JPH05256478A - Radiation room cooler - Google Patents

Radiation room cooler

Info

Publication number
JPH05256478A
JPH05256478A JP4051755A JP5175592A JPH05256478A JP H05256478 A JPH05256478 A JP H05256478A JP 4051755 A JP4051755 A JP 4051755A JP 5175592 A JP5175592 A JP 5175592A JP H05256478 A JPH05256478 A JP H05256478A
Authority
JP
Japan
Prior art keywords
refrigerant
radiant cooling
temperature
evaporator
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4051755A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Minoru Tagashira
實 田頭
Koji Ebisu
晃司 戎
Masataka Ozeki
正高 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4051755A priority Critical patent/JPH05256478A/en
Publication of JPH05256478A publication Critical patent/JPH05256478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To prevent disorder of a room cooling effect according to dew- condensation and a place by maintaining a temperature of an entire surface of a radiation room cooling evaporator substantially constant. CONSTITUTION:The radiation room cooler comprises a refrigerant pump 1 for feeding refrigerant, a radiation room cooling evaporator 2 for performing radiation room cooling by using the refrigerant fed by the pump 1, and an auxiliary heat exchanger 7 for raising a temperature of the refrigerant until it becomes a two-phase state before the refrigerant fed from the pump 1 is introduced into the evaporator 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輻射を利用した冷房装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device utilizing radiation.

【0002】[0002]

【従来の技術】従来、よりマイルドな冷房を実現する方
法として、輻射冷房装置が知られている。従来の輻射冷
房装置は、例えば天井面に配管パイプを付設し、その内
部に冷水を流通させて天井面を冷却するものや、あるい
は輻射冷房用蒸発器の冷媒配管を付設し、冷媒をその冷
媒配管内で蒸発させることにより、天井面を冷却して、
室内にいる人体からの放熱を輻射によって奪い、ドラフ
ト感のない快適な冷房を実現しようとするものである。
2. Description of the Related Art Conventionally, a radiation cooling device has been known as a method for realizing a milder cooling. Conventional radiant cooling apparatus, for example, a piping pipe is attached to the ceiling surface, a cooling pipe is circulated in the inside to cool the ceiling surface, or a refrigerant pipe of the radiation cooling evaporator is attached, and the refrigerant is the refrigerant. By evaporating in the pipe, the ceiling surface is cooled,
It aims to realize a comfortable air-conditioning without draft feeling by removing the heat radiation from the human body in the room by radiation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
輻射冷房装置では、たとえば天井面の配管へ冷水を流す
場合には、冷水が潜熱を持たないため、上流から下流に
向かって温度が上昇していき、天井面に温度分布がつい
て、下流側では輻射冷房の効果が低くなったり、あるい
はそれを避けるために水の温度を下げると、今度は上流
側で温度が下がりすぎて天井面に結露が発生したりして
いた。また、温度分布を避けるために大流量の水を流す
場合にも、ポンプ動力が増加するなどの欠点を有してい
た。
However, in the conventional radiant cooling apparatus, when the cold water flows through the piping on the ceiling surface, for example, the cold water does not have latent heat, and therefore the temperature rises from upstream to downstream. The temperature distribution on the ceiling surface reduces the effect of radiant cooling on the downstream side, or if the temperature of the water is lowered to avoid it, the temperature will drop too much on the upstream side and condensation will form on the ceiling surface. It happened. Further, even when a large amount of water is flown to avoid temperature distribution, there is a drawback that the pump power increases.

【0004】そこで冷水による欠点を除くために冷媒が
用いられる。しかしながら、天井面の輻射冷房用蒸発器
に冷媒を流す場合には、冷媒は潜熱の発生区間で一定温
度となる性質を持つものの、上流から下流に向かう圧力
損失によって、上流から下流に向かって温度が低下して
いき、輻射冷房用蒸発器の下流側で結露や場所による冷
房効果の乱れが発生したりしていた。また、ポンプ動力
は小さくてすむものの、冷媒を安定して送るためにはポ
ンプ入口冷媒は液体状態になっている必要があり、その
ため、冷媒液が過冷却されて温度が低くなり、輻射冷房
用蒸発器の上流側で結露や冷房効果の乱れが発生したり
する課題がある。
Therefore, a refrigerant is used to eliminate the drawbacks caused by cold water. However, when the refrigerant flows through the radiant cooling evaporator on the ceiling surface, the refrigerant has a constant temperature in the section where latent heat is generated, but the pressure loss from the upstream to the downstream causes the temperature to decrease from the upstream to the downstream. The temperature was gradually decreasing, and the cooling effect was disturbed due to dew condensation and location on the downstream side of the radiant cooling evaporator. Although the pump power is small, the pump inlet refrigerant must be in a liquid state in order to send the refrigerant stably, so the refrigerant liquid is supercooled and the temperature becomes low, so that it can be used for radiant cooling. There is a problem that dew condensation or disturbance of the cooling effect occurs on the upstream side of the evaporator.

【0005】本発明は、従来のこのような課題を考慮
し、輻射冷房用蒸発器の全面の温度をほぼ一定とし、結
露や場所による冷房効果の乱れを防止することができる
輻射冷房装置を提供することを目的とするものである。
In view of the above problems of the prior art, the present invention provides a radiant cooling apparatus capable of keeping the temperature of the entire surface of the radiant cooling evaporator substantially constant and preventing dew condensation or disturbance of the cooling effect due to location. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は、冷媒を送出す
る冷媒ポンプと、その冷媒ポンプにより送出された冷媒
を用いて、輻射冷房を行うための輻射冷房用蒸発器とを
備えた輻射冷房装置において、冷媒ポンプにより送出さ
れた冷媒が輻射冷房用蒸発器に入る前に、冷媒を2相状
態になるまで温度上昇させる温度上昇手段を備えた輻射
冷房装置である。
DISCLOSURE OF THE INVENTION The present invention provides a radiant cooling system including a refrigerant pump for delivering a refrigerant, and a radiant cooling evaporator for performing radiant cooling using the refrigerant delivered by the refrigerant pump. In the apparatus, the radiant cooling apparatus is provided with a temperature raising means for raising the temperature of the refrigerant to a two-phase state before the refrigerant delivered by the refrigerant pump enters the radiant cooling evaporator.

【0007】[0007]

【作用】本発明は、温度上昇手段が、冷媒ポンプにより
送出された冷媒を、2相状態になるまで温度上昇させ、
その温度上昇された冷媒が、輻射冷房用蒸発器に入っ
て、輻射冷房用蒸発器の上流側の温度を下げすぎること
なく輻射冷房を行う。
According to the present invention, the temperature raising means raises the temperature of the refrigerant delivered by the refrigerant pump to a two-phase state,
The refrigerant whose temperature has risen enters the radiant cooling evaporator and performs radiant cooling without excessively lowering the temperature on the upstream side of the radiant cooling evaporator.

【0008】[0008]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0009】図1は、本発明にかかる一実施例の輻射冷
房装置の構成図である。すなわち、輻射冷房装置は、第
1冷凍サイクル及び第2冷凍サイクルにより構成されて
いる。 第1冷凍サイクルには、冷媒を循環させるため
の冷媒ポンプ1が設けられ、その冷媒ポンプ1の送出側
には、配管5が連結されている。配管5には、天井に設
けられた天井パネル3を冷却するための輻射冷房用蒸発
器2が連結され、その輻射冷房用蒸発器2の出口には、
配管6が連結されている。その配管6は、冷媒を液化す
る凝縮器となる冷媒対冷媒熱交換器4を経て冷媒ポンプ
1に連結されている。又、配管5及び配管6は、途中で
補助熱交換器7で熱交換できるように構成されている。
以上のように構成された第1冷凍サイクルでは、冷媒ポ
ンプ1を出た冷媒は配管5→補助熱交換器7→輻射冷房
用蒸発器2→配管6→補助熱交換器7→冷媒対冷媒熱交
換器4→冷媒ポンプ1の順に流れる。
FIG. 1 is a block diagram of a radiant cooling apparatus according to an embodiment of the present invention. That is, the radiant cooling device is composed of the first refrigeration cycle and the second refrigeration cycle. A refrigerant pump 1 for circulating a refrigerant is provided in the first refrigeration cycle, and a pipe 5 is connected to a delivery side of the refrigerant pump 1. A radiation cooling evaporator 2 for cooling the ceiling panel 3 provided on the ceiling is connected to the pipe 5, and the outlet of the radiation cooling evaporator 2 is
The pipe 6 is connected. The pipe 6 is connected to the refrigerant pump 1 via the refrigerant-refrigerant heat exchanger 4 which serves as a condenser for liquefying the refrigerant. In addition, the pipes 5 and 6 are configured so that heat can be exchanged by the auxiliary heat exchanger 7 on the way.
In the first refrigeration cycle configured as described above, the refrigerant that has exited the refrigerant pump 1 is pipe 5 → auxiliary heat exchanger 7 → radiation cooling evaporator 2 → pipe 6 → auxiliary heat exchanger 7 → refrigerant-to-refrigerant heat. Flows in the order of exchanger 4 → refrigerant pump 1.

【0010】一方、第2冷凍サイクルには、第2冷凍サ
イクル内の冷媒を圧縮する圧縮機8が設けられ、その圧
縮器8には、室外に熱を放散する室外熱交換器9が連結
されている。その室外熱交換器9には、冷媒の能力を調
整する絞り装置10が連結され、その絞り装置10に
は、蒸発器となる冷媒対冷媒熱交換器4が連結されて、
その冷媒対冷媒熱交換器4は圧縮器8に連結されてい
る。従って、以上のように構成された第2冷凍サイクル
の冷媒及び第1冷凍サイクルの冷媒は、冷媒対冷媒熱交
換器4で間接的に熱交換できるようになっている。
On the other hand, the second refrigeration cycle is provided with a compressor 8 for compressing the refrigerant in the second refrigeration cycle, and the compressor 8 is connected with an outdoor heat exchanger 9 for radiating heat to the outside. ing. The outdoor heat exchanger 9 is connected to the expansion device 10 for adjusting the capacity of the refrigerant, and the expansion device 10 is connected to the refrigerant-refrigerant heat exchanger 4 serving as an evaporator.
The refrigerant-refrigerant heat exchanger 4 is connected to the compressor 8. Therefore, the refrigerant of the second refrigeration cycle and the refrigerant of the first refrigeration cycle configured as described above can indirectly exchange heat with the refrigerant-refrigerant heat exchanger 4.

【0011】又、第1冷凍サイクルの冷媒には、高沸点
なフレオンガス(たとえばR142bなど)と、それよ
り低沸点なフレオンガス(たとえばR22など)を混合
した非共沸混合冷媒が用いられている。
As the refrigerant of the first refrigeration cycle, a non-azeotropic mixed refrigerant in which a high boiling point Freon gas (eg, R142b) and a lower boiling point Freon gas (eg, R22) are mixed is used.

【0012】次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be described.

【0013】まず、以上のような輻射冷房装置により輻
射冷房運転を行う場合、第2冷凍サイクルが運転を開始
し、圧縮機8により吐出した冷媒が室外熱交換器9に送
られ、そこで液化される。液化された冷媒は絞り装置1
0により低圧まで絞られ、蒸発器となる冷媒対冷媒熱交
換器4に流入する。冷媒対冷媒熱交換器4では、第1冷
凍サイクルを流れる冷媒と熱交換して自らは蒸発し、再
び圧縮機8に吸入されるサイクルを繰り返す。
First, when the radiant cooling operation is performed by the radiant cooling device as described above, the second refrigeration cycle starts operation, and the refrigerant discharged from the compressor 8 is sent to the outdoor heat exchanger 9 and liquefied there. It The liquefied refrigerant is the expansion device 1
It is throttled to a low pressure by 0 and flows into the refrigerant-refrigerant heat exchanger 4 which serves as an evaporator. The refrigerant-refrigerant heat exchanger 4 repeats the cycle of exchanging heat with the refrigerant flowing through the first refrigeration cycle, evaporating itself, and being sucked into the compressor 8 again.

【0014】一方、第1冷凍サイクルでは、冷媒対冷媒
熱交換器4により液化された冷媒は、過冷却されて冷媒
ポンプ1より吐出され、配管5を通って補助熱交換器7
に流入し、ここで配管6を流れている冷媒と間接的に熱
交換し、過冷却液が加熱されて二相状態となり輻射冷房
用蒸発器2に流入する。
On the other hand, in the first refrigeration cycle, the refrigerant liquefied by the refrigerant-refrigerant heat exchanger 4 is supercooled and discharged from the refrigerant pump 1, and passes through the pipe 5 to the auxiliary heat exchanger 7
And indirectly exchanges heat with the refrigerant flowing through the pipe 6, and the supercooled liquid is heated to be in a two-phase state and flows into the radiation cooling evaporator 2.

【0015】輻射冷房用蒸発器2では、二相状態の冷媒
は蒸発しながら管内を流れると共に、天井パネル3が熱
伝導により冷却され、室内にいる人体からの放熱を輻射
によって奪い(図省略)、冷房に寄与する。次に、輻射
冷房用蒸発器2を出た冷媒は、配管6を通って補助熱交
換器7に流入し、先に述べたように配管5を流れている
過冷却液を加熱した後、凝縮器となる冷媒対冷媒熱交換
器4に流入する。ここでは第2冷凍サイクルの冷媒と熱
交換して自らは液化し、再び冷媒ポンプ1に吸入される
サイクルを繰り返す。
In the radiant cooling evaporator 2, the refrigerant in the two-phase state flows through the pipe while evaporating, and the ceiling panel 3 is cooled by heat conduction, and the heat radiation from the human body in the room is taken away by radiation (not shown). Contribute to cooling. Next, the refrigerant exiting the radiant cooling evaporator 2 flows into the auxiliary heat exchanger 7 through the pipe 6, heats the supercooled liquid flowing in the pipe 5 as described above, and then condenses it. It flows into the refrigerant-to-refrigerant heat exchanger 4, which serves as a container. Here, the cycle in which heat is exchanged with the refrigerant in the second refrigeration cycle to liquefy itself and is sucked into the refrigerant pump 1 again is repeated.

【0016】以上述べた第1冷凍サイクルについて、図
2に示すモリエル線図を用いて説明する。
The first refrigeration cycle described above will be described with reference to the Mollier diagram shown in FIG.

【0017】図2は縦軸に圧力、横軸にエンタルピで示
したモリエル線図で、20は飽和ガス線、21は飽和液
線、22は代表的な等温線(点線で示す)を示したもの
で、本発明になる非共沸混合冷媒を用いた場合には、等
温線22は飽和域内で圧力に対して図のような勾配を持
つことが知られている(非共沸混合冷媒でない場合はほ
ぼ水平になる)。
FIG. 2 is a Mollier diagram in which the vertical axis represents pressure and the horizontal axis represents enthalpy. 20 is a saturated gas line, 21 is a saturated liquid line, and 22 is a typical isotherm (indicated by a dotted line). However, when the non-azeotropic mixed refrigerant according to the present invention is used, it is known that the isotherm 22 has a gradient with respect to pressure in the saturation region as shown in the figure (not a non-azeotropic mixed refrigerant). If almost horizontal).

【0018】いま、冷媒ポンプ1が安定して冷媒液を送
るようにするため、冷媒ポンプ1の吸入側は点Aで示さ
れる過冷却液であり、圧力が上昇して点Bの状態で吐出
される。点Bの状態の冷媒は、補助熱交換器7により加
熱されて、エンタルピが増加し、ほぼ二相状態の点Cの
状態になる。その後輻射冷房用蒸発器2に流入して、輻
射冷房に寄与して輻射冷房用蒸発器2を出た冷媒は圧力
が低下し、エンタルピが増加して点Dの状態となる。点
Dの二相状態の冷媒は、補助熱交換器7により点Bの状
態の過冷却液と熱交換し、上述のように点Bの過冷却液
をほぼ二相状態の点Cの状態にする。逆に点Dの冷媒は
エンタルピが減少して点Eの状態となり、さらに冷媒対
冷媒熱交換器4により第2冷凍サイクルの冷媒と熱交換
されて点Aの過冷却液の状態まで冷却され、再び冷媒ポ
ンプ1に吸入される。
Now, in order for the refrigerant pump 1 to stably send the refrigerant liquid, the suction side of the refrigerant pump 1 is the supercooled liquid shown at the point A, and the pressure rises and the refrigerant is discharged at the point B. To be done. The refrigerant in the state of point B is heated by the auxiliary heat exchanger 7, the enthalpy increases, and the state of point C in the almost two-phase state is reached. After that, the refrigerant flowing into the radiant cooling evaporator 2 and contributing to the radiant cooling and exiting the radiant cooling evaporator 2 has its pressure lowered and its enthalpy increases to the state of point D. The refrigerant in the two-phase state at the point D exchanges heat with the supercooled liquid in the state at the point B by the auxiliary heat exchanger 7, and the supercooled liquid at the point B becomes a state at the point C in the almost two-phase state as described above. To do. On the contrary, the enthalpy of the refrigerant at the point D is reduced to the state of the point E, and the refrigerant-refrigerant heat exchanger 4 further exchanges heat with the refrigerant of the second refrigeration cycle to cool it to the state of the supercooled liquid at the point A, It is again sucked into the refrigerant pump 1.

【0019】従って、輻射冷房用蒸発器2の入口では、
冷媒は二相状態となり、過冷却冷媒液のように温度が低
下しすぎるようなことはない。また、非共沸混合冷媒を
流しているため、輻射冷房用蒸発器2内部では圧力損失
により点Cから点Dまで圧力が低下するが、図示した温
度勾配に沿って進むため、輻射冷房用蒸発器2内の温度
の上昇や低下はほとんどなく、輻射冷房用蒸発器2の出
口付近の温度も低下しすぎることがなく、天井パネル3
の温度は全面でほぼ均一となり、局部的な冷房効果の乱
れや結露を防止することができるものである。
Therefore, at the inlet of the radiant cooling evaporator 2,
The refrigerant is in a two-phase state, and the temperature does not drop too much unlike the supercooled refrigerant liquid. Further, since the non-azeotropic mixed refrigerant is flowing, the pressure inside the radiation cooling evaporator 2 decreases from point C to point D due to a pressure loss, but since it advances along the illustrated temperature gradient, the radiation cooling evaporation There is almost no increase or decrease in the temperature inside the cooler 2, the temperature near the outlet of the radiant cooling evaporator 2 does not decrease too much, and the ceiling panel 3
The temperature of is almost uniform over the entire surface, and it is possible to prevent local disturbance of the cooling effect and dew condensation.

【0020】更に、上記実施例では、凝縮器の冷熱源と
して第2冷凍サイクルの蒸発器を用いているため、高い
熱伝達率を持つ冷媒対冷媒熱交換器4を使用することが
でき、また、輻射冷房の特性により、蒸発温度をあまり
下げる必要がないなどのことから、装置全体を高い効率
で運転することができるものである。
Further, in the above embodiment, since the evaporator of the second refrigeration cycle is used as the cold heat source of the condenser, the refrigerant-refrigerant heat exchanger 4 having a high heat transfer coefficient can be used, and Due to the characteristics of the radiant cooling, it is not necessary to lower the evaporation temperature so much, so that the entire apparatus can be operated with high efficiency.

【0021】なお、上記実施例では、温度上昇手段は輻
射冷房用蒸発器2を出た冷媒と熱交換を行うことによっ
て、輻射冷房用蒸発器2に入る冷媒を温度上昇したが、
これに限らず、冷媒が2相状態になるまで温度上昇が行
える手段であれば、例えば加熱などの方法であってもよ
い。
In the above embodiment, the temperature raising means heat-exchanges with the refrigerant leaving the radiant cooling evaporator 2 to raise the temperature of the refrigerant entering the radiant cooling evaporator 2.
The method is not limited to this, and a method such as heating may be used as long as the temperature can be raised until the refrigerant is in the two-phase state.

【0022】また、上記実施例では、輻射冷房用蒸発器
2に入る前の冷媒を温度上昇する方法と、冷媒に2種類
を混合した非共沸混合冷媒を用いる方法とを組み合わせ
た例を示したが、これに限らず、それらのうちどちらか
一方のみを用いてもよい。
Further, the above embodiment shows an example in which the method of raising the temperature of the refrigerant before entering the radiation cooling evaporator 2 and the method of using the non-azeotropic mixed refrigerant in which two kinds of refrigerant are mixed are combined. However, not limited to this, only one of them may be used.

【0023】また、上記実施例では、冷媒の混合を2種
類としたが、これに限らず、非共沸混合冷媒となればよ
く、例えば3種類あるいはそれ以上であってもよい。
In the above embodiment, two types of refrigerants are mixed, but the invention is not limited to this, and any non-azeotropic mixed refrigerant may be used. For example, three kinds or more may be used.

【0024】[0024]

【発明の効果】以上述べたところから明らかなように本
発明は、輻射冷房用蒸発器の全面の温度をほぼ一定と
し、結露や場所による冷房効果の乱れを防止することが
できるという長所を有する。
As is clear from the above description, the present invention has the advantage that the temperature of the entire surface of the radiant cooling evaporator can be kept substantially constant and that the cooling effect can be prevented from being disturbed due to dew condensation or location. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例の輻射冷房装置の構成
図である。
FIG. 1 is a configuration diagram of a radiation cooling apparatus according to an exemplary embodiment of the present invention.

【図2】同実施例の輻射冷房装置の動作を説明するモリ
エル線図である。
FIG. 2 is a Mollier diagram for explaining the operation of the radiant cooling apparatus of the same embodiment.

【符号の説明】[Explanation of symbols]

1 冷媒ポンプ 2 輻射冷房用蒸発器 3 天井パネル 4 冷媒対冷媒熱交換器 5、6 配管 7 補助熱交換器 8 圧縮機 9 室外熱交換器 10 絞り装置 20 飽和ガス線 21 飽和液線 22 等温線 1 Refrigerant Pump 2 Radiant Cooling Evaporator 3 Ceiling Panel 4 Refrigerant-to-Refrigerant Heat Exchanger 5, 6 Piping 7 Auxiliary Heat Exchanger 8 Compressor 9 Outdoor Heat Exchanger 10 Throttling Device 20 Saturated Gas Line 21 Saturated Liquid Line 22 Isotherm

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾関 正高 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masataka Ozeki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を送出する冷媒ポンプと、その冷媒
ポンプにより送出された冷媒を用いて、輻射冷房を行う
ための輻射冷房用蒸発器とを備えた輻射冷房装置におい
て、前記冷媒ポンプにより送出された前記冷媒が前記輻
射冷房用蒸発器に入る前に、前記冷媒を2相状態になる
まで温度上昇させる温度上昇手段を備えたことを特徴と
する輻射冷房装置。
1. A radiant cooling apparatus comprising: a refrigerant pump for delivering a refrigerant; and a radiant cooling evaporator for performing radiative cooling using the refrigerant delivered by the refrigerant pump. A radiant cooling apparatus comprising: a temperature raising means for raising the temperature of the refrigerant until it enters a two-phase state before the refrigerant enters the radiant cooling evaporator.
【請求項2】 冷媒は、2種類以上の冷媒を混合した非
共沸混合冷媒であることを特徴とする請求項1記載の輻
射冷房装置。
2. The radiant cooling apparatus according to claim 1, wherein the refrigerant is a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants are mixed.
【請求項3】 温度上昇手段は、前記輻射冷房用蒸発器
を出た前記冷媒と熱交換を行うことによって、前記輻射
冷房用蒸発器に入る前の前記冷媒を温度上昇することを
特徴とする請求項1又は2記載の輻射冷房装置。
3. The temperature raising means raises the temperature of the refrigerant before entering the radiant cooling evaporator by exchanging heat with the refrigerant that has left the radiant cooling evaporator. The radiant cooling device according to claim 1 or 2.
【請求項4】 冷媒を送出する冷媒ポンプと、その冷媒
ポンプにより送出された冷媒を用いて、輻射冷房を行う
ための輻射冷房用蒸発器とを備えた輻射冷房装置におい
て、前記冷媒は、2種類以上の冷媒を混合した非共沸混
合冷媒であることを特徴とする輻射冷房装置。
4. A radiant cooling apparatus comprising: a refrigerant pump for delivering a refrigerant; and a radiant cooling evaporator for performing radiative cooling using the refrigerant delivered by the refrigerant pump. A radiant cooling device, which is a non-azeotropic mixed refrigerant in which more than one kind of refrigerant is mixed.
JP4051755A 1992-03-10 1992-03-10 Radiation room cooler Pending JPH05256478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051755A JPH05256478A (en) 1992-03-10 1992-03-10 Radiation room cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051755A JPH05256478A (en) 1992-03-10 1992-03-10 Radiation room cooler

Publications (1)

Publication Number Publication Date
JPH05256478A true JPH05256478A (en) 1993-10-05

Family

ID=12895758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051755A Pending JPH05256478A (en) 1992-03-10 1992-03-10 Radiation room cooler

Country Status (1)

Country Link
JP (1) JPH05256478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209111A (en) * 2003-11-21 2008-09-11 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system and co2 brine production system for use therein
WO2013003853A3 (en) * 2011-06-30 2013-06-13 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional sub-ambient cooling
WO2021140589A1 (en) 2020-01-08 2021-07-15 三菱電機株式会社 Air conditioning apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209111A (en) * 2003-11-21 2008-09-11 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system and co2 brine production system for use therein
WO2013003853A3 (en) * 2011-06-30 2013-06-13 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional sub-ambient cooling
WO2021140589A1 (en) 2020-01-08 2021-07-15 三菱電機株式会社 Air conditioning apparatus

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
JP2006284035A (en) Air conditioner and its control method
WO2014150004A1 (en) Thermal recovery system and method
JPH05256478A (en) Radiation room cooler
JP3342145B2 (en) Air conditioner
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
JP2006220332A (en) Composite type air conditioner
JP2012237518A (en) Air conditioner
JP2006220335A (en) Composite type air conditioner
KR100613502B1 (en) Heat pump type air conditioner
JP3354882B2 (en) Indirect outside air cooling system
JPH0275863A (en) Room heating/cooling apparatus
JP2002243350A (en) Refrigerating system
JP3213992B2 (en) Air conditioner
JPH10103796A (en) Steam compression type refrigerating device
JPS5840464A (en) Air conditioner
JPH08312995A (en) Air conditioner
JP3216560B2 (en) Heat source device
JPH09170824A (en) Heat conveying device
JPH05215490A (en) Air conditioner utilizing heat pump
JP2001241800A (en) Air conditioner
JP3058153B2 (en) Air conditioner
JP2996493B2 (en) Cooling device
JPH03144236A (en) Cooling and heating device for multi rooms
JPH10111029A (en) Vapor compression refrigerator