JPH05259091A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05259091A
JPH05259091A JP5462992A JP5462992A JPH05259091A JP H05259091 A JPH05259091 A JP H05259091A JP 5462992 A JP5462992 A JP 5462992A JP 5462992 A JP5462992 A JP 5462992A JP H05259091 A JPH05259091 A JP H05259091A
Authority
JP
Japan
Prior art keywords
silicon
substrate
oxide film
concentration
germane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5462992A
Other languages
Japanese (ja)
Inventor
Masakuni Numano
正訓 沼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5462992A priority Critical patent/JPH05259091A/en
Publication of JPH05259091A publication Critical patent/JPH05259091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a vapor growth layer at a low temperature through a device of simple structure by a method wherein an oxide film on the surface of a silicon substrate is removed in an atmosphere of oxide film removing functional gas set in concentration so as not to deposit silicon and germanium. CONSTITUTION:A substrate 11 is put in a vapor growth device and heated up to a prescribed temperature lower than 1000 deg.C in an H2 atmosphere. Then, the device is charged with mixed gas of hydrides of Ge and Si, or chlorides of Ge and Si, or Ge alone set in concentration so as not to deposit Si or Ge and H2. And then the substrate is thermally treated under prescribed conditions. A natural oxide film 12 formed on the surface of the Si substrate 11 is removed by thermal treatment. By this setup, a natural oxide film can be removed at a low temperature by the use of a conventional vapor growth device, and a vapor growth layer is improved in crystallinity and uniformity of thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の製造方
法に関するもので、特にSi(シリコン)及びSi−G
e(シリコン−ゲルマニウム)の気相成長に使用される
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and particularly to Si (silicon) and Si-G.
e (silicon-germanium) is used for vapor phase growth.

【0002】[0002]

【従来の技術】一般に、シリコン(Si)の基板にシリ
コンを気相成長させたエピタキシャル基板はMOSデバ
イス等に用いられている。このエピタキシャル基板の製
造は、温度が約1100〜1200℃の水素(H2 )の
雰囲気中にSi基板をおいて、塩酸(HCl)でエッチ
ング、あるいは水素雰囲気中での熱処理を行うことによ
り、シリコン基板の表面の自然酸化膜を除去し、その後
シリコン水素化合物(例えば、SiH4 、Si2 6
あるいは、シリコン塩化物(例えば、SiH2 、C
2 、SiHCl3 、SiCl4 )等のエピタキシャル
ソ−スガスを用いてシリコン基板の表面に単結晶のシリ
コン膜を堆積させている。
2. Description of the Related Art Generally, an epitaxial substrate in which silicon is vapor-deposited on a silicon (Si) substrate is used for MOS devices and the like. This epitaxial substrate is manufactured by placing the Si substrate in an atmosphere of hydrogen (H 2 ) at a temperature of about 1100 to 1200 ° C., etching with hydrochloric acid (HCl), or performing heat treatment in a hydrogen atmosphere to obtain silicon. The native oxide film on the surface of the substrate is removed, and then silicon hydride compounds (eg, SiH 4 , Si 2 H 6 )
Alternatively, silicon chlorides (eg SiH 2 , C
A single crystal silicon film is deposited on the surface of the silicon substrate by using an epitaxial source gas such as l 2 , SiHCl 3 , or SiCl 4 ).

【0003】[0003]

【発明が解決しようとする課題】上述のように、従来の
製造方法においては、気相成長が約1100〜1200
℃と高温の状態で行われ、この高温状態において気相成
長層を形成する前に、自然酸化膜を除去している。とこ
ろが、デバイスの微細化に伴って、プロセスの温度が高
くなればなるほど気相成長中の雰囲気(例えば、反応室
の石英菅、サセプタ)からの汚染の影響、あるいは基板
から気相成長層への不純物の拡散の影響が顕著になる。
このため、気相成長プロセスを含む全プロセスの低温化
が必要となってきている。
As described above, in the conventional manufacturing method, vapor phase growth is about 1100 to 1200.
It is performed at a temperature as high as 0 ° C., and the natural oxide film is removed before forming the vapor phase growth layer at this high temperature. However, with the miniaturization of devices, the higher the temperature of the process, the more the influence of contamination from the atmosphere during the vapor phase growth (eg, the quartz tube in the reaction chamber, the susceptor) or the growth of the substrate to the vapor phase growth layer. The influence of the diffusion of impurities becomes remarkable.
Therefore, it is necessary to lower the temperature of all processes including the vapor phase growth process.

