JPH05258997A - Manufacture of polarizable electrode - Google Patents

Manufacture of polarizable electrode

Info

Publication number
JPH05258997A
JPH05258997A JP9020492A JP9020492A JPH05258997A JP H05258997 A JPH05258997 A JP H05258997A JP 9020492 A JP9020492 A JP 9020492A JP 9020492 A JP9020492 A JP 9020492A JP H05258997 A JPH05258997 A JP H05258997A
Authority
JP
Japan
Prior art keywords
weight
activated carbon
polarizable electrode
fiber
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9020492A
Other languages
Japanese (ja)
Other versions
JP3152990B2 (en
Inventor
Takayuki Fukai
孝行 深井
Yuichi Kamijo
祐一 上條
Toshiharu Hasumoto
壽治 蓮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9020492A priority Critical patent/JP3152990B2/en
Publication of JPH05258997A publication Critical patent/JPH05258997A/en
Application granted granted Critical
Publication of JP3152990B2 publication Critical patent/JP3152990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE:To obtain a polarizable electrode stabilized and lessened in electrical resistance by a method wherein activated carbon, cellulose fiber, and polyacrylonitrile fiber are mixed together an formed into sheets, and obtained sheets are burned. CONSTITUTION:30-48% by weight of activated carbon, 30-48% by weight of cellulose fiber, 2-10% by weight of graphite powder, and 20-40% by weight of polyacrylonitrile fiber are mixed together and formed into sheets. Then, the sheets are formed by thermocompression. At this point, polyacrylonitrile fiber is melted to function as binder. Then, the sheet interposed between graphite boards is burned. The sheet is used as a polarizable electrode 1. By this setup, a polarizable electrode stable and low in electrical resistance can be obtained without a resin dipping process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分極性電極材の製造法
に関するものであり、さらに詳しく述べるならば、電極
表面と電解液との界面に形成される電気二重層を利用し
た電気二重層キャパシタ、電池、及びエレクトロミック
ディスプレイ等に用いる分極性電極の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polarizable electrode material, and more specifically, an electric double layer using an electric double layer formed at the interface between the electrode surface and the electrolytic solution. The present invention relates to a method for manufacturing a polarizable electrode used for a capacitor, a battery, an electronic display and the like.

【0002】電気二重層コンデンサーの基本構造を図1
に示す。図において、1は電解液を含む分極性電極であ
り、電極の中央部は電気絶縁材でかつイオン透過性につ
くられたセパレータで仕切られている。そして周辺は封
止材3で密閉される。電極1の外側には集電極となる導
電性シート4が配置される。
The basic structure of an electric double layer capacitor is shown in FIG.
Shown in. In the figure, 1 is a polarizable electrode containing an electrolytic solution, and the central part of the electrode is partitioned by an electrically insulating material and a separator made ion-permeable. Then, the periphery is sealed with the sealing material 3. A conductive sheet 4 serving as a collecting electrode is arranged outside the electrode 1.

【0003】[0003]

【従来の技術】分極性電極(以下単に「電極」という)
は表面積が大きいことが必要であるところから、活性炭
粉末や活性炭素粉末などが多く使用されている。従来の
電極製造技術を電気二重層キャパシタを例にとり説明す
る。
2. Description of the Related Art Polarizable electrodes (hereinafter simply referred to as "electrodes")
Since it requires a large surface area, activated carbon powder and activated carbon powder are often used. A conventional electrode manufacturing technique will be described by taking an electric double layer capacitor as an example.

