JPH04360516A - Charged beam irradiation equipment - Google Patents

Charged beam irradiation equipment

Info

Publication number
JPH04360516A
JPH04360516A JP3136249A JP13624991A JPH04360516A JP H04360516 A JPH04360516 A JP H04360516A JP 3136249 A JP3136249 A JP 3136249A JP 13624991 A JP13624991 A JP 13624991A JP H04360516 A JPH04360516 A JP H04360516A
Authority
JP
Japan
Prior art keywords
mask
aperture
reduced
deflector
charged beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3136249A
Other languages
Japanese (ja)
Other versions
JP2900640B2 (en
Inventor
Mamoru Nakasuji
護 中筋
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3136249A priority Critical patent/JP2900640B2/en
Publication of JPH04360516A publication Critical patent/JPH04360516A/en
Application granted granted Critical
Publication of JP2900640B2 publication Critical patent/JP2900640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a charged beam irradiation equipment performing high speed change between demagnification figure beams or between a variable shaping beam and the demagnification figure beam. CONSTITUTION:The following are arranged in order from the side of an electron beam source 1; a first mask 2 having a shaping aperture, a second mask 5 having an aperture for variable shaping and a plurality of demagnification figures, and a third mask 8 having an aperture corresponding with the aperture for variable shaping of the second mask 5 and a plurality of figure apertures corresponding with a plurality of the demagnification figures. A charged beam from the aperture of the first mask 2 is projected selectively on one of the apertures of the second mask 5 by a two-stage deflectors 3a, 3b. The relative position between the charged beam from the aperture of the second mask 5 and the aperture of the third mask is changed by a second deflector. The charged beam which has passed the aperture of the third mask is converged and positioned on a target by deflector systems 9-13.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は可変成形ビームと縮小図
形ビームとで、くり返し図形を含むパターンを形成する
荷電ビーム照射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam irradiation apparatus for forming a pattern including repeating figures using a variable shaped beam and a reduced figure beam.

【0002】0002

【従来の技術】従来、可変成形ビームと縮小図形ビーム
とでパターンを形成する荷電ビーム照射装置が知られて
いる。このものは、ビーム源の側から順次、一つの成形
開口を有する第1マスク、可変成形用の開口及び縮小図
形用の複数の図形開口とを有する第2マスクとを配設し
、第1マスクと第2マスクを光学系により共役になすと
共に、第1マスクと第2マスクとの間に偏向器を設けて
第1のマスクの開口を通ったビームが第2のマスクの開
口のいずれかを照射すべく偏向させ、第2のマスクを通
ったビームを振戻し偏向器によって光軸方向に戻してい
た。
2. Description of the Related Art Conventionally, a charged beam irradiation apparatus is known which forms a pattern using a variable shaped beam and a reduced pattern beam. In this device, a first mask having one shaping aperture, a second mask having a variable shaping aperture and a plurality of figure apertures for reducing figures are disposed in order from the beam source side, and the first mask and a second mask are made conjugate by an optical system, and a deflector is provided between the first mask and the second mask so that the beam passing through the aperture of the first mask hits either of the apertures of the second mask. The beam was deflected for irradiation, and the beam that passed through the second mask was returned to the optical axis direction by a deflector.

【0003】0003

【発明が解決しようとする課題】上記の如き従来の技術
に於いては、振戻し偏向器のために、可変成形用の開口
を通った可変成形ビームの結像位置と縮小図形用の開口
を通った縮小図形ビームの結像位置とをほぼ同じにする
ことができる。しかし、逆に考えれば、この振戻し偏向
器によってビームの位置が変ることを意味する。従って
可変成形ビームから縮小像ビームへの切換えあるいはこ
の逆の切換えあるいは一つの縮小像ビームから別の縮小
像ビームへの切換え時のこの振戻し偏向器を用いる時に
、ビーム位置が大きく変化する。この位置変動が収まる
迄ブランキングを解除することができない。つまり、こ
れらのビーム間の変化時に大きい整定時間を必要とする
問題点があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, it is difficult to determine the imaging position of the variable shaping beam that has passed through the variable shaping aperture and the aperture for the reduced figure due to the return deflector. The imaging position of the reduced figure beam that has passed can be made almost the same. However, if you think about it conversely, this means that the position of the beam changes due to this return deflector. Therefore, when using this reversing deflector when switching from a variable shaped beam to a demagnified image beam or vice versa, or from one demagnified image beam to another, the beam position changes significantly. Blanking cannot be canceled until this positional fluctuation is stopped. That is, there is a problem in that a long settling time is required when changing between these beams.