【0004】しかしながら、1000℃以下の温度で
は、水素ガス(H2 )による酸化膜(SiO2 )のエッ
チングレ−トが極めて低くなるという問題がある。(例
えば、30Torr、900℃で0.13×10-10
/min)。また、800〜1000℃の温度での自然
酸化膜の除去としては、高真空中で熱処理を行うことに
よって可能となるが、これを気相成長し応用する場合は
装置が複雑になるという問題があった。
However, at a temperature of 1000 ° C. or lower, there is a problem that the etching rate of the oxide film (SiO 2 ) by hydrogen gas (H 2 ) becomes extremely low. (For example, 0.13 × 10 -10 m at 30 Torr and 900 ° C)
/ Min). Further, the natural oxide film can be removed at a temperature of 800 to 1000 ° C. by performing a heat treatment in a high vacuum, but when this is vapor-deposited and applied, the apparatus becomes complicated. there were.

【0005】本発明は、上記事情を考慮してなされたも
のであって、可及的に簡単な装置を用いて低温で気相成
長層を形成することのできる、半導体装置の製造方法を
提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and provides a method for manufacturing a semiconductor device capable of forming a vapor phase growth layer at a low temperature using an apparatus as simple as possible. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明では、シリコン又はゲルマニウムが堆積し
ない濃度の、ゲルマン及びシリコン水素化物、或いはゲ
ルマン及びシリコン塩化物、或いはゲルマンのみから成
るガスの雰囲気中にシリコン基板を置いて、シリコン基
板表面の酸化膜を除去する工程と、その後、所定濃度の
シリコン水素化物、或いはシリコン塩化物から成るエピ
タキシャルソ−スガス或いはゲルマンをを用いて前記シ
リコン基板表面にエピタキシャル成長させる工程とを具
備することを特徴としている。
In order to achieve the above object, according to the present invention, a gas containing only germane and silicon hydride, germane and silicon chloride, or germane in a concentration that does not deposit silicon or germanium is used. A step of placing a silicon substrate in an atmosphere to remove an oxide film on the surface of the silicon substrate, and then using an epitaxial source gas or germane made of silicon hydride or silicon chloride having a predetermined concentration, the surface of the silicon substrate And a step of epitaxially growing.

【0007】[0007]

【作用】このように構成された本発明の製造方法によれ
ば、シリコン基板表面の酸化膜の除去が、シリコン及び
ゲルマニウムが堆積しない濃度の酸化膜除去機能ガスの
雰囲気中で行われることにより、従来の気相成長装置を
用いることができるとともに、従来よりも低温で行うこ
とができる。
According to the manufacturing method of the present invention thus configured, the oxide film on the surface of the silicon substrate is removed in the atmosphere of the oxide film removing functional gas having a concentration at which silicon and germanium are not deposited, A conventional vapor phase growth apparatus can be used, and it can be performed at a lower temperature than before.

【0008】[0008]

【実施例】【Example】

(実施例1)本発明の第一の実施例を[図1]及び[図
2]を参照し、詳細に説明する。まず、例えば、CZ法
により生成された鏡面仕上げのシリコン単結晶基板11
を洗浄する([図1]ステップF1参照)。この洗浄
は、フッ酸の水溶液(HF:H2 O=1:200)に、
上記シリコン単結晶基板11を3分間浸した後、超純水
で10分間水洗いし、リンサ−ドライヤを用いて乾燥さ
せることによって行われる。この時、[図2a]に示す
ように、シリコン単結晶基板11表面上は、自然酸化膜
(SiO2 )12によって覆われている。次に、この基
板を例えばコ−ルドウォ−ル型縦型気相成長装置内に置
き、水素ガス(H2 )雰囲気中で1000℃以下の所定
温度(例えば、800℃)まで昇温する([図1]ステ
ップF2参照)。次に、水素ガス雰囲気中で低濃度、す
なわちシリコン又はゲルマニウム(Ge)が堆積しない
程度の、ゲルマン及びシリコン水素化物、或いはゲルマ
ン及びシリコン塩化物、或いはゲルマンのみから成るガ
ス、例えば、濃度15ppmのゲルマン(GeH4 )及
び濃度15ppmのシラン(SiH4 )及び水素
(H2 )から成る混合ガスを上記気相成長装置内に導入
し、所定の条件、例えば、温度800℃、圧力10To
rr下で熱処理を行う([図1]ステップF3参照)。
[図2b]に示すように、この熱処理によってシリコン
基板11表面上の自然酸化膜12が除去される。その
後、水素ガス雰囲気中で所定濃度のエピタキシャルソ−
スガス、例えば、濃度が0.2パ−セントのモノシラン
を含んだモノシラン及び水素から成るガスを上記気相成
長装置に導入し、所定の条件、例えば、温度800℃、
圧力10Torr下で気相成長を行う([図1]ステッ
プF4参照)。すると、[図2c]に示すように、シリ
コン単結晶基板11表面上にシリコン単結晶膜13をエ
ピタキシャル成長させることができる。その後、常温ま
で降温させることによって、エピタキシャル基板が完成
する([図1]ステップF5参照)。
(Embodiment 1) A first embodiment of the present invention will be described in detail with reference to FIG. 1 and FIG. First, for example, a mirror-finished silicon single crystal substrate 11 produced by the CZ method
Are washed (see step F1 in [FIG. 1]). This washing is performed with an aqueous solution of hydrofluoric acid (HF: H 2 O = 1: 200).
The silicon single crystal substrate 11 is dipped for 3 minutes, washed with ultrapure water for 10 minutes, and dried using a rinse dryer. At this time, as shown in FIG. 2A, the surface of the silicon single crystal substrate 11 is covered with a natural oxide film (SiO 2 ) 12. Next, this substrate is placed in, for example, a cold wall type vertical vapor deposition apparatus, and heated to a predetermined temperature of 1000 ° C. or lower (for example, 800 ° C.) in a hydrogen gas (H 2 ) atmosphere ([[ 1] See step F2). Next, a gas containing only germane and silicon hydride, germane and silicon chloride, or germane in a low concentration in a hydrogen gas atmosphere, that is, to the extent that silicon or germanium (Ge) is not deposited, for example, germane having a concentration of 15 ppm. (GeH 4 ) and a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) having a concentration of 15 ppm are introduced into the vapor phase growth apparatus, and a predetermined condition, for example, temperature 800 ° C., pressure 10 To.
Heat treatment is performed under rr (see step F3 in [FIG. 1]).
As shown in FIG. 2B, the natural oxide film 12 on the surface of the silicon substrate 11 is removed by this heat treatment. After that, the epitaxial solution with a predetermined concentration is formed in a hydrogen gas atmosphere.
Gas such as monosilane containing monosilane having a concentration of 0.2 percent and hydrogen is introduced into the vapor phase growth apparatus, and a predetermined condition, for example, a temperature of 800 ° C.,
Vapor growth is performed under a pressure of 10 Torr (see step F4 in [FIG. 1]). Then, as shown in FIG. 2c, the silicon single crystal film 13 can be epitaxially grown on the surface of the silicon single crystal substrate 11. After that, the temperature is lowered to room temperature to complete the epitaxial substrate (see step F5 in [FIG. 1]).

【0009】低温下にて、従来の技術において形成され
た気相成長層と第一の実施例において形成された気相成
長層とを比較すると、前者では、多結晶シリコンが、後
者では、単結晶シリコンの成長が見られた。加えて、二
つの気相成長層の欠陥を観察すると、前者では、多数見
られたのに対し、後者では、1個/cm2 以下の欠陥密
度であった。これらの、気相成長層の結晶性の善し悪し
は、気相成長層工程前の前処理工程での自然酸化膜の除
去が完全に行われているか否かの違いである。従来の技
術においては、自然酸化膜はほとんど除去されず、第一
の実施例においては、完全に自然酸化膜が除去されてい
るのが明らかである。
Comparing the vapor phase growth layer formed in the prior art with the vapor phase growth layer formed in the first embodiment at a low temperature, polycrystalline silicon is used in the former case and monocrystalline silicon is used in the latter case. Growth of crystalline silicon was observed. In addition, when observing defects in the two vapor phase growth layers, many defects were observed in the former, whereas the defect density was 1 defect / cm 2 or less in the latter. The goodness or badness of the crystallinity of the vapor phase growth layer depends on whether or not the native oxide film is completely removed in the pretreatment step before the vapor phase growth layer step. In the conventional technique, the natural oxide film is hardly removed, and in the first embodiment, it is apparent that the natural oxide film is completely removed.

【0010】(実施例2)本発明の第二の実施例を[図
3]を参照し、詳細に説明する。第二の実施例は、シリ
コン表面にのみ気相成長させる選択気相成長に適用した
場合の例である。[図3a]に示すように、シリコン単
結晶基板21の表面を熱酸化し、約0.2マイクロメ−
トルの厚さのシリコン酸化膜(SiO2 )24を形成す
る。次に、[図3b]に示すように、このシリコン酸化
膜24を周知のフォトリソグラフィ技術によりパタ−ニ
ングを行い、直径が0.5〜2.0マイクロメ−トルの
開口部25を形成する。次に、この基板に本発明を適用
する。すなわち、フッ酸の水溶液(HF:H2 O=1:
200)に、上記基板を3分間浸した後、超純水で10
分間水洗いし、リンサ−ドライヤを用いて乾燥させる。
この時、[図3c]に示すように、開口部のシリコンが
露出したシリコン単結晶基板21の表面は、自然酸化膜
22によって覆われている。そして、基板を気相成長装
置内に置き、水素ガス雰囲気中で約650℃まで昇温
し、以下、この温度を保つようにする。そして、例え
ば、シリコン又はゲルマニウム(Ge)が堆積しない程
度の、ゲルマン及びシリコン水素化物、或いはゲルマン
及びシリコン塩化物、或いはゲルマンのみから成るガ
ス、濃度15ppmのゲルマン(GeH4 )及び濃度1
5ppmのシラン(SiH4 )及び水素(H2 )から成
る混合ガスを上記気相成長装置内に導入し、温度650
℃、圧力5Torrの条件下で20分間熱処理を行う。
[図3d]に示すように、この熱処理によって開口部の
底の自然酸化膜22が除去される。その後、水素ガス雰
囲気中で所定濃度のエピタキシャルソ−スガス、例え
ば、濃度が0.1パ−セントのシラン及び0.02パ−
セントのゲルマン及び水素から成るガスを上記気相成長
装置に導入する。[図3e]に示すように、開口部のみ
にシリコン−ゲルマニウムを気相成長させて、シリコン
−ゲルマニウム単結晶膜23をエピタキシャル成長させ
る。
(Second Embodiment) A second embodiment of the present invention will be described in detail with reference to FIG. The second embodiment is an example applied to selective vapor phase growth in which vapor phase growth is performed only on the silicon surface. As shown in FIG. 3a, the surface of the silicon single crystal substrate 21 is thermally oxidized to about 0.2 μm.
A silicon oxide film (SiO 2 ) 24 having a thickness of torr is formed. Next, as shown in FIG. 3B, the silicon oxide film 24 is patterned by a well-known photolithography technique to form an opening 25 having a diameter of 0.5 to 2.0 micrometer. Next, the present invention is applied to this substrate. That is, an aqueous solution of hydrofluoric acid (HF: H 2 O = 1: 1)
200), soak the substrate for 3 minutes, and then use ultrapure water for 10 minutes.
Wash with water for a minute and dry with a rinse dryer.
At this time, as shown in FIG. 3C, the surface of the silicon single crystal substrate 21 where the silicon in the opening is exposed is covered with the natural oxide film 22. Then, the substrate is placed in a vapor phase growth apparatus, the temperature is raised to about 650 ° C. in a hydrogen gas atmosphere, and this temperature is maintained thereafter. Then, for example, a gas consisting of germane and silicon hydride, germane and silicon chloride, or germane only, to the extent that silicon or germanium (Ge) is not deposited, germane (GeH 4 ) at a concentration of 15 ppm, and a concentration of 1
A mixed gas of 5 ppm of silane (SiH 4 ) and hydrogen (H 2 ) was introduced into the vapor phase growth apparatus, and the temperature was raised to 650.
Heat treatment is performed for 20 minutes at a temperature of 5 ° C. and a pressure of 5 Torr.
As shown in FIG. 3d, this heat treatment removes the native oxide film 22 at the bottom of the opening. Thereafter, an epitaxial source gas having a predetermined concentration in a hydrogen gas atmosphere, for example, silane having a concentration of 0.1 percent and 0.02 percent is used.
A gas consisting of St. Germane and hydrogen is introduced into the vapor phase growth apparatus. As shown in FIG. 3e, silicon-germanium is vapor-grown only in the opening to epitaxially grow the silicon-germanium single crystal film 23.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、従
来の気相成長成長装置を用いて、低温でほぼ自然酸化膜
を除去できるとともに、気相成長層の結晶性及び膜厚の
均一性を大きく向上させることができる。
As described above, according to the present invention, a conventional vapor phase growth apparatus can be used to remove almost a natural oxide film at a low temperature, and the crystallinity and film thickness of the vapor phase growth layer can be reduced. Uniformity can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の(実施例1)を説明するフロ−
チャ−ト。
FIG. 1 is a flow chart illustrating (Example 1) of the method of the present invention.
Chart.

【図2】本発明の方法の(実施例1)によって製造され
る半導体基板の工程断面図。
FIG. 2 is a process sectional view of a semiconductor substrate manufactured by (Example 1) of the method of the present invention.

【図3】本発明の方法の(実施例2)によって製造され
る半導体基板の工程断面図。
FIG. 3 is a process sectional view of a semiconductor substrate manufactured by (Example 2) of the method of the present invention.

【符号の説明】[Explanation of symbols]

11、21 シリコン単結晶基板(シリコン基板) 12、22 自然酸化膜(酸化膜) 13 気相成長層(単結晶のシリコン膜) 23 気相成長層(単結晶のシリコン−ゲルマ
ニウム膜) 24 シリコン酸化膜
11, 21 Silicon single crystal substrate (silicon substrate) 12, 22 Natural oxide film (oxide film) 13 Vapor growth layer (single crystal silicon film) 23 Vapor growth layer (single crystal silicon-germanium film) 24 Silicon oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン又はゲルマニウムが堆積しない濃
度の、ゲルマン及びシリコン水素化物、或いはゲルマン
及びシリコン塩化物、或いはゲルマンのみから成るガス
の雰囲気中にシリコン基板を置いて、シリコン基板表面
の酸化膜を除去する工程と、 その後、所定濃度のシリコン水素化物、或いはシリコン
塩化物から成るエピタキシャルソ−スガス或いはゲルマ
ンを用いて前記シリコン基板表面にエピタキシャル成長
させる工程とを具備することを特徴とする半導体装置の
製造方法。
1. A silicon substrate is placed in an atmosphere of a gas containing only germane and silicon hydride, germane and silicon chloride, or germane in a concentration such that silicon or germanium is not deposited, and an oxide film on the surface of the silicon substrate is removed. A method of manufacturing a semiconductor device, which comprises a step of removing and a step of epitaxially growing on a surface of the silicon substrate by using an epitaxial source gas or germane made of silicon hydride or silicon chloride having a predetermined concentration. Method.
JP5462992A 1992-03-13 1992-03-13 Manufacture of semiconductor device Pending JPH05259091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5462992A JPH05259091A (en) 1992-03-13 1992-03-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5462992A JPH05259091A (en) 1992-03-13 1992-03-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05259091A true JPH05259091A (en) 1993-10-08

Family

ID=12976054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5462992A Pending JPH05259091A (en) 1992-03-13 1992-03-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05259091A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190979A (en) * 1996-01-10 1997-07-22 Nec Corp Selective silicon epitaxial growth method, and growth device
US5821158A (en) * 1995-08-28 1998-10-13 Nec Corporation Substrate surface treatment method capable of removing a spontaneous oxide film at a relatively low temperature
JP2008085198A (en) * 2006-09-28 2008-04-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device
JP2008538161A (en) * 2005-03-31 2008-10-09 東京エレクトロン株式会社 Method and system for removing oxide from a substrate
JP2009177202A (en) * 2007-04-02 2009-08-06 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device, and substrate processing apparatus
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device
US8012885B2 (en) 2007-04-02 2011-09-06 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device
JP2012094905A (en) * 2007-03-09 2012-05-17 Cree Inc Thick nitride semiconductor structure with interlayer structure, and method of fabricating thick nitride semiconductor structure
JP2018093117A (en) * 2016-12-06 2018-06-14 株式会社Sumco Manufacturing method of epitaxial wafer
JP2020194899A (en) * 2019-05-29 2020-12-03 信越半導体株式会社 Manufacturing method for semiconductor silicon wafer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821158A (en) * 1995-08-28 1998-10-13 Nec Corporation Substrate surface treatment method capable of removing a spontaneous oxide film at a relatively low temperature
JPH09190979A (en) * 1996-01-10 1997-07-22 Nec Corp Selective silicon epitaxial growth method, and growth device
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
JP2008538161A (en) * 2005-03-31 2008-10-09 東京エレクトロン株式会社 Method and system for removing oxide from a substrate
JP2008085198A (en) * 2006-09-28 2008-04-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device
JP2012094905A (en) * 2007-03-09 2012-05-17 Cree Inc Thick nitride semiconductor structure with interlayer structure, and method of fabricating thick nitride semiconductor structure
US9054017B2 (en) 2007-03-09 2015-06-09 Cree, Inc. Thick nitride semiconductor structures with interlayer structures and methods of fabricating thick nitride semiconductor structures
JP2009177202A (en) * 2007-04-02 2009-08-06 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device, and substrate processing apparatus
US8012885B2 (en) 2007-04-02 2011-09-06 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device
JP2018093117A (en) * 2016-12-06 2018-06-14 株式会社Sumco Manufacturing method of epitaxial wafer
JP2020194899A (en) * 2019-05-29 2020-12-03 信越半導体株式会社 Manufacturing method for semiconductor silicon wafer

Similar Documents

Publication Publication Date Title
JPS58130517A (en) Manufacture of single crystal thin film
JP4682508B2 (en) Manufacturing method of silicon epitaxial wafer
JPH07302760A (en) Selective semiconductor region formation
JPH05259091A (en) Manufacture of semiconductor device
JP4215447B2 (en) Manufacturing method of silicon epitaxial wafer
JP3298467B2 (en) Manufacturing method of epitaxial wafer
JP2775563B2 (en) Semiconductor device and manufacturing method thereof
JPH04258115A (en) Manufacture of semiconductor substrate
JP2001210650A (en) Method for manufacturing epitaxial silicon wafer
US8158495B2 (en) Process for forming a silicon-based single-crystal portion
JP2725460B2 (en) Manufacturing method of epitaxial wafer
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
Aoyama et al. Surface cleaning for Si epitaxy using photoexcited fluorine gas
JPH08241863A (en) Manufacture of semiconductor substrate
JP3157280B2 (en) Method for manufacturing semiconductor device
JPH07221034A (en) Manufacture of semiconductor device
WO2024009705A1 (en) Method for manufacturing epitaxial wafer
JP2961188B2 (en) Method for manufacturing SOI substrate
JPH09306844A (en) Semiconductor device and manufacture thereof
JPH0660401B2 (en) Silicon thin film manufacturing method
KR0185985B1 (en) Method for forming epitaxial layer in silicon wafer
JPH04127522A (en) Method for selective growth of semiconductor crystal
JPH118226A (en) Cleaning of semiconductor substrate surface and apparatus therefor
JPH05234919A (en) Manufacture of semiconductor device
JPH0458525A (en) Manufacture of semiconductor device