。
As described above, in the prior art, no consideration has been given to ensuring stable operation even with disturbances in the operation of the gasifier.

【0009】[0009]

【発明が解決しようとする課題】上記従来技術は、負荷
変動時等においてガス化炉出口のガス温度を目標値に維
持することができないので、スラグの付着等によるトラ
ブルの発生という点について考慮されていなかった。
In the above prior art, since the gas temperature at the gasification furnace outlet cannot be maintained at a target value when the load fluctuates, etc., consideration is given to the problem of occurrence of trouble due to slag adhesion and the like. I didn't.

【0010】本発明の目的は、負荷変動時等の運転上の
外乱に対しても、ガス化炉出口ガス温度の変動を抑えて
安定したスラグの排出を維持できる石炭ガス化装置の自
己学習ファジィ制御方法を提供することにある。
An object of the present invention is to provide a self-learning fuzzy fuzzy coal gasifier that can maintain stable slag discharge by suppressing fluctuations in the gas temperature at the outlet of the gasifier even when operating disturbances such as load fluctuations. It is to provide a control method.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の石炭ガス化装置の自己学習ファジィ制御方
法は、石炭と酸素を供給してガスを生成する石炭ガス化
装置の制御方法において、所定の酸素/石炭比に基づき
石炭供給量デマンドに対する酸素供給量デマンドを求
め、該酸素供給量デマンドを、石炭ガス化炉出口ガス温
度と該出口ガス温度設定値との間の偏差及び該偏差の変
化率を用いて自己学習ファジィ制御器により補正して、
石炭ガス化炉に供給する酸素量を決定することを特徴と
する。
To achieve the above object, a self-learning fuzzy control method for a coal gasifier according to the present invention comprises a method for controlling a coal gasifier which supplies coal and oxygen to generate gas. Calculating an oxygen supply demand relative to a coal supply demand based on a predetermined oxygen / coal ratio, and calculating the oxygen supply demand as a deviation between a coal gasifier outlet gas temperature and the outlet gas temperature set value and the oxygen gas demand. Corrected by the self-learning fuzzy controller using the rate of change of the deviation,
It is characterized in that the amount of oxygen supplied to the coal gasifier is determined.

【0012】そして、自己学習ファジィ制御器は、ファ
ジィルールに基づいて、石炭ガス化炉出口ガス温度と該
出口ガス温度設定値との間の偏差に対するメンバーシッ
プ関数値:μj、偏差の変化率に対するメンバーシップ
関数値:μiとし、条件部変数(Wij)に対するメンバーシ
ップ関数値:μij=μi・μjと定義し、 Wij(n)=K・e(n)・μij(n)Δt+ Wij(n-1) (1) e(n)=(Tg(n)− Tg(set))/ Tg(set)) (2) u(n)=Σ(μij(n)・ Wij(n))/Σμij(n) (3) ここで、K:学習ゲイン、e(n):n時刻点におけるガス
化炉出口温度偏差、Δt:サンプリング周期、Tg(n):n
時刻点におけるガス化炉出口温度、Tg(set):ガス化炉
出口温度設定値、u(n):自己学習ファジィ制御器出力 上記式(1)、(2)及び(3)を学習則とすることが好まし
い。
Then, the self-learning fuzzy controller, based on a fuzzy rule, sets a membership function value: μj for a deviation between the outlet gas temperature of the coal gasifier and the set value of the outlet gas temperature: Membership function value: μi, Membership function value for conditional part variable (Wij): μij = μi · μj, Wij (n) = K · e (n) · μij (n) Δt + Wij (n− 1) (1) e (n) = (Tg (n) −Tg (set)) / Tg (set)) (2) u (n) = Σ (μij (n) · Wij (n)) / Σμij ( n) (3) where K: learning gain, e (n): gasifier outlet temperature deviation at time point n, Δt: sampling period, Tg (n): n
Gasifier outlet temperature at time point, Tg (set): Gasifier outlet temperature set value, u (n): Self-learning fuzzy controller output The above equations (1), (2) and (3) are defined as learning rules. Is preferred.

【0013】上記のような自己学習ファジィ制御器を用
いて、フィードバック制御して酸素供給量、換言すれば
酸素/石炭比を調整するので、運転状態の変化に対して
も適応して、ガス化炉出口ガス温度を目標値近傍に維持
でき、安定した運転を確保できる。
The self-learning fuzzy controller as described above is used to perform feedback control to adjust the oxygen supply amount, in other words, the oxygen / coal ratio. Furnace outlet gas temperature can be maintained near the target value, and stable operation can be ensured.