【0004】本発明はこの従来の問題点に鑑みてなされ
たもので、縮小図形ビーム間あるいは可変成形ビームと
縮小図形ビーム間への変化を高速で行うことが可能な荷
電ビーム照射装置を提供することを目的とする。
The present invention has been made in view of this conventional problem, and provides a charged beam irradiation device capable of changing at high speed between a reduced pattern beam or between a variable shaped beam and a reduced pattern beam. The purpose is to

【0005】[0005]

【課題を解決する為の手段】上記問題点の解決の為に本
発明では、荷電ビーム源の側から順次、一つの成形開口
を有する第1マスク、可変成形用の開口及び縮小図形用
の複数の開口群とを有する第2マスク、第2マスクの前
記開口及び前記開口群に対応した縮小図形に応じた形状
の開口群を有する第3マスク、前記第1マスクの開口を
通過した荷電ビームを前記第2マスクの開口の一つに選
択的に照射する第1の偏向器、前記第2マスクの開口を
通過した荷電ビームと前記第3マスクの開口との相対位
置を変える第2の偏向器と、前記第3マスクの開口を通
過した荷電ビームを試料上に集束、位置決めする集束・
偏向系を持つ荷電ビーム照射装置とした。
[Means for Solving the Problems] In order to solve the above-mentioned problems, in the present invention, a first mask having one shaping aperture, a plurality of apertures for variable shaping, and a plurality of apertures for reducing figures are sequentially arranged from the side of the charged beam source. a second mask having a group of apertures, a third mask having a group of apertures having a shape corresponding to the apertures of the second mask and a reduced figure corresponding to the aperture group, and a charged beam that has passed through the apertures of the first mask. a first deflector that selectively irradiates one of the apertures of the second mask; a second deflector that changes the relative position of the charged beam that has passed through the aperture of the second mask and the aperture of the third mask; and a focusing device that focuses and positions the charged beam that has passed through the aperture of the third mask onto the sample.
It is a charged beam irradiation device with a deflection system.

【0006】さらに、可変成形ビームの照射領域と、こ
の照射領域から一定の距離離れた位置にある少くとも一
つの縮小図形ビームの照射領域とを設け、これらの照射
領域に含まれる描画パターンをそれぞれのビームで照射
することとした。
Furthermore, an irradiation area of the variable shaped beam and at least one irradiation area of the reduced figure beam located at a fixed distance from the irradiation area are provided, and the drawing patterns included in these irradiation areas are each It was decided to irradiate with a beam of

【0007】[0007]