【0004】(1)硫酸水溶液などの電解液と活性炭素
粉末をペースト状にしたもの(特開昭62−13050
6号、同63−244608号、同2−174210
号) (2)フェノール樹脂成形体を発泡、炭化、賦活した多
孔質炭素成形体(特開平2−297915号)又はメソ
ピッチを発泡、炭化、賦活した多孔質炭素成形体(特開
平2−297915号)に電解を含浸したもの (3)カーボンブラックをホモプロピレン重合体、エチ
レン・プロピレン共重合体などのカーボンブラック分散
させる樹脂に分散させた基材層と、その表面にエチレン
樹脂とカーボンブラックからなる導電層を接着したもの
(特開昭63−181412号) (4)炭素を電極材とするもので、活性炭、活性炭素繊
維、炭素繊維又は粉末炭素を高温で酸化処理した布帛状
のもの(特開昭64−82514号)、粉末活性炭素の
表面にグラファイトウィスカ−を成長させたもの(特開
平2−281608号)あるいはフェノール樹脂を炭化
した炭素多孔体であるもの(特開平2−297915
号)
(1) A paste of an electrolytic solution such as an aqueous solution of sulfuric acid and activated carbon powder (JP-A-62-13050)
6, No. 63-244608, No. 2-174210
(2) Porous carbon molded product obtained by foaming, carbonizing and activating a phenol resin molded product (JP-A-2-297915) or porous carbon molded product obtained by foaming, carbonizing and activating meso pitch (Japanese Patent Laid-Open No. 2-297915). ) Impregnated with electrolysis (3) A base layer in which carbon black is dispersed in a resin for dispersing carbon black such as homopropylene polymer or ethylene / propylene copolymer, and the surface thereof is composed of ethylene resin and carbon black Adhesive conductive layer (Japanese Patent Laid-Open No. 63-181412) (4) Carbon as an electrode material, cloth-like one obtained by oxidizing activated carbon, activated carbon fiber, carbon fiber or powder carbon at high temperature (special No. 64-82514), graphite whiskers grown on the surface of powdered activated carbon (JP-A-2-281608) or pheno. Those resins are carbon porous body was carbonized (JP 2-297915
issue)

【0005】前記従来技術(1)のペースト状電極では
活性炭粉末がそのまま導体として活かされるので表面積
が大きい利点はあるが、電気抵抗が大きく、またコンデ
ンサの組立作業が面倒である。また従来技術(2)の成
形体電極では炭素が骨格をなして連続的に連なっている
ので、電気抵抗は低いが、成形体賦活で表面積を大にす
ることが難しい。また活性炭素は高価であり、これを使
用することはコスト高になるばかりでなく、表面積及び
電気抵抗についても充分な性能が得られない。さらに、
従来技術(3)はペースト状電極(2)と同様に電気抵
抗が大きく、従来技術(4)はウィスカ成長工程により
コスト高になる。また、フェノールを樹脂を炭化させた
ものは十分に大きな表面積(1000m2/g )とする
と、圧縮強度が低下する等の難点があった。
In the pasty electrode of the prior art (1), the activated carbon powder is used as a conductor as it is, so that it has an advantage that it has a large surface area, but it has a large electric resistance and the assembly work of the capacitor is troublesome. Further, in the molded body electrode of the prior art (2), since carbon forms a skeleton and is continuously connected, the electrical resistance is low, but it is difficult to increase the surface area by activating the molded body. In addition, activated carbon is expensive, and using it not only results in high cost, but also does not provide sufficient performance in terms of surface area and electric resistance. further,
Similar to the pasty electrode (2), the prior art (3) has a large electric resistance, and the prior art (4) has a high cost due to the whisker growth process. Further, when a resin obtained by carbonizing a phenol has a sufficiently large surface area (1000 m 2 / g), there is a problem that the compressive strength is lowered.