【0014】[0014]

【発明の実施の形態】本発明になる石炭ガス化装置の自
己学習ファジィ制御方法の実施の形態について、図1に
より説明する。図1において、ガス温度計測器30に
は、ガス化炉から生成するスラグ及びチャー等の付着の
影響を受けない、例えば、音波を利用したガス温度計等
を用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a self-learning fuzzy control method for a coal gasifier according to the present invention will be described with reference to FIG. In FIG. 1, as the gas temperature measuring device 30, for example, a gas thermometer using a sound wave, which is not affected by the adhesion of slag and char generated from the gasification furnace, is used.

【0015】本発明による自己学習ファジィ制御におい
ては、図1に示すように、ガス温度計測器30の出力信
号とガス温度設定値31の偏差を減算器25aで求め、
この偏差信号35と微分器33で求まる偏差の変化率信
号36をファジィ制御器34に入力する。ファジィ制御
器34では、以下の演算を行う。
In the self-learning fuzzy control according to the present invention, as shown in FIG. 1, a difference between an output signal of a gas temperature measuring device 30 and a gas temperature set value 31 is obtained by a subtractor 25a.
The deviation signal 35 and the deviation change rate signal 36 obtained by the differentiator 33 are input to a fuzzy controller 34. The fuzzy controller 34 performs the following calculation.

【0016】ファジィラベルとしては、一例として、NB
(Negative Big)、NM(Negative Medium)、NS(Negati
ve Small)、Z0(Zero)、PS(Positive Small)、PM
(Positive Medium)、PB(Positive Big)の7つとす
る。これらのメンバーシップ関数の一例を図2に示す。
As a fuzzy label, for example, NB
(Negative Big), NM (Negative Medium), NS (Negati
ve Small), Z0 (Zero), PS (Positive Small), PM
(Positive Medium) and PB (Positive Big). An example of these membership functions is shown in FIG.

【0017】制御ルールの例を図3に示す。この表中、
zは偏差、Δzは偏差の変化率であり、条件部変数Wij
は確定値とし、このWijを自己学習して、最適な値に調
整していく。
FIG. 3 shows an example of a control rule. In this table,
z is the deviation, Δz is the rate of change of the deviation, and the condition part variable Wij
Is a definite value, and self-learns this Wij to adjust to an optimal value.

【0018】zに対するファジィラベルのメンバーシッ
プ関数値をμjとし、Δzに対するファジィラベルのメ
ンバーシップ関数値をμiとすると、Wijに対するメンバ
ーシップ関数値μijは次式で定義される。
If the membership function value of the fuzzy label for z is μj and the membership function value of the fuzzy label for Δz is μi, the membership function value μij for Wij is defined by the following equation.

【0019】 μij=μi・μj (1) 学習則を次式のように与える。すなわち、 Wij(n)=K・e(n)・μij(n)Δt+ Wij(n-1) (2) e(n)=(Tg(n)− Tg(set))/ Tg(set)) (3) ここで、K:学習ゲイン、e(n):n時刻点におけるガス
化炉出口温度偏差、Δt:サンプリング周期、Tg(n):n
時刻点におけるガス化炉出口温度、Tg(set):ガス化炉
出口温度設定値 したがって、制御出力は次式となる。 u(n)=Σ(μij(n)・ Wij(n))/Σμij(n) (4)
Μij = μi · μj (1) The learning rule is given by the following equation. That is, Wij (n) = K · e (n) · μij (n) Δt + Wij (n−1) (2) e (n) = (Tg (n) −Tg (set)) / Tg (set)) (3) where K: learning gain, e (n): gasifier outlet temperature deviation at time point n, Δt: sampling period, Tg (n): n
Gasifier outlet temperature at time point, Tg (set): Gasifier outlet temperature set value Therefore, the control output is as follows. u (n) = Σ (μij (n) · Wij (n)) / Σμij (n) (4)

【0020】このファジィ制御器34の制御出力信号u
(n)を加算器32に入力する。加算器32では、石炭量
デマンド20より、関数発生器21で決まる酸素/石炭
比を前記ガス温度フィードバック信号u(n)と加算して酸
素/石炭比27を求める。以下の信号処理については、
従来技術と同様であり、この酸素/石炭比27に、乗算
器23で石炭量デマンド20に係数器22を介した信号
を掛け合わせて酸素流量デマンド28を求め、減算器2
5bで酸素流量デマンド28と酸素流量計24の出力信
号との間の偏差を演算し、調節計29で信号処理して酸
素流量調整弁26を開閉することにより、酸素供給量を
制御する。なお、関数発生器21では、炭種毎に異なっ
た酸素石炭比を設定する。
The control output signal u of the fuzzy controller 34
(n) is input to the adder 32. The adder 32 calculates the oxygen / coal ratio 27 by adding the oxygen / coal ratio determined by the function generator 21 to the gas temperature feedback signal u (n) from the coal quantity demand 20. For the following signal processing,
As in the prior art, the oxygen / coal ratio 27 is multiplied by a signal via the coefficient unit 22 to the coal amount demand 20 by the multiplier 23 to obtain an oxygen flow rate demand 28, and the subtracter 2
At 5b, the deviation between the oxygen flow demand 28 and the output signal of the oxygen flow meter 24 is calculated, and the signal is processed by the controller 29 to open and close the oxygen flow control valve 26, thereby controlling the oxygen supply amount. In the function generator 21, different oxygen-coal ratios are set for each coal type.

【0021】要するに、本発明は、ガス化炉出口ガス温
度を計測して、このガス温度に基づいた自己学習ファジ
ィによるフィードバック補正を加えて酸素供給量を決定
するものである。
In short, the present invention measures the gas temperature at the outlet of the gasifier and determines the amount of oxygen supply by performing feedback correction by self-learning fuzzy based on the gas temperature.

【0022】したがって、本発明によると、負荷変動時
及び石炭の性情が変動した場合においても、ガス化炉出
口ガス温度を目標値近傍に維持できるので、安定したス
ラグの排出を確保でき、炉壁に付着するスラグ量の変動
を防止して安定した運転が可能となる。また、ガス温度
の変動が小さくなるので、ガス化炉壁に設置される耐火
材の損傷を軽減できる。さらにガス化炉出口のガス温度
の変動が抑えられるので、ガス組成の変動が小さくな
り、後流に設置されるガスタービンの燃料としての発熱
量の変動が少なく、プラント全体の運用性が向上する。
Therefore, according to the present invention, the gas temperature at the gasifier outlet can be kept close to the target value even when the load fluctuates and when the characteristics of the coal fluctuate. It is possible to prevent a change in the amount of slag adhering to the vehicle and to perform a stable operation. In addition, since the fluctuation of the gas temperature is reduced, damage to the refractory material installed on the gasification furnace wall can be reduced. Further, since the fluctuation of the gas temperature at the gasification furnace outlet is suppressed, the fluctuation of the gas composition is reduced, the fluctuation of the calorific value as the fuel of the gas turbine installed downstream is reduced, and the operability of the entire plant is improved. .

【0023】[0023]

【発明の効果】本発明によれば、ガス化炉の負荷変動時
等の運転上の外乱に対しても、ガス化炉出口ガス温度の
変動を抑えて安定したスラグの排出を維持できる。
According to the present invention, a stable discharge of slag can be maintained by suppressing the fluctuation of the gas temperature at the gasification furnace outlet even when the load of the gasification furnace changes during operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態になる石炭ガス化装置の自
己学習ファジィ制御方法を採用する制御系統図である。
FIG. 1 is a control system diagram adopting a self-learning fuzzy control method of a coal gasifier according to an embodiment of the present invention.

【図2】ファジィルールに基づくメンバーシップ関数の
一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a membership function based on fuzzy rules.

【図3】制御ルールの一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a control rule.

【図4】石炭ガス化プラントの機器構成を示す概略図で
ある。
FIG. 4 is a schematic diagram showing the equipment configuration of a coal gasification plant.

【図5】従来技術になる制御方式を示す制御系統図であ
る。
FIG. 5 is a control system diagram showing a control method according to the related art.

【符号の説明】[Explanation of symbols]

1 石炭 2 石炭前処理装置 3 ガス化炉 4 空気 5 空気分離装置 6 熱回収ボイラ 7 脱じん装置 8 ガス精製装置 9 ガスタービン 10 排熱回収ボイラ 11 蒸気タービン 12 微粉炭 13 酸素 20 石炭量デマンド 21 関数発生器 22 係数器 23 乗算器 24 酸素流量計 25 減算器 26 酸素流量調整弁 27 酸素/石炭比 28 酸素流量デマンド 29 調節計 30 ガス温度計測器 31 ガス温度設定値 32 加算器 33 微分器 34 自己学習ファジィ制御器 35 ガス温度偏差信号 36 ガス温度偏差の変化率信号 REFERENCE SIGNS LIST 1 coal 2 coal pretreatment device 3 gasifier 4 air 5 air separation device 6 heat recovery boiler 7 dust removal device 8 gas purification device 9 gas turbine 10 waste heat recovery boiler 11 steam turbine 12 pulverized coal 13 oxygen 20 coal amount demand 21 Function generator 22 Coefficient unit 23 Multiplier 24 Oxygen flow meter 25 Subtractor 26 Oxygen flow control valve 27 Oxygen / coal ratio 28 Oxygen flow demand 29 Controller 30 Gas temperature measuring device 31 Gas temperature set value 32 Adder 33 Differentiator 34 Self-learning fuzzy controller 35 Gas temperature deviation signal 36 Change rate signal of gas temperature deviation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭と酸素を供給してガスを生成する石
炭ガス化装置の制御方法において、所定の酸素/石炭比
に基づき石炭供給量デマンドに対する酸素供給量デマン
ドを求め、該酸素供給量デマンドを、石炭ガス化炉出口
ガス温度と該出口ガス温度設定値との間の偏差及び該偏
差の変化率を用いて自己学習ファジィ制御器により補正
して、石炭ガス化炉に供給する酸素量を決定することを
特徴とする石炭ガス化装置の自己学習ファジィ制御方
法。
1. A method for controlling a coal gasifier for generating gas by supplying coal and oxygen, wherein an oxygen supply demand relative to a coal supply demand is determined based on a predetermined oxygen / coal ratio. Is corrected by the self-learning fuzzy controller using the deviation between the coal gasifier outlet gas temperature and the outlet gas temperature set value and the rate of change of the deviation, so that the amount of oxygen supplied to the coal gasifier is corrected. A self-learning fuzzy control method for a coal gasifier characterized by determining.
【請求項2】 前記自己学習ファジィ制御器は、石炭ガ
ス化炉出口ガス温度と該出口ガス温度設定値との間の偏
差に対するメンバーシップ関数値:μj、偏差の変化率
に対するメンバーシップ関数値:μiとし、条件部変数
(Wij)に対するメンバーシップ関数値:μij=μI・μj
と定義し、 Wij(n)=K・e(n)・μij(n)Δt+ Wij(n-1) (1) e(n)=(Tg(n)− Tg(set))/ Tg(set)) (2) u(n)=Σ(μij(n)・ Wij(n))/Σμij(n) (3) ここで、K:学習ゲイン、e(n):n時刻点におけるガス
化炉出口温度偏差、 Δt:サンプリング周期、Tg(n):n時刻点におけるガス
化炉出口温度、 Tg(set):ガス化炉出口温度設定値、u(n):自己学習フ
ァジィ制御器出力 上記式(1)、(2)及び(3)を学習則とすることを特徴とす
る請求項1記載の石炭ガス化装置の自己学習ファジィ制
御方法。
2. The self-learning fuzzy controller includes: a membership function value for a deviation between a coal gasifier outlet gas temperature and the outlet gas temperature set value: μj; a membership function value for a change rate of the deviation: μi and the conditional variable
Membership function value for (Wij): μij = μI · μj
Wij (n) = K · e (n) · μij (n) Δt + Wij (n−1) (1) e (n) = (Tg (n) −Tg (set)) / Tg (set )) (2) u (n) = Σ (μij (n) · Wij (n)) / Σμij (n) (3) where K: learning gain, e (n): gasifier at time point n Outlet temperature deviation, Δt: sampling cycle, Tg (n): gasifier outlet temperature at time point n, Tg (set): gasifier outlet temperature set value, u (n): self-learning fuzzy controller output The self-learning fuzzy control method for a coal gasifier according to claim 1, wherein (1), (2) and (3) are defined as learning rules.
JP2000346334A 2000-11-14 2000-11-14 Self-learning fuzzy controlling method for coal gasification unit Pending JP2002146366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346334A JP2002146366A (en) 2000-11-14 2000-11-14 Self-learning fuzzy controlling method for coal gasification unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346334A JP2002146366A (en) 2000-11-14 2000-11-14 Self-learning fuzzy controlling method for coal gasification unit

Publications (1)

Publication Number Publication Date
JP2002146366A true JP2002146366A (en) 2002-05-22

Family

ID=18820223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346334A Pending JP2002146366A (en) 2000-11-14 2000-11-14 Self-learning fuzzy controlling method for coal gasification unit

Country Status (1)

Country Link
JP (1) JP2002146366A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105307B1 (en) * 2009-10-30 2012-01-18 한국전력공사 Indirect Measurement System of the Syngas Temperature in Coal Gasifier
CN102636040A (en) * 2011-02-14 2012-08-15 宝山钢铁股份有限公司 Self-study furnace temperature control method and control system
KR101447034B1 (en) 2012-03-26 2014-10-06 두산중공업 주식회사 Apparatus for detecting steam volume of gasifier method thereof
CN105527836A (en) * 2015-12-23 2016-04-27 湘电风能有限公司 PID (Proportion Integration Differentiation) control system and wind power plant group power control method
US9567904B2 (en) 2011-10-19 2017-02-14 Mitsubishi Hitachi Power Systems, Ltd. Method for controlling gas turbine power plant, gas turbine power plant, method for controlling carbon-containing fuel gasifier, and carbon-containing fuel gasifier
CN107807688A (en) * 2017-11-09 2018-03-16 中国科学院电工研究所无锡分所 Steel pipe application temperature Fuzzy control system
CN113672000A (en) * 2021-08-23 2021-11-19 晋能控股装备制造集团华昱能源化工山西有限责任公司 Oxygen-coal ratio control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105307B1 (en) * 2009-10-30 2012-01-18 한국전력공사 Indirect Measurement System of the Syngas Temperature in Coal Gasifier
CN102636040A (en) * 2011-02-14 2012-08-15 宝山钢铁股份有限公司 Self-study furnace temperature control method and control system
CN102636040B (en) * 2011-02-14 2014-03-19 宝山钢铁股份有限公司 Self-study furnace temperature control method and control system
US9567904B2 (en) 2011-10-19 2017-02-14 Mitsubishi Hitachi Power Systems, Ltd. Method for controlling gas turbine power plant, gas turbine power plant, method for controlling carbon-containing fuel gasifier, and carbon-containing fuel gasifier
KR101447034B1 (en) 2012-03-26 2014-10-06 두산중공업 주식회사 Apparatus for detecting steam volume of gasifier method thereof
CN105527836A (en) * 2015-12-23 2016-04-27 湘电风能有限公司 PID (Proportion Integration Differentiation) control system and wind power plant group power control method
CN107807688A (en) * 2017-11-09 2018-03-16 中国科学院电工研究所无锡分所 Steel pipe application temperature Fuzzy control system
CN113672000A (en) * 2021-08-23 2021-11-19 晋能控股装备制造集团华昱能源化工山西有限责任公司 Oxygen-coal ratio control method
CN113672000B (en) * 2021-08-23 2024-05-31 晋能控股装备制造集团华昱能源化工山西有限责任公司 Oxygen-coal ratio control method

Similar Documents

Publication Publication Date Title
CN102455135A (en) Furnace temperature control method and control equipment for open fire heating furnace
US7877979B2 (en) Integrated gasification combined cycle plant, method of controlling the plant, and method of producing fuel gas
JP2002146366A (en) Self-learning fuzzy controlling method for coal gasification unit
KR101739678B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP3433968B2 (en) Operation control method of integrated coal gasification combined cycle system
CN115479276A (en) Control device, waste incineration facility, control method, and program
KR20150131385A (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP6288501B2 (en) Control apparatus and control method
JP2002167583A (en) Method for controlling coal gasification apparatus
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JP4485900B2 (en) Gasification combined power generation facility and control method thereof
JP6400415B2 (en) Gasification combined power generation facility, control device and control method thereof
JP4276146B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP2825230B2 (en) Process control equipment
JPH09126433A (en) Combustion control device for incinerator
JP4097999B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP3553483B2 (en) Melting furnace combustion control method and apparatus in waste gasification melting furnace
JP2003065069A (en) Control device for gas turbine equipment
JP4156575B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP2002122317A (en) Combustion control system of refuse incinerator
JP2007297945A (en) Fuel gas calorie control device for gas turbine
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JP3024043B2 (en) Combustion control method for waste-melting furnace produced gas combustion furnace
JPH05157204A (en) Fuel control device for auxiliary boiler for a plurality of boiler systems