【作用】本発明に於いては、荷電ビーム源で照射された
第1マスクの開口によってビームは矩形に整形される。 そして第2マスクの開口のうち、例えば可変成形ビーム
用の開口が選択されるとすると、その開口でビームはさ
らに成形され、次にある偏向器で第3マスクの開口へ位
置決めされ、ビームの形状、寸法が決められ、さらに下
流にある集束・偏向系で位置決めされ、ターゲット上に
照射される。その領域内の可変成形ビームで照射される
べきすべてのパターンが照射されると、ビームは縮小図
形ビームに返還される。これは第1マスクと第2マスク
の間に設けた偏向器によって第2マスクの開口のうち、
その縮小図形ビーム用の開口が選択される。その開口か
ら出たビームは第3マスクの縮小図形用開口で整形され
、下流の集束・偏向系で集束・位置決めされ、ターゲッ
トに照射される。このビームの種類の変化の時に、第2
マスクの開口への照明条件しか変化させていないので、
縮小図形はターゲット上で全く移動はしなく、可変成形
ビームが照射される位置とある一定距離だけ離れた位置
に照射される。この縮小ビームを希望の位置に移動させ
るのは、整定時間の短い副偏向で良いので、数10ns
ec の短い整定時間で可変成形ビームから一つの縮小
図形ビームへの変化が行える。この逆の移動あるいは、
一つの縮小図形ビームから別の縮小図形ビームへの変化
も同様に数10nsec の短い整定時間で行える。可
変成形ビームと一つの縮小図形ビームあるいは別の縮小
図形ビームとでターゲット上での照射位置が異る問題は
、可変成形ビーム用の副偏向領域、一つの縮小図形ビー
ム用の副偏向領域、別の縮小図形ビーム用の副偏向領域
を定義しておき、これらの副偏向領域の位置関係をこれ
らのビームが同一の副偏向器の偏向電圧で照射される位
置関係と一致させて偏向データを作成しておけば、全く
振戻し等を行わなくてもよい。ただそれぞれのビームが
照射される相対位置をあらかじめ測定しておき、それに
従った各ビームの照射領域を定義しておき、その定義に
従って偏向データを作成して照射を実行すればよい。
In the present invention, the beam is shaped into a rectangle by the aperture of the first mask irradiated by the charged beam source. If, for example, an aperture for a variable shaping beam is selected among the apertures of the second mask, the beam is further shaped by that aperture, and then positioned to the aperture of the third mask by a deflector to shape the beam. , dimensioned, positioned by a downstream focusing and deflection system, and irradiated onto the target. When all the patterns to be irradiated with the variable shaped beam in that area have been irradiated, the beam is converted back into a reduced figure beam. This is because the deflector provided between the first mask and the second mask allows the opening of the second mask to be
An aperture is selected for the reduced feature beam. The beam emitted from the aperture is shaped by the reduced figure aperture of the third mask, focused and positioned by the downstream focusing/deflection system, and irradiated onto the target. When the type of beam changes, the second
Since we are only changing the illumination conditions for the mask opening,
The reduced figure does not move at all on the target and is irradiated at a position a certain distance away from the position irradiated by the variable shaped beam. Moving this reduced beam to the desired position requires only a short sub-deflection, which takes several tens of nanoseconds.
A change from a variable shaped beam to a single reduced figure beam can be made in a short settling time of ec. This reverse movement or
A change from one reduced pattern beam to another reduced pattern beam can be similarly performed in a short settling time of several tens of nanoseconds. The problem that the irradiation position on the target is different between the variable shaped beam and one reduced figure beam or another reduced figure beam is that the sub-deflection area for the variable shaped beam, the sub-deflection area for one reduced figure beam, and another Define sub-deflection areas for the reduced figure beams in advance, and create deflection data by matching the positional relationship of these sub-deflection areas with the positional relationship where these beams are irradiated with the same sub-deflector deflection voltage. If you do so, you won't have to perform any rollbacks at all. All that is required is to measure in advance the relative position at which each beam is irradiated, define the irradiation area of each beam accordingly, create deflection data according to that definition, and execute irradiation.

【0008】より具体的には、例えば図2で図形データ
50cではx座標のデータをすべてx1 だけ加算して
おき、図形データ50bにはx座標のデータをすべてx
2 だけ減算しておき、図形データ50dにはy座標の
データをすべてy3 だけ減算したデータとしておけば
、副偏向領域は一つと考えてよく、ビームの種類の切換
時に上記のx1 の減算、x2 の加算、y3 の加算
が自動的に行われ、所望の位置に所望のパターンが描画
される。
More specifically, for example, in FIG. 2, for the graphic data 50c, all the x-coordinate data is added by x1, and for the graphic data 50b, all the x-coordinate data is added by x1.
If the figure data 50d is set as data obtained by subtracting all y-coordinate data by y3, it can be considered that there is only one sub-deflection area, and when switching the beam type, the above-mentioned subtraction of x1, x2 The addition of y3 and the addition of y3 are automatically performed, and a desired pattern is drawn at a desired position.

