JPH05255132A - Production process of isobutane - Google Patents

Production process of isobutane

Info

Publication number
JPH05255132A
JPH05255132A JP8607592A JP8607592A JPH05255132A JP H05255132 A JPH05255132 A JP H05255132A JP 8607592 A JP8607592 A JP 8607592A JP 8607592 A JP8607592 A JP 8607592A JP H05255132 A JPH05255132 A JP H05255132A
Authority
JP
Japan
Prior art keywords
acid
catalyst
isobutane
platinum
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8607592A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mori
嘉彦 森
Hiroyoshi Noro
弘喜 野呂
Takao Kato
喬雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP8607592A priority Critical patent/JPH05255132A/en
Publication of JPH05255132A publication Critical patent/JPH05255132A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2791Catalytic processes with metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide an advantageous production process for isobutane by isomerization of n-butane. CONSTITUTION:n-Butane is isomerized in the presence of (A) a heteropolyacid salt containing at least one metal ion selected from the group consisting of nickel, iron, cobalt, copper and zinc as well as (B) platinum or palladium to give isobutane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、n−ブタンを異性化し
てイソブタンを製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing isobutane by isomerizing n-butane.

【0002】イソブタンはアルキル化剤として工業的に
重要であり、脱水素することにより製造されるイソブテ
ンは石油化学工業において貴重な原材料であり、イソブ
テンを出発原料として用いる多くの工業的方法が開発さ
れている。
Isobutane is industrially important as an alkylating agent, and isobutene produced by dehydrogenation is a valuable raw material in the petrochemical industry, and many industrial methods using isobutene as a starting material have been developed. ing.

【0003】[0003]

【従来の技術】異性化反応において触媒は塩化アルミニ
ウム、臭化アルミニウムなどのフリーデルクラフト型金
属ハロゲン化物触媒を無水の塩化水素あるいは臭化水素
とともに用いるもの、水添機能を有する金属成分、例え
ばニッケル、白金、パラジウムなどをアルミナあるいは
ゼオライトなどの耐熱性酸化物上に担持したいわゆる二
元機能触媒、白金−アルミナ−ハロゲン化物の複合触媒
に大別できる。
In the isomerization reaction, the catalyst used is a Friedel-Crafts type metal halide catalyst such as aluminum chloride or aluminum bromide with anhydrous hydrogen chloride or hydrogen bromide, or a metal component having a hydrogenating function, such as nickel. , A platinum-alumina-halide composite catalyst, a so-called bifunctional catalyst in which platinum, palladium, etc. are supported on a heat-resistant oxide such as alumina or zeolite.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、塩化ア
ルミニウムなどの金属ハロゲン化物を主体として用いる
触媒は強い腐食性を有しているため装置の主要部に耐食
性合金の使用が必要である。
However, since a catalyst mainly containing a metal halide such as aluminum chloride has a strong corrosive property, it is necessary to use a corrosion resistant alloy in the main part of the apparatus.

【0005】一方白金−アルミナなどのようないわゆる
二元機能触媒は塩化アルミニウム触媒のような欠点はな
いが、実用的な反応速度を得るためにはそれらの触媒に
塩化アルミニウムを昇華あるいは含浸させる方法、CC
などのハロアルカンの蒸気を含むガスとそれらの触
媒を反応させハロゲン元素を吸着あるいは化学結合によ
って触媒上に導入させる方法などのように反応に対する
活性化処理を行わなければならない。この場合、反応中
に副生する塩化水素をイソブタン中より分離するための
工程を設けなければならず、工程が複雑である。
On the other hand, so-called bifunctional catalysts such as platinum-alumina do not have the drawbacks of aluminum chloride catalysts, but in order to obtain a practical reaction rate, a method of sublimating or impregnating these catalysts with aluminum chloride is used. , CC
l must perform an activation treatment for the reaction, such as a method for introducing onto the catalyst by adsorption or chemical bonding a halogen element is reacted gases and their catalyst containing vapor of haloalkanes, such as 4. In this case, a step for separating hydrogen chloride, which is a by-product during the reaction, from isobutane must be provided, and the step is complicated.