【0006】これら従来技術とは異なり、抄紙してシー
ト状の分極性電極を製造する方法としては下記のものが
あり、繊維の特性を生かして表面積を大きくとることが
可能になる。 (5)特開昭64−54721号公報に示されているよ
うに、黒鉛微粉、活性炭素繊維、パルプを混抄し、混抄
シートをコロイダルカーボン溶液、フッ素樹脂溶液に浸
漬した後乾燥(200℃以下)する製造法。 (6)本出願人が特願平3−281426号において提
案した、活性炭粉末、セルロース繊維を混抄した抄紙シ
ートをフェノール樹脂に浸漬したのち加熱成形後、焼成
する製造法。
Different from these conventional techniques, there are the following methods for producing a sheet-like polarizable electrode by making paper, and it is possible to take advantage of the characteristics of the fiber to obtain a large surface area. (5) As disclosed in JP-A-64-54721, fine graphite powder, activated carbon fiber, and pulp are mixed, and the mixed sheet is dipped in a colloidal carbon solution and a fluororesin solution and then dried (200 ° C. or lower). ) Manufacturing method. (6) A production method proposed by the present applicant in Japanese Patent Application No. 3-281426, in which a papermaking sheet in which activated carbon powder and cellulose fibers are mixed is dipped in a phenol resin, heat-molded, and then fired.

【0007】[0007]

【発明が解決しようとする課題】上記(5)、(6)の
方法による抄紙シートを溶液に浸漬し乾燥して電極を製
造する方法は、浸漬・乾燥工程を経るために工程が複雑
になる。また(6)の方法によるとフェトル樹脂の浸
漬、乾燥、硬化工程を伴ない面倒である。したがって本
発明は抄紙段階においてポリアクリロニトリル系繊維を
混抄することによりする抄紙シートの浸漬・乾燥工程を
経ずに電気抵抗が安定しかつ低い分極性電極を製造する
ことを目的とする。
The method of manufacturing an electrode by immersing a papermaking sheet in a solution and drying it by the methods of the above (5) and (6) complicates the steps due to the dipping and drying steps. .. Further, according to the method (6), the process of dipping, drying and curing the fettle resin is troublesome. Therefore, it is an object of the present invention to produce a polarizable electrode having stable and low electric resistance without a dipping / drying process of a papermaking sheet by mixing polyacrylonitrile fibers at the papermaking stage.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点を
解決するために抄紙の際、活性炭、セルロース質繊維の
他にバインダーとして活性炭を担持させるためにポリア
クリロニトリル系繊維を好ましくは黒鉛微粉混を加えて
混抄させて得たシートを焼成することを特徴とする分極
製電極の製造法である。焼成前に加熱加圧成形を行いポ
リアクリルニトリル系繊維を溶融させてもよい。
In order to solve the above problems, the present invention uses a polyacrylonitrile fiber, preferably graphite fine powder, for supporting activated carbon as a binder in addition to activated carbon and cellulosic fiber during papermaking. A method for producing a polarized electrode is characterized in that a sheet obtained by adding and mixing a mixture is fired. The polyacrylonitrile-based fiber may be melted by heating and pressing before firing.

【0009】ポリアクリロニトリル系繊維の割合は、上
記のことを実現するために20ー40重量%とすること
が好ましい。20重量%未満では、活性炭を担持し、ま
た溶融しバインダーとして活性炭を担持させるための絶
対量が少なく加熱加圧積層時に積層面の剥離等が発生す
る。また、次工程の焼成処理を経た時点で活性炭の粉落
ち等が生じる。一方、ポリアクリロニトリル系繊維の割
合が40重量%を超えると、溶融したポリアクリルニト
リルがバインダーとして活性炭を担時するとき同時にシ
ートの空隙を埋め空隙率を低下させるため分極性電極の
特性が低下する。
The proportion of the polyacrylonitrile fiber is preferably 20-40% by weight in order to realize the above. When the amount is less than 20% by weight, the absolute amount for supporting activated carbon and melting and supporting activated carbon as a binder is small, and peeling of the laminated surface occurs during heating and pressure lamination. In addition, powder of activated carbon may fall off after the firing process in the next step. On the other hand, when the proportion of polyacrylonitrile fiber exceeds 40% by weight, when the molten polyacrylonitrile fills the voids of the sheet at the same time when the activated carbon serves as a binder, the porosity is reduced, and thus the characteristics of the polarizable electrode are degraded. ..

【0010】ポリアクリロニトリル系繊維は長さが2〜
7mmで径が1〜5デニールのものが好ましい。またア
クリルニトリルはアクリルニトリルの単量体、共重合体
などを使用することができる。
The polyacrylonitrile fiber has a length of 2 to
It is preferably 7 mm and has a diameter of 1 to 5 denier. As the acrylonitrile, an acrylonitrile monomer or copolymer can be used.

【0011】使用する活性炭はやしがら、おが屑、石
炭、フェノール樹脂などを炭化し、賦活したものなど通
常の活性炭が用いられる。この活性炭を50μm以下程
度に粉砕して使用する。活性炭の割合は、表面積を大き
くするために30重量%以上が好ましい。上限はほかの
成分による制約から50重量%以下が好ましい。パルプ
の割合は、抄紙を容易とし、シート及び分極性電極の強
度を保つ事により30重量%以上が好ましく、他の成分
の制約から50重量%以下が好ましい。
As the activated carbon to be used, usual activated carbon such as coconut wood, sawdust, coal, activated carbonized phenol resin and the like is used. This activated carbon is crushed to about 50 μm or less before use. The proportion of activated carbon is preferably 30% by weight or more in order to increase the surface area. The upper limit is preferably 50% by weight or less because of restrictions due to other components. The proportion of pulp is preferably 30% by weight or more for facilitating the papermaking and maintaining the strength of the sheet and the polarizable electrode, and is preferably 50% by weight or less due to restrictions of other components.

【0012】セルロース質繊維には通常紙に使用される
パルプや、その他のセルロース質繊維であるレーヨン、
線等などが使用可能である。その際抄紙製造を容易なら
しめるには、繊維の長さは5mm以下が好ましい。
The cellulosic fibers include pulp normally used for paper and rayon which is another cellulosic fiber.
Lines, etc. can be used. At that time, the length of the fiber is preferably 5 mm or less in order to facilitate the production of paper.

【0013】黒鉛微粉は分極性電極の電気抵抗を低減す
るために使用される。通常の黒鉛微粉は比表面積が数m
2 /gと小さく、使用割合が大きくなると分極性電極の
表面積が小さくなり、また、使用割合が小さくなると電
気抵抗低減の効果が出ない。したがってその使用割合は
2〜10重量%が好ましい。この場合の全体の組成は、
活性炭、セルロース質繊維、黒鉛微粉及びポリアクリロ
ニトリル系繊維の使用割合がそれぞれ30〜48重量
%、30〜48重量%、2〜10重量%及び20〜40
重量%となる。
Graphite fines are used to reduce the electrical resistance of polarizable electrodes. Normal graphite fine powder has a specific surface area of several meters
It is as small as 2 / g, and the surface area of the polarizable electrode becomes small as the usage rate increases, and the electrical resistance reduction effect does not appear when the usage rate decreases. Therefore, the use ratio is preferably 2 to 10% by weight. The overall composition in this case is
The use ratios of activated carbon, cellulosic fiber, graphite fine powder and polyacrylonitrile fiber are 30 to 48% by weight, 30 to 48% by weight, 2 to 10% by weight and 20 to 40, respectively.
It becomes weight%.

【0014】また「固体活性炭電極を用いた大容量電気
二層コンデンサ、田渕順次他日本電気(株)基礎研、’
91年電気化学秋季大会講演要旨集」等の文献にある如
く、分極性電極は熱処理温度により、分極性電極性能が
大きく左右される。分極性電極が熱処理温度の低い場
合、黒鉛微粉の使用が有効であり、電極の容量を高め
る。
In addition, "Large-capacity electric double-layer capacitor using solid activated carbon electrode, Tabuchi Sequentially, NEC Research Laboratories,"
As described in the literature such as "Abstracts of Abstracts of the 91st Electrochemical Autumn Meeting", etc., the polarizable electrode performance is greatly affected by the heat treatment temperature. When the polarizability electrode has a low heat treatment temperature, the use of fine graphite powder is effective and increases the capacity of the electrode.

【0015】以上説明した活性炭、パルプ及びポリアク
リルニトリル径繊維は紙を作るのと同様に抄紙される。
抄紙されたシートは1枚が厚みが0.2〜2mmでかつ
100〜250g/m2 の単重をもつものが好ましい。
このシートを好ましくは1〜5枚積層して、窒素、アル
ゴンなどの不活性雰囲気で焼成する。焼成はシートが反
らないよう例えば黒鉛板の間に挟んで行うのがよい。焼
成の昇温は800℃程度までを5〜100時間かけるの
が好ましい。焼成の最終温度は各成分を炭化できるなら
ば特に制限がない。
The activated carbon, pulp and fibers of polyacrylonitrile described above are made in the same manner as paper is made.
It is preferable that one paper-made sheet has a thickness of 0.2 to 2 mm and a unit weight of 100 to 250 g / m 2 .
Preferably, 1 to 5 sheets of this sheet are laminated and fired in an inert atmosphere such as nitrogen or argon. The firing is preferably carried out, for example, by sandwiching it between graphite plates so that the sheet does not warp. It is preferable to raise the temperature of firing up to about 800 ° C. for 5 to 100 hours. The final temperature of firing is not particularly limited as long as each component can be carbonized.

【0016】上記したシートを、焼成する前に加熱加圧
成形することが好ましい。加熱加圧成形においては、ポ
リアクリロニトリル系繊維が溶融しバインダーの機能を
果たして活性炭などを焼成が完了するまで保持する。こ
のような作用を果たすために、加熱温度は200℃〜3
00℃であることが好ましい。加熱温度が200℃未満
の場合は、ポリアクリロニトリル系繊維が一部分溶融す
るために加熱加圧積層成形後、積層面の剥離等が生じ、
一方300℃を超える場合は、ポリアクリロニトリル系
繊維が不融化(酸化)され溶融せず繊維状態のままであ
り、バインダーの機能を果たさないので、いずれの場合
も好ましくない。
It is preferable that the above-mentioned sheet is heated and pressed before firing. In the heat and pressure molding, the polyacrylonitrile fiber melts and functions as a binder to hold the activated carbon and the like until the firing is completed. In order to perform such an action, the heating temperature is 200 ° C to 3 ° C.
It is preferably 00 ° C. When the heating temperature is less than 200 ° C., the polyacrylonitrile fiber partially melts, so that the laminated surface is peeled off after the heating and pressurizing lamination molding.
On the other hand, when the temperature exceeds 300 ° C., the polyacrylonitrile fiber is infusibilized (oxidized) and is not melted and remains in the fiber state and does not function as a binder, which is not preferable in any case.

【0017】また、加熱加圧成形時の圧力は1〜10K
g/cm2 が好ましい。圧力が1Kg/cm2 未満の場
合、積層面の密着性が低下し、一方圧力10Kg/cm
2 を超えても、成形後の密度上昇がほとんど変化ない。
The pressure during heating and pressurizing is 1 to 10K.
g / cm 2 is preferred. When the pressure is less than 1 Kg / cm 2 , the adhesion of the laminated surface is lowered, while the pressure is 10 Kg / cm 2.
Even if it exceeds 2 , the density increase after molding hardly changes.

【0018】[0018]

【作用】上記の方法で製造することにより浸漬工程を行
わずに電極を製造できるため、工程が簡略化されるのみ
ならず、抄紙により空隙率のバラツキが少ないシートが
得られるので、これを焼成した電極でも空隙率のバラツ
キを少なくすることができる。また焼成した電極は微細
構造は使用中にも電解液に対して安定している。
Since the electrode can be manufactured without performing the dipping step by the above-mentioned method, not only the process is simplified but also a sheet with less variation in porosity can be obtained by papermaking. Even with the formed electrode, it is possible to reduce variations in porosity. The fine structure of the fired electrode is stable to the electrolyte even during use.

【0019】上記の方法で製造した分極性電極の代表的
特性は嵩密度0.3〜1.0g/cm3 、曲げ強度50
〜150g/cm2 、電気比抵抗5000μ〜2000
0Ωcm、比表面積500〜1500m2 /gである。
またこの電気比抵抗は電極使用中にもほとんど変動せず
安定している。
Typical characteristics of the polarizable electrode produced by the above method are as follows: bulk density of 0.3 to 1.0 g / cm 3 , bending strength of 50.
~ 150 g / cm 2 , electrical resistivity 5000 μ ~ 2000
It is 0 Ωcm and the specific surface area is 500 to 1500 m 2 / g.
Further, this electrical resistivity is stable and hardly changes even during use of the electrodes.

【0020】さらに請求項3の方法によると、加熱・加
圧成形の際、ポリアクリロニトリル系が溶融しバインダ
ーとして活性炭を担持するので、最終焼成体中における
活性炭の分布を均一にすることができる。
Further, according to the method of claim 3, the polyacrylonitrile system melts and carries activated carbon as a binder during heating / pressurizing, so that the distribution of activated carbon in the final fired product can be made uniform.

【0021】以下、実施例により本発明を詳しく説明す
る。
The present invention will be described in detail below with reference to examples.

【実施例】【Example】

実施例1 活性炭(武田薬品製、LPK−436,平均粒度6μ
m)、パルプ(セルロース繊維)、人造黒鉛微粉(昭和
電工製UHG−30,平均粒度10μm)及びポリアク
リロニトリル系繊維(旭化成(株)製品:平均長さ3m
m,径3デニール)をそれぞれ30重量%、40重量
%、5重量%及び25重量%の割合で抄紙した。シート
の寸法は120mm×120mm×0.3mm、重さが
1.6gであった。このシートを4枚積層し、黒鉛板に
挟み温度260℃で圧力3Kg/cm2 、保持30分の
条件で加熱加圧成形をすることで、厚さ0.8mmの積
層板を得た。この積層板を黒鉛板に挟み不活性化雰囲気
で焼成し厚さ0.76mmの分極性電極を作製した。
Example 1 Activated carbon (manufactured by Takeda Pharmaceutical Co., LPK-436, average particle size 6 μ)
m), pulp (cellulose fiber), artificial graphite fine powder (Showa Denko UHG-30, average particle size 10 μm), and polyacrylonitrile fiber (Asahi Kasei Co., Ltd. product: average length 3 m)
m, diameter 3 denier) at 30% by weight, 40% by weight, 5% by weight and 25% by weight, respectively. The dimensions of the sheet were 120 mm x 120 mm x 0.3 mm and the weight was 1.6 g. Four sheets were laminated, sandwiched between graphite plates, and heat-pressed at a temperature of 260 ° C. under a pressure of 3 Kg / cm 2 and a holding time of 30 minutes to obtain a laminated plate having a thickness of 0.8 mm. This laminated plate was sandwiched between graphite plates and fired in an inert atmosphere to prepare a polarizable electrode having a thickness of 0.76 mm.

【0022】この分極性電極の物性を測定したところ嵩
密度0.55g/cm3 、曲げ強度80Kg/cm2
び電気比抵抗0.005Ωcmであった。また、成形圧
力を6kg/cm2 とした場合、崇密度が若干上昇する
ものの物性はほとんど変化なかった。後述の実施例2〜
4の場合も、成形圧力を高くすると嵩密度が若干上昇す
るものの物性はほとんど変化なかった。
When the physical properties of this polarizable electrode were measured, the bulk density was 0.55 g / cm 3 , the bending strength was 80 Kg / cm 2, and the electrical specific resistance was 0.005 Ωcm. Further, when the molding pressure was 6 kg / cm 2 , the physical properties were slightly changed although the sublimation density was slightly increased. Example 2 described below
Also in the case of 4, even if the molding pressure was increased, the bulk density slightly increased, but the physical properties remained almost unchanged.

【0023】実施例2 実施例1と同じ活性炭、パルプ及びポリアクリロニトリ
ル系繊維の割合をそれぞれ40重量%、30重量%及び
30重量%として抄紙し、実施例1と同一寸法及び重さ
のシートを得た。続いて実施例1と同様に加熱加圧成形
して厚さ0.85mmの積層板を得た。この積層板を実
施例1と同様に焼成し、厚さ0.88mmの分極性電極
を得た。この物性を測定したところ嵩密度0.45g/
cm3 、曲げ強度80Kg/cm2 及び電気比抵抗0.
01Ωcmであった。
Example 2 The same active carbon, pulp, and polyacrylonitrile fiber ratios as in Example 1 were set to 40% by weight, 30% by weight, and 30% by weight, respectively, and paper was made, and a sheet having the same size and weight as in Example 1 was prepared. Obtained. Subsequently, heat and pressure molding were carried out in the same manner as in Example 1 to obtain a laminated plate having a thickness of 0.85 mm. This laminated plate was fired in the same manner as in Example 1 to obtain a polarizable electrode having a thickness of 0.88 mm. When this physical property was measured, the bulk density was 0.45 g /
cm 3 , bending strength of 80 kg / cm 2 and electric resistivity of 0.
It was 01 Ωcm.

【0024】実施例3 実施例1と同じ活性炭、パルプ及びアクリアクリロニト
リル系繊維の割合を30重量%、30重量%及び40重
量%として、抄紙した。実施例1と同様に加熱加圧成形
して厚さ0.84mmの積層板を得た。この積層板を実
施例1と同様に焼成し、厚さ0.73mmの分極性電極
を得た。この物性を測定したところ嵩密度0.48g/
cm3 、曲げ強度90Kg/cm2 及び電気比抵抗0.
009Ωcmであった。
Example 3 Paper was made with the same proportions of activated carbon, pulp and acrylocrylonitrile fiber as in Example 1 of 30% by weight, 30% by weight and 40% by weight. Heat and pressure molding was carried out in the same manner as in Example 1 to obtain a laminated plate having a thickness of 0.84 mm. This laminated plate was fired in the same manner as in Example 1 to obtain a polarizable electrode having a thickness of 0.73 mm. When this physical property was measured, the bulk density was 0.48 g /
cm 3 , bending strength 90 Kg / cm 2 and electric specific resistance 0.
It was 009 Ωcm.

【0025】実施例4 実施例1と同様な割合で抄紙し、加熱加圧成形の圧力を
6Kg/cm2 で成形し、焼成したところ嵩密度0.5
8g/cm3 が得られた。そのほかの物性については、
実施例1とほぼ同様であった。
Example 4 Paper was made in the same ratio as in Example 1, and the pressure of heat and pressure molding was molded at 6 Kg / cm 2 and fired to obtain a bulk density of 0.5.
8 g / cm 3 was obtained. For other physical properties,
It was almost the same as in Example 1.

【0026】[0026]

【発明の効果】以上説明したように、本発明法によると
樹脂の浸漬工程を行わずに、安定した低電気比抵抗の分
極性電極が容易に得られ、これを電気二重層キャパシタ
等に使用することにより電気比抵抗の低減及び信頼性の
向上を図ることができる。
As described above, according to the method of the present invention, a stable and polarizable electrode having a low electric resistivity can be easily obtained without performing a resin dipping process, and this can be used for an electric double layer capacitor or the like. By doing so, it is possible to reduce the electrical resistivity and improve the reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】分極性電極の概念図である。FIG. 1 is a conceptual diagram of a polarizable electrode.

【符号の説明】[Explanation of symbols]

1 分極性電極 2 セパレータ 3 封止材 4 導電性シート 1 minute polarity electrode 2 separator 3 encapsulant 4 conductive sheet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性炭、セルロース質繊維及びポリアク
リロニトリル系繊維を抄紙してシートとした後焼成する
ことを特徴とする分極性電極の製造法。
1. A process for producing a polarizable electrode, which comprises firing activated carbon, a cellulosic fiber and a polyacrylonitrile fiber into a sheet and then firing the sheet.
【請求項2】 活性炭、セルロース質繊維、黒鉛微粉及
びポリアクリロニトリル系繊維を抄紙してシートとした
後焼成することを特徴とする分極性電極の製造法。
2. A process for producing a polarizable electrode, characterized in that activated carbon, cellulosic fiber, fine graphite powder and polyacrylonitrile fiber are made into a sheet and then fired.
【請求項3】 前記焼成前に複数枚の前記シートを加熱
・加圧成形することを特徴とする請求項1又は2記載の
分極性電極の製造法。
3. The method for producing a polarizable electrode according to claim 1, wherein a plurality of the sheets are heated and pressure-molded before the firing.
【請求項4】 前記活性炭、セルロース質繊維、黒鉛微
粉及びポリアクリロニトリル系繊維の使用割合がそれぞ
れ30〜48重量%、30〜48重量%、2〜10重量
%及び20〜40重量%であることを特徴とする請求項
1記載の分極性電極の製造法。
4. The use ratio of the activated carbon, the cellulosic fiber, the fine graphite powder and the polyacrylonitrile fiber is 30 to 48% by weight, 30 to 48% by weight, 2 to 10% by weight and 20 to 40% by weight, respectively. The method for producing a polarizable electrode according to claim 1, wherein
JP9020492A 1992-03-16 1992-03-16 Manufacturing method of polarized electrode Expired - Fee Related JP3152990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9020492A JP3152990B2 (en) 1992-03-16 1992-03-16 Manufacturing method of polarized electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9020492A JP3152990B2 (en) 1992-03-16 1992-03-16 Manufacturing method of polarized electrode

Publications (2)

Publication Number Publication Date
JPH05258997A true JPH05258997A (en) 1993-10-08
JP3152990B2 JP3152990B2 (en) 2001-04-03

Family

ID=13991963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9020492A Expired - Fee Related JP3152990B2 (en) 1992-03-16 1992-03-16 Manufacturing method of polarized electrode

Country Status (1)

Country Link
JP (1) JP3152990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332625A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
CN105655153A (en) * 2016-01-06 2016-06-08 东北师范大学 Preparation method of self-supported capacitor electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332625A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
CN105655153A (en) * 2016-01-06 2016-06-08 东北师范大学 Preparation method of self-supported capacitor electrode material

Also Published As

Publication number Publication date
JP3152990B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US6031712A (en) Electric double layer capacitor
JP2993343B2 (en) Polarizing electrode and method of manufacturing the same
US6332990B1 (en) Method for fabricating composite carbon foam
CA2183046A1 (en) Polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using said polarizable electrode
CN105551830A (en) Preparation method of active graphene/active carbon composite electrode plate
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JP3652061B2 (en) Electric double layer capacitor
JP3152990B2 (en) Manufacturing method of polarized electrode
JP3602933B2 (en) Activated carbon substrate
JPH1111921A (en) Solid activated carbon
JPS63226019A (en) Manufacture of polarizing electrode
JPH11340103A (en) Manufacture of activated carbon material
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH05304047A (en) Polarized electrode and manufacture thereof
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
JPH07135127A (en) Electric double layer capacitor and its manufacture
JP3159754B2 (en) Electric double layer capacitor
JPH0786098A (en) Active carbon electrode and its manufacture
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JP2000143225A (en) Activatated carbon material and its production
JPH11297576A (en) Active carbon electrode, its manufacture and electric double layer capacitor
JPH11297580A (en) Electric double-layer capacitor
JPH11121294A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110126

LAPS Cancellation because of no payment of annual fees