【0009】[0009]

【実施例】図1は本発明の実施例である電子ビーム照射
装置の電子光学系の概略図である。電子銃1から放出さ
れた電子ビームは1段目の開口である成形開口2aを有
する第1マスク2で正方形に成形され、2段目の複数の
開口5a、5b、5cを有する第2マスク5の開口の一
つを選択する二段の偏向器3a、3bで偏向され、第2
マスク5の中の開口5a、5b、5cのうちの一つが選
択される。ここで、第2マスク5の開口5aは可変成形
ビーム用の開口、開口5b、5cは縮小図形ビーム用の
開口である。二段の偏向器3a、3bは偏向中心が電子
銃1のクロスオーバ1aと一致するよう上下の偏向感度
比を調整されている。第2マスク5の開口5a、5b、
5cは開口2aが照明する範囲より小さい面積の開口(
例えば矩形)である。第2マスク5の開口を通過した電
子ビームは可変成形ビーム用の開口5aを通過し、偏向
器6で偏向され、3段目の開口8a、8b、8cを有す
る第3マスクの開口のうち可変成形ビーム用の単一開口
8aを照明する。3段目の開口8a、8b、8cのうち
、縮小図形用開口8b、8cは、縮小図形の形に形成さ
れている。なお、縮小図形用開口8b、8cが選択され
る場合も、偏向器6を用いることによって縮小図形の一
部のみを試料に照射してもよい。レンズ4は第1マスク
板2と第2マスク板5を共役とし、レンズ7は第2マス
ク板5を第3マスク板8と共役にする。実線で表したビ
ーム軌道17は可変成形ビームの場合で、第3マスク板
8は縮小レンズ9、対物レンズ13でターゲット14に
共役となり、ターゲット14の位置15に結像される。 点線で表したビーム軌道18は縮小図形8bが選ばれた
場合であり、ビーム面積が可変成形ビームと大きく異る
場合には空間電荷効果による合焦条件が可変成形ビーム
の場合と異るため、合焦条件を一致させるために静電レ
ンズ10が設けられている。この場合には、第3マスク
8の開口8bを通ったビームは、ターゲット14上の可
変成形ビームの生ずる位置15と一定の距離離れた位置
16に集束される。すなわち、第3マスク8の開口8b
を通過したビームは、縮小レンズ9で縮小され、対物レ
ンズ13でターゲット14上に集束される。ターゲット
14上のビームの位置は、主偏向器12及び副偏向器1
1によって制御される。図2は、主偏向器12、副偏向
器11に与える電圧が一定のときに4種類のビームが照
射されるターゲット上の位置関係を示した図である。縮
小図形が照射される位置で、可変成形図形50aの不動
点50から縮小図形50cの端迄の距離はx1 である
。また、y方向の座標は一致している。縮小図形50b
と可変成形図形50aとの距離は、x2 である。縮小
図形50dについてはy方向にy3 だけ離れた位置に
照射される。主偏向器12に一つの電圧が与えられた場
合に副偏向器11で描画可能な各ビームの照射領域をタ
ーゲット14上にて定義した図を図3に示す。可変成形
ビームの照射領域はA2 B2 C2 D2 であり、
縮小図形50cの照射領域はA1 B1 C1 D1 
であり、縮小図形50bの照射領域はA3 B3 C3
 D3 で示される。この照射領域に基ずいて電子線照
射が実行される。すなわち、50cのパターンデータは
x1 だけx座標の値を加算し、50bのパターンデー
タはx2 だけx座標の値を減算し、50dのパターン
データはy3 だけy座標の値を減算したデータをあら
かじめ作製しておけばこのデータにより制御装置が副偏
向器を制御することにより、ビームの種類を切換えた時
に、パターン50cはx方向にx1 だけ負の方向へ移
動した所に描画され、パターン50bはx方向にx2 
だけ正の方向へ移動した所に描画され、パターン50d
はy方向にy3 だけ正の方向へ移動した所へ描画され
るので、所望の位置にパターン描画が行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of an electron optical system of an electron beam irradiation apparatus according to an embodiment of the present invention. The electron beam emitted from the electron gun 1 is shaped into a square by a first mask 2 having a shaping aperture 2a as a first stage aperture, and a second mask 5 having a plurality of apertures 5a, 5b, 5c in a second stage. is deflected by two-stage deflectors 3a and 3b that select one of the apertures of the second
One of the openings 5a, 5b, 5c in the mask 5 is selected. Here, the aperture 5a of the second mask 5 is an aperture for a variable shaped beam, and the apertures 5b and 5c are apertures for a reduced pattern beam. The upper and lower deflection sensitivity ratios of the two-stage deflectors 3a and 3b are adjusted so that the center of deflection coincides with the crossover 1a of the electron gun 1. Openings 5a, 5b of the second mask 5,
5c is an aperture whose area is smaller than the range illuminated by the aperture 2a (
For example, a rectangle). The electron beam that has passed through the aperture of the second mask 5 passes through the variable shaped beam aperture 5a and is deflected by the deflector 6. Illuminating a single aperture 8a for a shaped beam. Among the third stage openings 8a, 8b, and 8c, the reduced figure openings 8b and 8c are formed in the shape of a reduced figure. Note that even when the reduced figure apertures 8b and 8c are selected, the sample may be irradiated with only part of