JPH05259045A - Electron beam lithography device - Google Patents

Electron beam lithography device

Info

Publication number
JPH05259045A
JPH05259045A JP5480592A JP5480592A JPH05259045A JP H05259045 A JPH05259045 A JP H05259045A JP 5480592 A JP5480592 A JP 5480592A JP 5480592 A JP5480592 A JP 5480592A JP H05259045 A JPH05259045 A JP H05259045A
Authority
JP
Japan
Prior art keywords
deflection
main
electron beam
sub
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5480592A
Other languages
Japanese (ja)
Inventor
Yoshio Kiyonari
能夫 清成
Ichii Mizuno
一亥 水野
Hiroya Ota
洋也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5480592A priority Critical patent/JPH05259045A/en
Publication of JPH05259045A publication Critical patent/JPH05259045A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the improvement of a throughput by a method wherein main deflection and subdeflection regions are changed-over on the basis of information on lithography patterns. CONSTITUTION:A beam emitted from an electron gun 1 is deflected by a subdeflector 7 for microscopic region deflection and a main deflector 8 and patterns are drawn on a sample 9. An electron beam lithography device has the deflection address unit change-over functions of these deflectors 8 and 7. The improvement of a throughput is contrived by performing a change-over of main deflection and subdeflection units in every accuracies corresponding to the lithograph patterns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子線描画装置におい
て、描画精度の必要に応じて主偏向,副偏向の偏向アド
レス単位を可変制御する方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of variably controlling a deflection address unit of a main deflection and a sub deflection in an electron beam drawing apparatus according to the necessity of drawing accuracy.

【0002】[0002]

【従来の技術】電子線描画装置において、低歪で高速の
電子線偏向を行なう一つの方法として、低歪の磁場偏向
を主偏向器とし、高速の静電偏向を副偏向器として組み
合わせて用いる多段偏向方式がある。
2. Description of the Related Art In an electron beam drawing apparatus, as one method for performing high-speed electron beam deflection with low distortion, a low-distortion magnetic field deflection is used as a main deflector and a high-speed electrostatic deflection is used as a sub-deflector. There is a multi-stage deflection method.

【0003】一方、偏向器制御は、通常高信頼化の為デ
ジタル化されている。すなわち、偏向データはDAC回
路によりアナログ値となり増幅され、偏向器への電気的
出力となる。したがって上記多段偏向においては、偏向
量の大きい主偏向には高分解能DACを用い、高速の副
偏向器には、高速DACを用いる。
On the other hand, the deflector control is usually digitalized for high reliability. That is, the deflection data becomes an analog value and is amplified by the DAC circuit and becomes an electrical output to the deflector. Therefore, in the multi-stage deflection, a high-resolution DAC is used for the main deflection with a large deflection amount, and a high-speed DAC is used for the high-speed sub-deflector.

【0004】アドレス単位は、描画のビーム偏向の最小
単位であり、偏向フィールドは、高分解能DACの最大
レンジに相当する。
The address unit is the minimum unit of beam deflection for drawing, and the deflection field corresponds to the maximum range of the high resolution DAC.

【0005】最小描画精度から決められる微小領域によ
り、主偏向器(電磁偏向器)の偏向領域が決まってくる。
微細描画が必要な部分があれば、偏向アドレス単位(L
SB)を小さくし、静電偏向領域および電磁偏向領域を
小さくする必要がある。つまり一部でも微細描画部分が
あれば、電磁偏向領域を小さくし、偏向フィールドが小
さくなり、これによりステージの移動回数が多くなって
スループットを低下させる欠点を有している。一方高ス
ループットを得るために、偏向アドレス単位を大きく
し、偏向フィールドを大きくすると、微細描画部分の描
画精度を確保できず高スループットかつ高精度を両立さ
せることができなかった。
The deflection area of the main deflector (electromagnetic deflector) is determined by the minute area determined from the minimum drawing accuracy.
If there is a portion that requires fine drawing, the deflection address unit (L
It is necessary to reduce SB) and the electrostatic deflection region and the electromagnetic deflection region. In other words, if there is a fine drawing portion even in part, the electromagnetic deflection area is reduced and the deflection field is reduced, which increases the number of stage movements and reduces throughput. On the other hand, if the deflection address unit is increased and the deflection field is increased in order to obtain high throughput, the drawing accuracy of the fine drawing portion cannot be secured, and it is not possible to achieve both high throughput and high accuracy.

【0006】[0006]

【発明が解決しようとする課題】本発明は、各部に必要
な領域に応じた描画精度を、偏向アドレス単位を選択す
ることにより決定し、微細描画部分を含んだ描画パター
ンを高スループットで描画する。
According to the present invention, the drawing accuracy according to the area required for each part is determined by selecting a deflection address unit, and a drawing pattern including a fine drawing part is drawn with high throughput. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、まず各領域での微細度を判断し低精度領域において
は、(1)主偏向領域(電磁偏向)のLSBを上げる。
(2倍,4倍等、必要精度がないほど偏向領域を広げら
れる。)(2)小偏向領域(静電偏向)のLSBを上げ
る。((1)により静電偏向による領域が変わるた
め。)高精度が必要な領域では、両偏向領域を小さくす
る必要がある。この切り替え機能により各領域に必要な
精度を確保し、かつ高速化がはかれる。
In order to achieve the above object, first, the fineness in each region is judged, and in the low precision region, (1) the LSB of the main deflection region (electromagnetic deflection) is increased.
(The deflection area can be widened so that there is no required accuracy such as 2 times or 4 times.) (2) Raise the LSB of the small deflection area (electrostatic deflection). (Because the area due to electrostatic deflection changes due to (1).) In areas where high accuracy is required, it is necessary to reduce both deflection areas. This switching function ensures the accuracy required for each area and speeds up.

【0008】[0008]

【作用】高精度描画領域では電磁偏向領域を小さくする
ことにより精度向上を図る。それに対し、微細なパター
ンのない低精度領域では、精度の低下が問題がない程度
に電磁偏向領域を広げ、それによりステージ移動回数の
減少がみこまれ、又、静電偏向領域拡大に伴い、電磁偏
向回数も減少することにより、電磁偏向後の待ち時間の
減少が見込まれる。
In the high precision drawing area, the accuracy is improved by reducing the electromagnetic deflection area. On the other hand, in the low-precision area where there is no fine pattern, the electromagnetic deflection area is widened to the extent that there is no problem of deterioration in accuracy, which causes a reduction in the number of stage movements. By reducing the number of deflections, it is expected that the waiting time after electromagnetic deflection will be reduced.

【0009】このステージ移動,電磁偏向待ち時間の減
少により、スループットの向上が図れる。
Through the movement of the stage and the reduction of the electromagnetic deflection waiting time, the throughput can be improved.

【0010】[0010]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
The details of the present invention will be described below with reference to the illustrated embodiments.

【0011】図1は、可変成形ビーム方式の電子線描画
装置である。可変成形ビーム方式とは、電子銃1より発
したビームを第一矩形アパーチャ2と第二矩形アパーチ
ャ4の共役断面を成形偏向器3で制御し、任意の矩形断
面ビームを得る方式である。成形ビームは、縮小レンズ
5により縮小され、対物レンズ6により試料面に結像さ
れる。更に、駆動モーター11によりステージ10を移
動し、主偏向器8と副偏向器7はビームを偏向し、試料
9上の所望の位置に露光パターンを形成する。図2は、
偏向器制御のブロック図を示す。計算機14は、偏向デ
ータを、主偏向DAC回路16と副偏向DAC回路15
へ転送する。それぞれのDAC回路は偏向データをアナ
ログ出力とし、主,副偏向アンプ回路18,17により
主,副偏向器8,7を駆動する。主,副偏向アンプ回路
18,17は、必要に応じて、感度切り替え回路20,
19で偏向出力を可変としている。すなわち、主,副偏
向アドレス単位をこれにより設定することができる。
FIG. 1 shows a variable shaped beam type electron beam drawing apparatus. The variable shaped beam system is a system in which the beam emitted from the electron gun 1 is controlled by the shaping deflector 3 at the conjugate cross section of the first rectangular aperture 2 and the second rectangular aperture 4 to obtain an arbitrary rectangular cross section beam. The shaped beam is reduced by the reduction lens 5 and imaged on the sample surface by the objective lens 6. Further, the stage 10 is moved by the drive motor 11, the main deflector 8 and the sub deflector 7 deflect the beam, and an exposure pattern is formed at a desired position on the sample 9. Figure 2
3 shows a block diagram of deflector control. The calculator 14 converts the deflection data into the main deflection DAC circuit 16 and the sub deflection DAC circuit 15
Transfer to. Each DAC circuit outputs deflection data as an analog output, and the main and sub-deflection amplifier circuits 18 and 17 drive the main and sub-deflectors 8 and 7. The main and sub-deflection amplifier circuits 18 and 17 include a sensitivity switching circuit 20 and a sensitivity switching circuit 20 as necessary.
The deflection output is variable at 19. That is, the main and sub deflection address units can be set by this.