【0006】[0006]

【課題を解決するための手段】本発明の目的は装置の腐
食及び工程の煩雑さを解消し、更に副生物の生成も抑制
したイソブタンの製造方法を提供するものである。具体
的にはニッケル、鉄、コバルト、銅、及び亜鉛からなる
群から選ばれた少なくとも1種以上の金属イオンを含む
ヘテロポリ酸塩並びに白金またはパラジウムの存在下に
てn−ブタンを異性化してイソブタンを製造する方法で
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing isobutane which eliminates the corrosion of the apparatus and the complexity of the process and suppresses the production of by-products. Specifically, isobutane is obtained by isomerizing n-butane in the presence of a heteropolyacid salt containing at least one metal ion selected from the group consisting of nickel, iron, cobalt, copper, and zinc, and platinum or palladium. Is a method of manufacturing.

【0007】本発明において触媒として用いられるヘテ
ロポリ酸塩はたとえば以下のヘテロポリ酸の塩として例
示される。すなわち、縮合配位元素としてMo,Wおよ
びVから選ばれた少なくとも1種の元素を含むものであ
り、さらにその他の元素、例えばNb,Taなどを縮合
配位元素として含んでいてもよい。また、このヘテロポ
リ酸の中心元素は、P,Si,As,Ge,Ti,C
e,Th,Mn,Ni,Te,I,Co,Cr,Fe,
Ga,B,V,Pt,BeおよびZnの群から選ばれた
1種であり、ヘテロポリ酸中の縮合配位元素/中心元素
(原子比)は2.5〜12である。さらにヘテロポリ酸
は単量体のみならず、二量体、三量体などの重合体も使
用できる。
The heteropolyacid salt used as a catalyst in the present invention is exemplified by the following salts of heteropolyacid. That is, it contains at least one element selected from Mo, W and V as the condensation coordination element, and may further contain other elements such as Nb and Ta as the condensation coordination element. The central element of this heteropolyacid is P, Si, As, Ge, Ti, C.
e, Th, Mn, Ni, Te, I, Co, Cr, Fe,
It is one kind selected from the group of Ga, B, V, Pt, Be and Zn, and the condensation coordination element / central element (atomic ratio) in the heteropolyacid is 2.5 to 12. Further, the heteropolyacid can be used not only as a monomer but also as a polymer such as a dimer or trimer.

【0008】これらヘテロポリ酸の具体例としてはリン
モリブデン酸、リンタングステン酸、リンモリブドバナ
ジン酸、リンモリブドタングストバナジン酸、リンタン
グストバナジン酸、リンモリブドニオブ酸、ケイタング
ステン酸、ケイモリブデン酸、ケイモリブドタングステ
ン酸、ケイモリブドタングストバナジン酸、ホウタング
ステン酸、ホウモリブデン酸、ホウモリブドタングステ
ン酸、ホウモリブドバナジン酸、ホウモリブドタングス
トバナジン酸、コバルトモリブデン酸、コバルトタング
ステン酸、砒素モリブデン酸、砒素タングステン酸など
である。
Specific examples of these heteropolyacids include phosphomolybdic acid, phosphotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, phosphomolybdniobic acid, silicotungstic acid, silicomolybdic acid. , Silico molybdo tungstic acid, silico molybdo tungstovanadic acid, borotungstic acid, boromolybdic acid, bomolibdo tungstic acid, bomolibdo vanadic acid, homolybdo tungstovanadic acid, cobalt molybdic acid, cobalt tungstic acid, arsenic Examples include molybdic acid and arsenic tungstic acid.

【0009】これらヘテロポリ酸は市販品を用いても良
いが原料化合物から合成して用いても良い。原料化合物
としては各元素の硝酸塩、アンモニウム塩、有機酸塩、
ハロゲン化合物などの塩類、酸化物を組み合わせて使用
することができる。
Commercially available products of these heteropolyacids may be used, or they may be synthesized from the raw material compounds and used. As raw material compounds, nitrates, ammonium salts, organic acid salts of each element,
Salts such as halogen compounds and oxides can be used in combination.

【0010】本発明において用いられるヘテロポリ酸塩
の陽イオンは、Ni,Fe,Co,Cu,Znから選ば
れた少なくとも1種以上であり、陽イオンのうち一部が
であってもよい。
The cation of the heteropolyacid salt used in the present invention is at least one selected from Ni, Fe, Co, Cu and Zn, and a part of the cation may be H +. ..

【0011】Ni,Fe,Co,Cu,Znの原料化合
物としては通常各元素の硝酸塩、炭酸塩などの塩類が用
いられる。
As the raw material compounds of Ni, Fe, Co, Cu and Zn, salts such as nitrates and carbonates of each element are usually used.

【0012】白金、パラジウムはそれら金属の硝酸塩、
ハロゲン化合物、アンミン錯体、有機錯体などを使用す
ることができる。
Platinum and palladium are nitrates of these metals,
A halogen compound, an ammine complex, an organic complex or the like can be used.

【0013】白金またはパラジウムはヘテロポリ酸塩と
重量比で0.0001〜20となるように添加されるも
のが効果的である。
It is effective to add platinum or palladium in a weight ratio of 0.0001 to 20 with the heteropolyacid salt.

【0014】本発明の方法で使用する触媒は無担体でも
有効であるが、好ましくはシリカ、シリコンカーバイ
ト、ケイソウ土等の不活性担体に担持して用いる。
The catalyst used in the method of the present invention is effective without a carrier, but is preferably used by being supported on an inert carrier such as silica, silicon carbide, diatomaceous earth.

【0015】用いられるヘテロポリ酸塩の量は特に制限
はないが、触媒総重量に対して通常1重量%以上、好ま
しくは10重量%以上が良い。
Although the amount of the heteropolyacid salt used is not particularly limited, it is usually 1% by weight or more, preferably 10% by weight or more based on the total weight of the catalyst.

【0016】白金またはパラジウムの担持率は仕上がっ
た触媒中に0.01〜20重量%担持されるものが効果
的である。
The loading ratio of platinum or palladium is preferably 0.01 to 20% by weight in the finished catalyst.

【0017】本発明に用いられる触媒の調製方法は既に
公知である蒸発乾固法、沈澱法、酸化物混合法等の種々
の方法を用いることができる。例えば蒸発乾固法の例と
しては以下の方法が挙げられる。純水にヘキサクロロ白
金酸を溶解した水溶液を調製する。別にヘテロポリ酸を
溶解した水溶液および硝酸ニッケルを溶解した水溶液を
調製する。白金酸水溶液にヘテロポリ酸水溶液を添加
し、さらに硝酸ニッケル水溶液を添加し撹拌する。その
後、加熱濃縮、蒸発乾固して得られた固形物を乾燥し、
成形して空気焼成する。焼成温度は250〜500℃、
好ましくは300〜400℃である。
As the method for preparing the catalyst used in the present invention, various methods such as the evaporation dry method, the precipitation method and the oxide mixing method which are already known can be used. For example, the following method is mentioned as an example of the evaporation-drying method. An aqueous solution of hexachloroplatinic acid dissolved in pure water is prepared. Separately, an aqueous solution in which heteropolyacid is dissolved and an aqueous solution in which nickel nitrate is dissolved are prepared. A heteropolyacid aqueous solution is added to the platinum acid aqueous solution, and a nickel nitrate aqueous solution is further added and stirred. After that, the solid matter obtained by heating and concentrating and evaporating to dryness is dried,
Form and fire in air. The firing temperature is 250 to 500 ° C,
It is preferably 300 to 400 ° C.

【0018】本発明の実施に際して、反応温度は100
〜400℃、好ましくは200〜350℃がよい。反応
圧力は数十mmHg〜90Kg/cmG好ましくは1
〜50Kg/cmGである。反応開始時あるいは流通
反応器入口における水素とn−ブタンのモル比は0.1
〜20の範囲を必要とし、好ましくは0.5〜10の範
囲で行う。空間速度は300〜10000hr−1、好
ましくは500〜3000hr−1である。
In carrying out the present invention, the reaction temperature is 100.
~ 400 ° C, preferably 200-350 ° C. The reaction pressure is several tens of mmHg to 90 Kg / cm 2 G, preferably 1
˜50 Kg / cm 2 G. At the start of the reaction or at the inlet of the flow reactor, the molar ratio of hydrogen to n-butane is 0.1.
-20 is required, and preferably 0.5-10. The space velocity is 300 to 10000 hr -1 , preferably 500 to 3000 hr -1 .

【0019】なお、反応ガス中に本反応に不活性なガ
ス、例えば窒素、ヘリウム、アルゴン等が混入していて
もよい。
The reaction gas may contain a gas inert to the present reaction, such as nitrogen, helium or argon.

【0020】[0020]

【実施例】以下に本発明による触媒の調製法および、そ
の触媒を用いた反応例を具体的に説明するが、本発明は
これらに限定されるものではない。また触媒による副生
物の生成の目安として物質収支を用いた。
EXAMPLES The preparation method of the catalyst according to the present invention and the reaction examples using the catalyst will be specifically described below, but the present invention is not limited thereto. In addition, the mass balance was used as a measure of the production of by-products by the catalyst.

【0021】実施例1 純水200mlにヘキサクロロ白金酸2gを溶解し撹拌
した。別に200mlの純水にリンタングステン酸7
8.4gを溶解した水溶液を撹拌しながら添加した。次
に、別に250mlの純水に硝酸ニッケル10.9gを
溶解した水溶液を撹拌しながら添加した。最後にコロイ
ド状のシリカであるスノーテックスN(日産化学社製)
375gを加えて撹拌しながら加熱濃縮、蒸発乾固し
た。得られた固形物を120℃で12時間乾燥後、成形
して空気気流中350℃で3時間焼成した。
Example 1 2 g of hexachloroplatinic acid was dissolved in 200 ml of pure water and stirred. Separately, add phosphotungstic acid 7 to 200 ml of pure water.
An aqueous solution in which 8.4 g was dissolved was added with stirring. Next, separately, an aqueous solution in which 10.9 g of nickel nitrate was dissolved in 250 ml of pure water was added while stirring. Finally, Snowtex N (manufactured by Nissan Kagaku), which is colloidal silica
375 g was added, and the mixture was heated with stirring, concentrated, and evaporated to dryness. The obtained solid was dried at 120 ° C. for 12 hours, molded, and fired in an air stream at 350 ° C. for 3 hours.

【0022】本触媒5gをステンレス製の固定床式反応
器に充填し、300℃に昇温し水素によって1時間還元
した。次に、n−ブタン、水素および窒素をモル比で
1:4:11となるように流通し、空間速度を1000
−1となるようにして触媒層に導入した。生成物はガ
スクロマトグラフフィーよって分析したところ、転化率
22%、生成物中のイソブタン選択率88%、物質収支
93%であった。
5 g of this catalyst was charged into a stainless fixed bed reactor, heated to 300 ° C. and reduced with hydrogen for 1 hour. Next, n-butane, hydrogen and nitrogen were circulated so that the molar ratio was 1: 4: 11, and the space velocity was 1000.
It was introduced into the catalyst layer so that it would be h −1 . When the product was analyzed by gas chromatography, the conversion was 22%, the isobutane selectivity in the product was 88%, and the material balance was 93%.

【0023】実施例2 リンタングステン酸を79.2g、硝酸ニッケルのかわ
りに硝酸鉄10.2gを使用した以外は実施例1と同様
な方法で触媒を調製し、反応を行った。その結果、転化
率9%、生成物中のイソブタン選択率96%、物質収支
96%を得た。
Example 2 A catalyst was prepared and reacted in the same manner as in Example 1 except that 79.2 g of phosphotungstic acid and 10.2 g of iron nitrate were used instead of nickel nitrate. As a result, the conversion rate was 9%, the isobutane selectivity in the product was 96%, and the material balance was 96%.

【0024】実施例3 リンタングステン酸を78.4g、硝酸ニッケルのかわ
りに硝酸コバルト10.9gを使用した以外は実施例1
と同様な方法で触媒を調製し、反応を行った。その結
果、転化率6.7%、生成物中のイソブタン選択率92
%、物質収支99%を得た。
Example 3 Example 1 was repeated except that 78.4 g of phosphotungstic acid and 10.9 g of cobalt nitrate were used instead of nickel nitrate.
A catalyst was prepared and a reaction was carried out in the same manner as in. As a result, the conversion rate was 6.7% and the isobutane selectivity in the product was 92.
%, Material balance 99%.

【0025】実施例4 リンタングステン酸を78.2g、硝酸ニッケルのかわ
りに硝酸銅9.1gを使用した以外は実施例1と同様な
方法で触媒を調製し、反応を行った。その結果、転化率
6%、生成物中のイソブタン選択率93%、物質収支1
00%を得た。
Example 4 A catalyst was prepared and reacted in the same manner as in Example 1 except that 78.2 g of phosphotungstic acid and 9.1 g of copper nitrate were used instead of nickel nitrate. As a result, the conversion rate was 6%, the isobutane selectivity in the product was 93%, and the material balance was 1.
I got 00%.

【0026】実施例5 リンタングステン酸を78.2g、硝酸ニッケルのかわ
りに硝酸亜鉛11.1gを使用した以外は実施例1と同
様な方法で触媒を調製し、反応を行った。その結果、転
化率10%、生成物中のイソブタン選択率98%、物質
収支95%を得た。
Example 5 A catalyst was prepared and reacted in the same manner as in Example 1 except that 78.2 g of phosphotungstic acid and 11.1 g of zinc nitrate were used instead of nickel nitrate. As a result, the conversion rate was 10%, the isobutane selectivity in the product was 98%, and the material balance was 95%.

【0027】比較例1 純水200mlにヘキサクロロ白金酸2gを溶解し撹拌
した。別に200mlの純水にリンタングステン酸8
0.7gを溶解した水溶液を撹拌しながら添加した。最
後にコロイド状のシリカであるスノーテックスN(日産
化学社製)375gを加えて撹拌しながら加熱濃縮、蒸
発乾固した。得られた固形物を120℃で12時間乾燥
後、成形して空気気流中350℃で3時間焼成した。
Comparative Example 1 2 g of hexachloroplatinic acid was dissolved in 200 ml of pure water and stirred. Separately, in 200 ml of pure water, phosphotungstic acid 8
An aqueous solution in which 0.7 g was dissolved was added with stirring. Finally, 375 g of Snowtex N (manufactured by Nissan Kagaku Co., Ltd.), which is a colloidal silica, was added, and the mixture was heated, concentrated and evaporated to dryness while stirring. The obtained solid was dried at 120 ° C. for 12 hours, molded, and fired in an air stream at 350 ° C. for 3 hours.

【0028】次に実施例1と同様な方法で反応を行った
ところ、転化率16%、生成物中のイソブタン選択率9
3%、物質収支91%であった。
Next, when the reaction was carried out in the same manner as in Example 1, the conversion rate was 16% and the isobutane selectivity in the product was 9%.
3%, mass balance 91%.

【0029】[0029]

【発明の効果】以上述べたとおり本発明のようにヘテロ
ポリ酸塩を用いてイソブタンを製造することにより、触
媒による装置の腐食の問題が解消され、有機塩素等の特
別の活性化処理によるプロセス上の煩雑性も解消され
る。さらに本発明において異性化触媒として用いられる
ヘテロポリ酸塩は、一般に問題となる副生物特にコーク
生成が抑制されるので、触媒の性能向上をはかることが
できる。
As described above, by producing isobutane by using a heteropolyacid salt as in the present invention, the problem of corrosion of the equipment by the catalyst is solved, and the process by the special activation treatment of organic chlorine is eliminated. The complexity of is also eliminated. Further, the heteropolyacid salt used as the isomerization catalyst in the present invention generally suppresses the problematic by-products, particularly coke formation, and therefore can improve the performance of the catalyst.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ニッケル、鉄、コバルト、銅、及び亜鉛か
らなる群から選ばれた少なくとも1種以上の金属イオン
を含むヘテロポリ酸塩並びに白金またはパラジウムの存
在下にてn−ブタンを異性化することを特徴とするイソ
ブタンの製造方法。
1. A heteropolyacid salt containing at least one metal ion selected from the group consisting of nickel, iron, cobalt, copper, and zinc, and n-butane is isomerized in the presence of platinum or palladium. A method for producing isobutane, which comprises:
JP8607592A 1992-03-10 1992-03-10 Production process of isobutane Pending JPH05255132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8607592A JPH05255132A (en) 1992-03-10 1992-03-10 Production process of isobutane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8607592A JPH05255132A (en) 1992-03-10 1992-03-10 Production process of isobutane

Publications (1)

Publication Number Publication Date
JPH05255132A true JPH05255132A (en) 1993-10-05

Family

ID=13876589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8607592A Pending JPH05255132A (en) 1992-03-10 1992-03-10 Production process of isobutane

Country Status (1)

Country Link
JP (1) JPH05255132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055196A (en) * 2022-07-04 2022-09-16 中国科学院过程工程研究所 Heteropolyacid salt catalyst and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055196A (en) * 2022-07-04 2022-09-16 中国科学院过程工程研究所 Heteropolyacid salt catalyst and preparation method and application thereof
CN115055196B (en) * 2022-07-04 2023-10-03 中国科学院过程工程研究所 Heteropoly acid salt catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
USRE39074E1 (en) Process for the selective preparation of acetic acid using a molybdenum and palladium based catalytic oxide
JP3500682B2 (en) Catalyst for the production of nitriles from alkanes
JP3803254B2 (en) Acetic acid or catalyst for producing acetic acid and ethyl acetate, method for producing the same, and method for producing acetic acid or acetic acid and ethyl acetate using the same
EP0529853A2 (en) Catalyst and process for producing nitriles
EP1069945B1 (en) Catalyst and process for the oxidation of ethane and/or ethylene
JPH0789896A (en) Production of acetic acid
JPH05148212A (en) Production of nitrile
US6034270A (en) Process for the selective preparation of acetic acid using a molybdenum, palladium, and rhenium catalyst
JPH05271163A (en) Production of diphenylamine
JP3331629B2 (en) Catalyst for the production of nitriles from alkanes
JP2506602B2 (en) Ammoxidation of saturated hydrocarbons
JPH11114418A (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
JP3127556B2 (en) Method for producing isobutane
JPH1036311A (en) Production of alpha, beta-unsaturated carboxylic acid
JPH05255132A (en) Production process of isobutane
JP3308974B2 (en) Method for producing ammoxidation catalyst
JPH06228073A (en) Production of nitrile
JPH05306240A (en) Production of isobutane
JP2001010987A (en) Production of cyclopentene
JP3117265B2 (en) Method for producing α, β-unsaturated nitrile
JP2003511213A (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP3328734B2 (en) Method for producing phenoxy-substituted benzonitrile
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
JP3487516B2 (en) Preparation of phenoxy-substituted benzonitrile
JPH1081660A (en) Production of unsaturated nitrile