the reduced figure by using the deflector 6. The lens 4 makes the first mask plate 2 and the second mask plate 5 conjugate, and the lens 7 makes the second mask plate 5 conjugate with the third mask plate 8. A beam trajectory 17 shown by a solid line is a case of a variable shaping beam, and the third mask plate 8 becomes conjugate to the target 14 through the reduction lens 9 and the objective lens 13, and is imaged at a position 15 of the target 14. The beam trajectory 18 indicated by the dotted line is the case when the reduced figure 8b is selected, and if the beam area is significantly different from that of the variable shaped beam, the focusing conditions due to the space charge effect will be different from those of the variable shaped beam. An electrostatic lens 10 is provided to match the focusing conditions. In this case, the beam passing through the aperture 8b of the third mask 8 is focused at a position 16 on the target 14, which is a certain distance away from the position 15 where the variable shaped beam is generated. That is, the opening 8b of the third mask 8
The beam that has passed through is reduced by a reduction lens 9 and focused onto a target 14 by an objective lens 13. The position of the beam on the target 14 is determined by the main deflector 12 and the sub deflector 1.
1. FIG. 2 is a diagram showing the positional relationship on the target to which four types of beams are irradiated when the voltages applied to the main deflector 12 and the sub-deflector 11 are constant. At the position where the reduced figure is irradiated, the distance from the fixed point 50 of the variable shaped figure 50a to the end of the reduced figure 50c is x1. Furthermore, the coordinates in the y direction match. Reduced figure 50b
The distance between the variable molded figure 50a and the variable molded figure 50a is x2. The reduced figure 50d is irradiated at a position y3 apart in the y direction. FIG. 3 shows a diagram in which the irradiation area of each beam that can be drawn by the sub-deflector 11 is defined on the target 14 when one voltage is applied to the main deflector 12. The irradiation area of the variable shaped beam is A2 B2 C2 D2,
The irradiation area of the reduced figure 50c is A1 B1 C1 D1
The irradiation area of the reduced figure 50b is A3 B3 C3
Indicated by D3. Electron beam irradiation is performed based on this irradiation area. In other words, the pattern data for 50c is created by adding the x-coordinate value by x1, the pattern data for 50b is obtained by subtracting the x-coordinate value by x2, and the pattern data for 50d is created by subtracting the y-coordinate value by y3. If this data is used, when the control device controls the sub-deflector to switch the type of beam, the pattern 50c will be drawn at a location moved in the negative direction by x1 in the x direction, and the pattern 50b will be drawn at a location moved by x1 in the negative direction. x2 in direction
The pattern 50d is drawn at a position moved in the positive direction by
Since the pattern is drawn at a position moved in the positive direction by y3 in the y direction, the pattern is drawn at the desired position.