【0012】図3に主,副偏向アドレス単位可変の例を
示す。試料9の全領域において、微細パターンの必要な
部分と、そうでない部分がある。この時このパターンの
判断により主,副偏向領域(LSB)を切り替えるもの
とする。例えば微細モード時は電磁偏向領域を4mm角と
し、高速モード時(微細パターンのない領域)の電磁偏
向領域を8mm角とする。この主偏向アドレス単位拡大に
より副偏向アドレス単位も拡大する必要があり、本例で
は微細モード時副偏向領域を40μm,高速モード時副
偏向領域を80μmとした。この場合、面積比として4
倍にすることにより、ステージ移動回数,電磁偏向回数
等が減少し、スループットの向上が図れる。
FIG. 3 shows an example of changing the main and sub deflection address units. In the entire area of the sample 9, there are portions where the fine pattern is necessary and portions where it is not. At this time, the main and sub deflection regions (LSB) are switched according to the judgment of this pattern. For example, the electromagnetic deflection area is set to 4 mm square in the fine mode, and the electromagnetic deflection area is set to 8 mm square in the high speed mode (area without the fine pattern). It is necessary to enlarge the sub deflection address unit by the enlargement of the main deflection address unit. In this example, the sub deflection region in the fine mode is 40 μm and the sub deflection region in the high speed mode is 80 μm. In this case, the area ratio is 4
By doubling the number of times, the number of stage movements, the number of electromagnetic deflections, etc. are reduced, and throughput can be improved.

【0013】又、静電偏向器を複数段もつ電子線描画装
置においても、同様の方式を採用することが出来る。
The same method can be applied to an electron beam drawing apparatus having a plurality of electrostatic deflectors.

【0014】[0014]

【発明の効果】実施例にあげた例をもとに、スループッ
トの換算を行なってみる。電磁偏向領域を4倍にあげた
場合、16mm角領域描画を例にとると、ステージ移動回
数15回→3回,電磁偏向回数1600回→400回と
なる。今、スループット換算条件として(1)描画時
間,静電偏向待ち時間は、無視する。(2)ステージ移
動時間は、微細モード50ms/4mm,高速モード80
ms/8mmとする。(3)電磁待ち時間を50μsとす
る。これによりスループット0.83s →0.26sと
約3倍のスループット向上が見込まれる。
EFFECTS OF THE INVENTION Based on the examples given in the embodiments, the throughput will be converted. When the electromagnetic deflection area is increased four times, taking the 16 mm square area as an example, the stage movement frequency is 15 times → 3 times, and the electromagnetic deflection frequency is 1600 times → 400 times. Now, as the throughput conversion condition, (1) drawing time and electrostatic deflection waiting time are ignored. (2) Stage movement time is 50 ms / 4 mm in fine mode, 80 in high-speed mode
ms / 8 mm. (3) The electromagnetic waiting time is 50 μs. Through this, it is expected that the throughput will increase from 0.83 s to 0.26 s, which is about three times higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子線描画装置の基本構成図である。FIG. 1 is a basic configuration diagram of an electron beam drawing apparatus.

【図2】主,副偏向領域切り替え機能をもつ偏向器制御
系ブロック図である。
FIG. 2 is a block diagram of a deflector control system having a main / sub deflection area switching function.

【図3】主,副偏向領域切り替え実施例を示す図であ
る。
FIG. 3 is a diagram showing an example of switching a main deflection region and a sub deflection region.

【符号の説明】[Explanation of symbols]

1…電子銃、2…第一矩形アパーチャ、3…成形偏向
器、4…第二矩形アパーチャ、5…縮小レンズ、6…対
物レンズ、7…副偏向器、8…主偏向器、9…試料、1
0…ステージ、11…ステージ駆動モータ、12…主偏
向領域、13…副偏向領域、14…計算機、15…副偏
向DAC回路、16…主偏向DAC回路、17…副偏向
アンプ回路、18…主偏向アンプ回路、19…副偏向感
度切替回路、20…主偏向感度切替回路。
DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... First rectangular aperture, 3 ... Forming deflector, 4 ... Second rectangular aperture, 5 ... Reduction lens, 6 ... Objective lens, 7 ... Sub deflector, 8 ... Main deflector, 9 ... Sample 1
0 ... Stage, 11 ... Stage drive motor, 12 ... Main deflection area, 13 ... Sub deflection area, 14 ... Calculator, 15 ... Sub deflection DAC circuit, 16 ... Main deflection DAC circuit, 17 ... Sub deflection amplifier circuit, 18 ... Main Deflection amplifier circuit, 19 ... Sub deflection sensitivity switching circuit, 20 ... Main deflection sensitivity switching circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料の位置決め、移動を行なうステージ
と、電子ビームを試料面の所望の位置へ偏向する偏向器
よりなる電子線描画装置において、主偏向,副偏向の、
偏向アドレス単位を複数の値として制御し描画パターン
に応じて前記偏向アドレス単位を選択することを特徴と
した電子線描画装置。
1. An electron beam drawing apparatus comprising a stage for positioning and moving a sample, and a deflector for deflecting an electron beam to a desired position on a sample surface.
An electron beam drawing apparatus characterized in that the deflection address unit is controlled as a plurality of values and the deflection address unit is selected according to a drawing pattern.
JP5480592A 1992-03-13 1992-03-13 Electron beam lithography device Pending JPH05259045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5480592A JPH05259045A (en) 1992-03-13 1992-03-13 Electron beam lithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5480592A JPH05259045A (en) 1992-03-13 1992-03-13 Electron beam lithography device

Publications (1)

Publication Number Publication Date
JPH05259045A true JPH05259045A (en) 1993-10-08

Family

ID=12980954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5480592A Pending JPH05259045A (en) 1992-03-13 1992-03-13 Electron beam lithography device

Country Status (1)

Country Link
JP (1) JPH05259045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544698B1 (en) 2001-06-27 2003-04-08 University Of South Florida Maskless 2-D and 3-D pattern generation photolithography
US6764796B2 (en) 2001-06-27 2004-07-20 University Of South Florida Maskless photolithography using plasma displays
US6998219B2 (en) 2001-06-27 2006-02-14 University Of South Florida Maskless photolithography for etching and deposition
US7271877B2 (en) 2001-06-27 2007-09-18 University Of South Florida Method and apparatus for maskless photolithography
US7468238B2 (en) 2001-06-27 2008-12-23 University Of South Florida Maskless photolithography for using photoreactive agents

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544698B1 (en) 2001-06-27 2003-04-08 University Of South Florida Maskless 2-D and 3-D pattern generation photolithography
US6764796B2 (en) 2001-06-27 2004-07-20 University Of South Florida Maskless photolithography using plasma displays
US6998219B2 (en) 2001-06-27 2006-02-14 University Of South Florida Maskless photolithography for etching and deposition
US7271877B2 (en) 2001-06-27 2007-09-18 University Of South Florida Method and apparatus for maskless photolithography
US7468238B2 (en) 2001-06-27 2008-12-23 University Of South Florida Maskless photolithography for using photoreactive agents
US7573561B2 (en) 2001-06-27 2009-08-11 University Of South Florida Method and apparatus for maskless photolithography
US7572573B2 (en) 2001-06-27 2009-08-11 University Of South Florida Maskless photolithography for etching and deposition

Similar Documents

Publication Publication Date Title
JPH09223475A (en) Electromagnetic deflector and charge particle beam transfer apparatus using thereof
US6495841B1 (en) Charged beam drawing apparatus
JPH0831724A (en) Electron-beam lithography device and electron-beam lithography
JPH05259045A (en) Electron beam lithography device
JP2000173529A (en) Electron beam plotting method and device therefor
US4167676A (en) Variable-spot scanning in an electron beam exposure system
JPH0554251B2 (en)
JP4691151B2 (en) Electron beam drawing device
JP3138005B2 (en) Electron beam drawing equipment
JP3285645B2 (en) Charged beam drawing method
GB1587852A (en) Electron beam apparatus
JPS5925371B2 (en) Electron beam exposure method
JP3290699B2 (en) Pattern formation method
JP3461279B2 (en) Charged beam drawing equipment
JP3218467B2 (en) Charged particle beam drawing system
JP3313606B2 (en) Electron beam exposure apparatus and exposure method
JP2001093825A (en) Charged beam writing device, pattern writing method and storage medium
JPH04360516A (en) Charged beam irradiation equipment
JPH03222320A (en) Electron beam exposing device
JPH07107891B2 (en) Electron beam writer
JPS6182430A (en) Charged beam exposure device
JP3109618B2 (en) Electron beam equipment
JPS61267320A (en) Charged beam exposure
JP3019872B2 (en) Pulse number / analog signal conversion circuit and charged particle beam exposure apparatus
JP2003133219A (en) Electron beam drawing method and electron beam drawing apparatus