【0010】0010

【発明の効果】本発明によれば、ビームの種類を変える
時、ビーム位置は変化させず、照明条件のみしか変化さ
せる必要がないので、副偏向器の整定時間内でビームの
種類を変えることができる。何故なら照明条件の変化時
、第1マスク2の開口2aの第2マスク5位置での照明
領域には充分余ゆうがあるため(第2マスク5の開口5
a、5b、5c…の範囲に対し領域が十分大きい)、偏
向器3a、3bの電圧が最終的な値に一致されてなくと
も、80〜90%の値に達すれば、第2マスク5の開口
5a、5b、5c…は完全に照明されているので、照明
のための整定時間は短くてよい。また、偏向器3a、3
bの偏向中心は電子銃1のクロスオーバー1aにあり、
対物レンズ主面13でもあるので、偏向器3a、3bの
電圧が変動している間もビームの位置は不動のまま保た
れる。また空間電荷効果による合焦条件のズレはわずか
であるから、静電レンズ10に与える電圧は小さくてよ
いので、高速で変化できる。
[Effects of the Invention] According to the present invention, when changing the type of beam, it is not necessary to change the beam position and only the illumination conditions, so the type of beam can be changed within the settling time of the sub-deflector. Can be done. This is because when the illumination conditions change, the illumination area of the opening 2a of the first mask 2 at the position of the second mask 5 has a sufficient margin (the opening 5 of the second mask 5
a, 5b, 5c...), even if the voltages of the deflectors 3a and 3b do not match the final values, if they reach 80 to 90% of the voltage, the second mask 5 Since the openings 5a, 5b, 5c, . . . are completely illuminated, the settling time for illumination may be short. In addition, the deflectors 3a, 3
The deflection center of b is located at the crossover 1a of the electron gun 1,
Since it is also the main surface 13 of the objective lens, the position of the beam remains unchanged even while the voltages of the deflectors 3a and 3b are fluctuating. Further, since the deviation in the focusing condition due to the space charge effect is slight, the voltage applied to the electrostatic lens 10 may be small, so that it can be changed at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による荷電ビーム照射装置の実施例の電
子光学系の概略図である。
FIG. 1 is a schematic diagram of an electron optical system of an embodiment of a charged beam irradiation device according to the present invention.

【図2】本発明の荷電ビーム照射装置の実施例でのビー
ムがターゲット上に結像される位置関係を示した図であ
る。
FIG. 2 is a diagram showing the positional relationship in which a beam is imaged on a target in an embodiment of the charged beam irradiation device of the present invention.

【図3】図2の場合での副偏向領域を示した図である。FIG. 3 is a diagram showing a sub-deflection region in the case of FIG. 2;

【主要部分の符号の説明】[Explanation of symbols of main parts]

1  電子銃 2  第1マスク 3a、3b  2段の偏向器 5  第2マスク 6  偏向器 8  第3マスク 9  縮小レンズ 10  静電レンズ 11  副偏向器 12  主偏向器 13  対物レンズ 14  ターゲット 1 Electron gun 2 First mask 3a, 3b 2-stage deflector 5 Second mask 6 Deflector 8 Third mask 9. Reduction lens 10 Electrostatic lens 11 Sub-deflector 12 Main deflector 13 Objective lens 14 Target

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  可変成形ビームと縮小図形ビームとで
パターンを形成する荷電ビーム照射装置において、荷電
ビーム源の側から順次、一つの成形開口を有する第1マ
スク、可変成形用の開口及び縮小図形用の複数の開口を
有する第2マスク、前記第2マスクの可変成形用の開口
に対応した開口及び縮小図形用の複数の開口に対応した
複数の図形開口を有する第3マスクを設けると共に、前
記第1マスクの開口からの荷電ビームを前記第2マスク
の開口の一つに選択的に照射する第1の偏向器、前記第
2マスクの開口からの荷電ビームと前記第3マスクの開
口との相対位置を変える第2の偏向器、前記第3マスク
の開口を通過した荷電ビームを試料上に集束、位置決め
する集束・偏向系を設けたことを特徴とする荷電ビーム
照射装置。
1. A charged beam irradiation device that forms a pattern with a variable shaping beam and a reduced figure beam, in which a first mask having one shaping aperture, an aperture for variable shaping, and a reduced figure are sequentially arranged from the side of the charged beam source. a third mask having a plurality of openings corresponding to the openings for variable shaping of the second mask and a plurality of figure openings corresponding to the plurality of openings for reduced figures; a first deflector for selectively irradiating a charged beam from an aperture in a first mask onto one of the apertures in the second mask; A charged beam irradiation device comprising: a second deflector that changes the relative position; and a focusing/deflection system that focuses and positions the charged beam that has passed through the aperture of the third mask onto the sample.
【請求項2】  可変成形ビームの照射領域と、この照
射領域から一定の距離だけ離れた位置にある少くとも一
つの縮小図形の照射領域とを持つことを特徴とする請求
項1記載の荷電ビーム照射装置。
2. The charged beam according to claim 1, having an irradiation area of the variable shaped beam and at least one irradiation area of a reduced shape located at a predetermined distance from the irradiation area. Irradiation device.
JP3136249A 1991-06-07 1991-06-07 Charged beam irradiation device Expired - Fee Related JP2900640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136249A JP2900640B2 (en) 1991-06-07 1991-06-07 Charged beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136249A JP2900640B2 (en) 1991-06-07 1991-06-07 Charged beam irradiation device

Publications (2)

Publication Number Publication Date
JPH04360516A true JPH04360516A (en) 1992-12-14
JP2900640B2 JP2900640B2 (en) 1999-06-02

Family

ID=15170776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136249A Expired - Fee Related JP2900640B2 (en) 1991-06-07 1991-06-07 Charged beam irradiation device

Country Status (1)

Country Link
JP (1) JP2900640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134495A (en) * 2015-01-19 2016-07-25 大日本印刷株式会社 Electron beam irradiation apparatus and electron beam irradiation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134495A (en) * 2015-01-19 2016-07-25 大日本印刷株式会社 Electron beam irradiation apparatus and electron beam irradiation method

Also Published As

Publication number Publication date
JP2900640B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US3956635A (en) Combined multiple beam size and spiral scan method for electron beam writing of microcircuit patterns
US6433348B1 (en) Lithography using multiple pass raster-shaped beam
US4743766A (en) Method of drawing a desired pattern on a target through exposure thereof with an electron beam
US20050199827A1 (en) Charged particle beam apparatus, charged particle beam control method, substrate inspection method and method of manufacturing semiconductor device
US6069364A (en) Electron beam drawing apparatus and method of the same
US6815698B2 (en) Charged particle beam exposure system
GB2116358A (en) Charged particle beam exposure system utilizing variable line scan
JPS61263217A (en) Charged beam exposing device
Thomson et al. Double‐aperture method of producing variably shaped writing spots for electron lithography
US4167676A (en) Variable-spot scanning in an electron beam exposure system
US6307209B1 (en) Pattern-transfer method and apparatus
CA1149086A (en) Variable-spot raster scanning in an electron beam exposure system
JPH04360516A (en) Charged beam irradiation equipment
US4210806A (en) High brightness electron probe beam and method
JPS6133254B2 (en)
JPH11195590A (en) Multiple electron beam exposure method and its apparatus, and manufacture of device
JPH05259045A (en) Electron beam lithography device
JP3859404B2 (en) Charged beam drawing apparatus, pattern drawing method, and recording medium
JP3218467B2 (en) Charged particle beam drawing system
JPH03222320A (en) Electron beam exposing device
KR20050004832A (en) Technique for writing with a raster scanned beam
JPH06163383A (en) Drawing method by charged particle beam
JP2001244186A (en) Electron beam lithography system and method
JPH04286315A (en) Charged particle beam plotting method
JP2000251815A (en) Blanking device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees