JPH05251825A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH05251825A
JPH05251825A JP4697692A JP4697692A JPH05251825A JP H05251825 A JPH05251825 A JP H05251825A JP 4697692 A JP4697692 A JP 4697692A JP 4697692 A JP4697692 A JP 4697692A JP H05251825 A JPH05251825 A JP H05251825A
Authority
JP
Japan
Prior art keywords
layer
face
growth
semiconductor laser
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4697692A
Other languages
Japanese (ja)
Other versions
JP2849501B2 (en
Inventor
Masanori Watanabe
昌規 渡辺
Akihiro Matsumoto
晃広 松本
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4697692A priority Critical patent/JP2849501B2/en
Priority to US07/995,064 priority patent/US5413956A/en
Priority to DE69224617T priority patent/DE69224617T2/en
Priority to EP92311823A priority patent/EP0558856B1/en
Priority to EP97106425A priority patent/EP0789430B1/en
Priority to DE69230694T priority patent/DE69230694T2/en
Publication of JPH05251825A publication Critical patent/JPH05251825A/en
Priority to US08/314,585 priority patent/US5571750A/en
Application granted granted Critical
Publication of JP2849501B2 publication Critical patent/JP2849501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove an unnecessary growth layer without increasing a process, such as a process for removing a protective layer, by a method wherein after a reflection film layer is provided on the emitting edge face of a laser, bars are dipped in an etchant. CONSTITUTION:High-resistance AlGaAs layers 30A, 30B and 30C are respectively grown on the front end face, rear end face and growth surface of a laser by an organometallic vapor growth method. Then, bars are erected in such a way as to face the front end face downward and are arranged in such a way that they are made to closely adhere to each other, an antireflection Al2O3 film 32 is vacuum-deposited on the front end face, subsequently the fronts and rears of the bars are made to invert and the bars are arranged in such a way that they are made to closely adhere to each other and a high-reflectivity reflecting Al2O3/Si/Al2O3/Si/Al2O3 film 34 is formed on the rear end face by a vacuum deposition method. These bars are dipped in an etchant mixed in the ratio of sulfuric acid : hydrogen peroxide : water=2:4:100. Thereby, the unnecessary AlGaAs growth layer 30C on the growth surface is removed. On the other hand, Al2O3 layers forming the outermost layers of the films 32 and 34 are hardly etched. After this, electrodes 40, 42, 44 and 46 are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク用、第2高
調波発生用、固体レーザ励起用、レーザビームプリンタ
用、光ファイバ増幅器励起用、光通信用、レーザ加工
用、レーザ治療用などに用いられる高出力半導体レーザ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for optical disks, second harmonic generation, solid-state laser excitation, laser beam printers, optical fiber amplifier excitation, optical communication, laser processing, laser treatment, and the like. The present invention relates to a method for manufacturing a high-power semiconductor laser used.

【0002】[0002]

【従来の技術】近年、小型・高効率・低価格といった利
点を有する半導体レーザの実用化によって、従来レーザ
光源の使用が困難であった一般産業機器、民生機器への
レーザ応用が進展している。このような多くの利点を有
する半導体レーザをさらに高出力動作可能とすることに
より、光ディスクの高速化、第2高調波あるいは固体レ
ーザ光の効率的発生、レーザビームプリンタの高速化、
光ファイバアンプを用いた光通信システムにおける中継
距離の延長あるいは伝送速度の高速化、レーザ加工機あ
るいはレーザ治療機の大幅な小型化などの用途が期待さ
れている。
2. Description of the Related Art In recent years, the practical application of semiconductor lasers, which have the advantages of small size, high efficiency, and low price, has led to progress in laser application to general industrial equipment and consumer equipment, where it was difficult to use conventional laser light sources. .. By enabling the semiconductor laser having many advantages as described above to operate at higher output, the speed of the optical disk is increased, the second harmonic or solid-state laser light is efficiently generated, the speed of the laser beam printer is increased,
It is expected to be used for extending the relay distance or increasing the transmission speed in an optical communication system using an optical fiber amplifier, and for significantly reducing the size of a laser processing machine or a laser therapy machine.

【0003】しかし、半導体レーザは高出力動作時にお
いて、出射端面がその強い光密度のために破壊されてし
まうという問題点を有していた。この点を克服するため
に、以下の方法が有効であることが知られている。
However, the semiconductor laser has a problem in that, at the time of high-power operation, the emitting end face is destroyed due to its high light density. The following methods are known to be effective for overcoming this point.

【0004】 導波ストライプ幅を広げることによっ
て端面の光密度を減少させる。
By increasing the width of the waveguide stripe, the light density at the end face is reduced.

【0005】 導波ストライプ幅に垂直な方向の光の
広がりを大きくすることによって端面の光密度を減少さ
せる。
By increasing the spread of light in the direction perpendicular to the waveguide stripe width, the light density at the end face is reduced.

【0006】 端面近傍に電流非注入領域を設ける。A current non-injection region is provided near the end face.

【0007】 端面近傍に、内部の半導体結晶に対し
て格子整合し、活性層よりもバンドギャップの広い半導
体層を設けることにより、端面に生じている界面準位を
除去し、端面を光非吸収層とする。
By providing a semiconductor layer in the vicinity of the end face that is lattice-matched to the internal semiconductor crystal and has a bandgap wider than that of the active layer, the interface state generated at the end face is removed and the end face is not absorbed by light. Layer.

【0008】これらの対策のいくつかを組み合わせるこ
とにより、より一層の高出力化を図ることができる。
By combining some of these measures, a higher output can be achieved.

【0009】この中のに当たる対策のうち、一旦光出
射面(端面)を劈開あるいはエッチングによって形成
し、その面上にごく薄く光非吸収層(以後窓層と呼ぶ)
を形成する方法は、内部の導波光が出射面で反射されて
再び導波路に結合する際の窓層での光拡散による損失が
ほとんどないため、効率が窓層のない場合に対してほと
んど悪化しないという利点を有している。この窓層形成
は、分子線エピタキシー法(MBE法)あるいは有機金
属気相成長法(MOCVD法)などの気相成長法によっ
て行うことができるが、MBE法の場合は真空度が高く
回り込み結晶成長がないため、前端面と後端面とで別々
に窓層を形成する必要がある。それに対してMOCVD
法では、真空度が低く回り込み結晶成長を行うため、前
端面と後端面の窓層を同時に形成することができる。
Among these measures, the light emitting surface (end surface) is once formed by cleavage or etching, and a very thin light non-absorptive layer (hereinafter referred to as window layer) is formed on the surface.
In the method of forming, there is almost no loss due to light diffusion in the window layer when the guided light inside is reflected on the exit surface and is coupled to the waveguide again, so the efficiency is almost worse than when there is no window layer. It has the advantage of not doing it. The window layer can be formed by a vapor phase growth method such as a molecular beam epitaxy method (MBE method) or a metal organic chemical vapor deposition method (MOCVD method). In the case of the MBE method, the degree of vacuum is high and the wraparound crystal growth is performed. Therefore, it is necessary to separately form the window layer on the front end face and the rear end face. On the other hand, MOCVD
In the method, since the degree of vacuum is low and the wraparound crystal growth is performed, the window layers on the front end face and the rear end face can be simultaneously formed.

【0010】[0010]

【発明が解決しようとする課題】端面に気相成長法によ
って窓層を成長させる方法の一例を図8(a)に示す。
ウエハ901を劈開して前出射端面、後出射端面を露出
させたバー902とし、これをホルダー905のスロッ
トに成長面が上、基板面が下になるように挿入し、MO
CVD装置内に置く。成長後のバーの断面図を図8
(b)に示す。バーの前端面、後端面及び成長面にそれ
ぞれ高抵抗AlGaAs層930A,930B,930
Cが形成されるが、裏面はホルダー905に接している
ので高抵抗AlGaAs層は形成されない。前端面と後
端面に形成された高抵抗AlGaAs層930A,93
0Bは窓層として働くが、成長面に形成された930C
(以下、「不要成長層」と呼ぶ)は半導体レーザの素子
抵抗を増大させ、特に高出力動作時に増大のため、効率
劣化、短寿命化などの問題が生じる。なお、バー902
をホルダー905に成長面が下になるように設置した場
合には、不要成長層は基板面側に形成され、半導体レー
ザの素子抵抗を増大させる。
FIG. 8 (a) shows an example of a method for growing a window layer on the end face by vapor phase epitaxy.
The wafer 901 is cleaved to form a bar 902 whose front and rear emission end faces are exposed. The bar 902 is inserted into a slot of a holder 905 such that the growth surface is on the top and the substrate surface is on the bottom.
Place in CVD equipment. A cross-sectional view of the bar after growth is shown in FIG.
It shows in (b). High-resistance AlGaAs layers 930A, 930B, and 930 are formed on the front end face, rear end face, and growth surface of the bar, respectively.
Although C is formed, since the back surface is in contact with the holder 905, the high resistance AlGaAs layer is not formed. High resistance AlGaAs layers 930A, 93 formed on the front and rear end surfaces
OB acts as a window layer, but 930C formed on the growth surface
(Hereinafter, referred to as "unnecessary growth layer") increases the element resistance of the semiconductor laser, and increases especially during high-power operation, which causes problems such as efficiency deterioration and shortened life. Note that the bar 902
When the substrate is placed on the holder 905 with the growth surface facing downward, the unnecessary growth layer is formed on the substrate surface side, increasing the device resistance of the semiconductor laser.

【0011】不要成長層の形成は、バーの表面あるいは
裏面をカバーで覆うことによって防ぐことができる。こ
の方法を図9(a)に示す。MOCVD装置内にホルダ
ー905を置き、そのスロット部にバー902およびカ
バー903を挿入する。カバーの下には原料ガスが供給
されないため、不要な成長層は形成されない。しかし実
際には、バーのスロットへの挿入を容易にするためスロ
ット幅はバー幅よりやや広く設定しており、バー902
の幅とカバー903の幅が同一としても、その相対位置
にずれが生じる。この位置関係を示す断面図を図9
(b)に示す。このずれによって、2つの端面の一方
(930A側)では成長面上に不要層930Cが成長
し、もう一方の端面(930側)ではカバー903が原
料ガスの流れを妨げるため、バー902とカバー903
の位置ずれ量のばらつきに伴い窓層930Aの膜厚がば
らつき、極端な場合には窓層が全く成長しないことがあ
る。
The formation of the unwanted growth layer can be prevented by covering the front surface or the back surface of the bar with a cover. This method is shown in FIG. The holder 905 is placed in the MOCVD apparatus, and the bar 902 and the cover 903 are inserted into the slot portion thereof. Since no source gas is supplied under the cover, an unnecessary growth layer is not formed. However, in reality, the slot width is set to be slightly wider than the bar width in order to facilitate the insertion of the bar into the slot.
Even if the width of the cover 903 is the same as the width of the cover 903, a shift occurs in the relative position. A cross-sectional view showing this positional relationship is shown in FIG.
It shows in (b). Due to this misalignment, the unnecessary layer 930C grows on the growth surface at one of the two end faces (930A side), and the cover 903 blocks the flow of the source gas at the other end face (930 side).
The film thickness of the window layer 930A varies due to the variation in the amount of positional deviation, and in an extreme case, the window layer may not grow at all.

【0012】[0012]

【課題を解決するための手段】本発明では、半導体レー
ザの出射端面および表面(あるいは裏面)に気相成長法
によって窓層および不要成長層を形成した後、両出射面
(前面および後面)に反射膜を形成し、この反射膜層を
ほとんど侵食せず不要成長層を選択的にエッチングする
エッチャントに浸漬することにより、不要成長層を除去
する。
According to the present invention, a window layer and an unnecessary growth layer are formed on the emission end face and front surface (or back surface) of a semiconductor laser by a vapor phase growth method, and then both emission surfaces (front surface and rear surface) are formed. The unnecessary growth layer is removed by forming a reflection film and immersing the reflection film layer in an etchant that selectively etches the unnecessary growth layer without substantially eroding the reflection film layer.

【0013】[0013]

【作用】窓層と不要成長層は同一組成であるので、窓層
を残し不要成長層を除去するには、例えば窓層の上に一
旦エッチャントに対する保護層を設け、不要成長層除去
を行った後、該保護層を取り除くなどの工程が必要があ
る。反射膜にこの保護層としての役割を兼ねさすことに
よって、後で保護層を取り除くといった工程の増加を抑
えることができる。また、不要成長層除去を前提とした
プロセスであるので、不要成長層の成長をカバーによっ
て抑制する場合に生じる窓層厚不均一などの問題を生じ
ない。
Since the window layer and the undesired growth layer have the same composition, in order to leave the window layer and remove the undesired growth layer, for example, a protective layer for the etchant is once provided on the window layer and the undesired growth layer is removed. After that, steps such as removing the protective layer are required. Since the reflective film also serves as the protective layer, it is possible to suppress an increase in the number of steps for removing the protective layer later. Further, since the process is premised on the removal of the unnecessary growth layer, problems such as nonuniform window layer thickness that occur when the growth of the unnecessary growth layer is suppressed by the cover do not occur.

【0014】[0014]

【実施例】・実施例1 図1は本発明の第1の実施例である半導体レーザの作製
工程説明図である。まず、半導体レーザ内部構造を表面
側に成長したウエハ1(12×12×0.1mm3)を
作製する(詳細は後述)。次に、ウエハ1をストライプ
(レーザ発振導波路)と垂直方向に劈開し、幅400μ
m×12mmのバーに分割する。このバーのストライプ
方向の断面図を図1(a)に示す。ただしこの図におい
て内部構造は活性層16以外省略してある。このバー2
を、レーザ構造成長面(表面)が上になるようにサセプ
タ上に適当な間隔をおいて並べ、有機金属気相成長法
(MOCVD法)によって、図1(b)に示すように高
抵抗Al0・5Ga0・5As層30A,30B,30Cをそ
れぞれ前端面、後端面、成長面上に0.2μm成長す
る。次にバーを前端面が下になるように立てて密着させ
て並べ、前端面にAl23反射防止膜32を真空蒸着
し、続けてバーの前後を反転させて密着させて並べ、後
端面にAl23/Si/Al23/Si/Al23高反
射率反射膜34を真空蒸着法によって形成する。この段
階のバーの側面図を図1(c)に示す。
EXAMPLE 1 FIG. 1 is an explanatory diagram of a manufacturing process of a semiconductor laser which is a first example of the present invention. First, a wafer 1 (12 × 12 × 0.1 mm 3 ) having a semiconductor laser internal structure grown on the surface side is prepared (details will be described later). Next, the wafer 1 is cleaved in the direction perpendicular to the stripes (laser oscillation waveguide) to obtain a width of 400 μm.
Divide into m × 12 mm bars. A cross-sectional view of this bar in the stripe direction is shown in FIG. However, in this figure, the internal structure is omitted except for the active layer 16. This bar 2
Are arranged on the susceptor so that the laser structure growth surface (surface) faces upward, and a high resistance Al is formed by metalorganic vapor phase epitaxy (MOCVD) as shown in FIG. 1 (b). 0 · 5 Ga 0 · 5 As layers 30A, 30B, the front end surface 30C, respectively, rear end face, to 0.2μm grown on the growth surface. Next, the bars are placed upright so that the front end faces down and closely arranged, and the Al 2 O 3 antireflection film 32 is vacuum deposited on the front end face. The Al 2 O 3 / Si / Al 2 O 3 / Si / Al 2 O 3 high reflectance reflective film 34 is formed on the end face by a vacuum deposition method. A side view of the bar at this stage is shown in FIG.

【0015】これらのバーを、硫酸:過酸化水素水:水
=2:4:100に混合したエッチャントに浸漬する。
これにより、成長面上のAlGaAs不要成長層30C
が除去される。このときGaAs基板裏面も若干エッチ
ングされる。一方反射防止膜32および高反射率反射膜
34の最外層をなすAl23はこの液によってはほとん
どエッチングされない。AlGaAs不要成長層30C
の厚さが0.2μm、反射防止膜32の厚さが0.11
μmの時、これらの層のエッチング液浸漬時間と残存膜
厚の関係を図2に示す。またこの段階のバーの側面図を
図1(d)に示す。
These bars are immersed in an etchant mixed with sulfuric acid: hydrogen peroxide solution: water = 2: 4: 100.
As a result, the AlGaAs unnecessary growth layer 30C on the growth surface
Are removed. At this time, the back surface of the GaAs substrate is also slightly etched. On the other hand, Al 2 O 3 forming the outermost layer of the antireflection film 32 and the high reflectance reflection film 34 is hardly etched by this liquid. AlGaAs unnecessary growth layer 30C
Has a thickness of 0.2 μm, and the antireflection film 32 has a thickness of 0.11.
FIG. 2 shows the relationship between the immersion time of these layers and the remaining film thickness when the thickness is μm. A side view of the bar at this stage is shown in FIG.

【0016】この後で、バーの両端面近傍以外の表面・
裏面に電極を形成する。すなわち図3(a)に示すよう
に、バーの両端を支持するための溝を形成したホルダー
901にバー2を成長面が上になる様に挿入し、その上
に図3(b)に示すようにバー幅よりも狭い開口部を有
するマスク902を置き、ホルダー901とマスク90
2を動かないように固定する。この状態のまま、真空蒸
着機内にマスク102の開口部を下(蒸着源側)にして
置き、AuGe/Ni表面(成長面)電極40を真空蒸
着により形成する。マスク902・ホルダー901を取
り出して両者を分離し、バーの上下を反転して再びホル
ダー901へ挿入・マスク902を固定後、AuZn裏
面電極42を真空蒸着する。その後でバーを蒸着機・ホ
ルダー901から取り出し、熱処理炉で10分間450
℃に加熱する。再びホルダー901上にバー2を成長面
が上になるように置いてマスク902を固定し、蒸着機
にセットして、Mo/Au表面電極44を真空蒸着す
る。再びホルダー901内のバーの上下を反転した後、
Al裏面電極46を真空蒸着する。この段階のバーの側
面図を図1(e)に示す。
After this, the surface of the bar other than near both end surfaces
An electrode is formed on the back surface. That is, as shown in FIG. 3 (a), the bar 2 is inserted into the holder 901 having grooves for supporting both ends of the bar so that the growth surface faces upward, and then shown in FIG. 3 (b). The mask 902 having an opening narrower than the bar width as shown in FIG.
Fix 2 so that it does not move. In this state, the opening of the mask 102 is placed downward (deposition source side) in the vacuum vapor deposition machine, and the AuGe / Ni surface (growth surface) electrode 40 is formed by vacuum vapor deposition. The mask 902 and the holder 901 are taken out and separated from each other, the bar is turned upside down, and the bar is turned upside down and inserted again into the holder 901. After fixing the mask 902, the AuZn rear surface electrode 42 is vacuum deposited. After that, the bar is taken out from the vapor deposition machine holder 901 and 450 minutes in a heat treatment furnace.
Heat to ℃. The bar 2 is again placed on the holder 901 so that the growth surface faces upward, the mask 902 is fixed, and the mask / 902 is set on the vapor deposition machine to vacuum-deposit the Mo / Au surface electrode 44. After flipping the bar inside the holder 901 again,
The Al back surface electrode 46 is vacuum-deposited. A side view of the bar at this stage is shown in FIG.

【0017】以上のようにして電極が形成されたバーを
チップに分割し、チップの成長面が下になるようにステ
ムにダイボンドし、裏面にリード線をワイヤボンドす
る。その後、窒素雰囲気中でウインド付キャップをシー
ルする。
The bar on which the electrodes are formed as described above is divided into chips, die-bonded to the stem so that the growth surface of the chip faces downward, and lead wires are wire-bonded to the back surface. Then, the window cap is sealed in a nitrogen atmosphere.

【0018】図4は、本実施例によって作製された半導
体レーザチップの断面図である。p型GaAs基板10
上にn型電流ブロックGaAs層12を成長し、エッチ
ングによって基板10に達するV溝を形成する。その上
にp型Al0・45Ga0・55As第1クラッド層14、アン
ドープAl0・15Ga0・85As活性層16、n型Al0・45
Ga0・55As第2クラッド層18、n型GaAsキャッ
プ層20をLPE法によって成長した。
FIG. 4 is a sectional view of a semiconductor laser chip manufactured according to this embodiment. p-type GaAs substrate 10
An n-type current block GaAs layer 12 is grown on it, and a V groove reaching the substrate 10 is formed by etching. On top of that, a p-type Al 0 .45 Ga 0 .55 As first cladding layer 14, an undoped Al 0 .15 Ga 0 .85 As active layer 16, and an n-type Al 0 .45
The Ga 0 · 55 As second cladding layer 18, n-type GaAs cap layer 20 was grown by LPE method.

【0019】この半導体レーザは波長780nmで発振
し、閾値電流は70mA、最大光出力は約320mWで
あった。
This semiconductor laser oscillated at a wavelength of 780 nm, the threshold current was 70 mA, and the maximum optical output was about 320 mW.

【0020】・実施例2 実施例2では、InGaAlP系ブロードエリアレーザ
に本発明を適用した。半導体レーザ内部の断面図を図5
に示す。n型GaAs基板110にMOCVD法によっ
て、n型In0・5Al0・5Pクラッド層112、アンドー
プIn0・5Ga0・5P活性層114、p型In0・5Al0・5
Pクラッド層116、p型GaAsキャップ層118を
形成する。続いて成長面全体にSi34膜120をCV
D法で形成し、幅200μmのストライプ状に除去す
る。ウエハを幅400μmのバー状に劈開し、バーの成
長面が下になるように並べ、前端面・後端面および裏面
にそれぞれIn0・5(Ga0・8Al0・20・5P層130A
・130B・130CをMOCVD法により形成する。
前端面にSiO2反射防止膜132、後端面にSiO2
TiO2/SiO2/TiO2/SiO2高反射率反射膜1
34を形成する。
Example 2 In Example 2, the present invention was applied to an InGaAlP-based broad area laser. Figure 5 shows a cross-sectional view of the inside of the semiconductor laser.
Shown in. by the MOCVD method the n-type GaAs substrate 110, n-type In 0 · 5 Al 0 · 5 P cladding layer 112, an undoped In 0 · 5 Ga 0 · 5 P active layer 114, p-type In 0 · 5 Al 0 · 5
A P-clad layer 116 and a p-type GaAs cap layer 118 are formed. Then, the Si 3 N 4 film 120 is CVed over the entire growth surface.
It is formed by the D method and removed in a stripe shape having a width of 200 μm. Was cleaved wafer into bars of width 400 [mu] m, arranged such growth surface of the bar on the bottom, respectively the front surface-rear surface and the rear surface In 0 · 5 (Ga 0 · 8 Al 0 · 2) 0 · 5 P Layer 130A
-130B and 130C are formed by the MOCVD method.
The SiO 2 antireflection film 132 is formed on the front end face, and the SiO 2 /
TiO 2 / SiO 2 / TiO 2 / SiO 2 high reflectance reflective film 1
34 is formed.

【0021】これらのバーを、フッ酸と水を混合したエ
ッチャントに浸漬する。これにより、裏面上のInGa
AlP不要成長層130Cが除去される。バーの成長面
にAuZn電極141、裏面にAuGe/Ni電極14
3を形成する。バーを450℃10分熱処理し、バーの
成長面にMo/Au電極144、146を蒸着する。そ
の後各チップに分割しパッケージングする。
These bars are immersed in an etchant containing a mixture of hydrofluoric acid and water. This allows the InGa on the back surface to
The AlP unnecessary growth layer 130C is removed. The AuZn electrode 141 is on the growth surface of the bar, and the AuGe / Ni electrode 14 is on the back surface.
3 is formed. The bar is heat-treated at 450 ° C. for 10 minutes, and Mo / Au electrodes 144 and 146 are deposited on the growth surface of the bar. After that, it is divided into each chip and packaged.

【0022】本素子は、波長670nmで発振し、最大
光出力は880mWが得られた。
The device oscillated at a wavelength of 670 nm, and the maximum optical output was 880 mW.

【0023】本実施例では内部を利得導波型半導体レー
ザとしたが、ストライプ幅を狭くし屈折率導波機構を設
けた素子にも本製造法を適用できる。このような素子は
集光スポット径が小さく、光ディスクやレーザビームプ
リンタに適した光源となる。 ・実施例3 実施例3は基板にInPを用いた長波長レーザに本発明
を適用した例である。内部半導体レーザの断面を図6に
示す。n型InP基板210上にn型InPクラッド層
212、アンドープInGaAsP(バンドギャップ波
長λg=1.48μm)活性層214、p型InPクラ
ッド層216をMOCVD法により形成し、ストライプ
領域以外をエッチングで除去し、さらにMOCVD法に
よってp型InP層218、n型InP層220でスト
ライプ周囲を埋め込んだ構造をしている。
In this embodiment, the inside is a gain waveguide type semiconductor laser, but the present manufacturing method can be applied to an element having a narrow stripe width and a refractive index guiding mechanism. Such an element has a small focused spot diameter and serves as a light source suitable for optical disks and laser beam printers. Example 3 Example 3 is an example in which the present invention is applied to a long wavelength laser using InP for a substrate. A cross section of the internal semiconductor laser is shown in FIG. An n-type InP clad layer 212, an undoped InGaAsP (bandgap wavelength λ g = 1.48 μm) active layer 214, and a p-type InP clad layer 216 are formed on the n-type InP substrate 210 by the MOCVD method, and the portions other than the stripe region are etched. A structure is obtained in which the periphery of the stripe is filled with the p-type InP layer 218 and the n-type InP layer 220 by removing it.

【0024】この成長済ウエハを劈開し、バーの前端面
・後端面および成長面上にそれぞれアンドープInP層
230A・230B・230CをMOCVD法によって
形成する。続いて前端面にAl23保護膜232、後端
面にAl23/Si/Al23反射膜234を形成す
る。これらのバーを、アンモニア:過酸化水素水:水=
1:50:50に混合したエッチャントに浸漬し、成長
面上のInP不要成長層230Cを除去する。
This grown wafer is cleaved to form undoped InP layers 230A, 230B and 230C on the front and rear end surfaces of the bar and on the growth surface by MOCVD. Subsequently, an Al 2 O 3 protective film 232 is formed on the front end face, and an Al 2 O 3 / Si / Al 2 O 3 reflective film 234 is formed on the rear end face. Ammonia: hydrogen peroxide water: water =
It is immersed in an etchant mixed at 1:50:50 to remove the InP unnecessary growth layer 230C on the growth surface.

【0025】成長面にp側電極241、基板面にn側電
極243を形成し、熱処理を行う。チップ分割、パッケ
ージングを終えた素子は波長1.51μmで発振する。
InP系レーザではもともと端面破壊光出力が大きい
が、さらに窓構造を設けることにより長期信頼性が保証
できる光出力として80mWが得られるので、無中継長
距離伝送用やErドープファイバ励起用として有利とな
る。
A p-side electrode 241 is formed on the growth surface and an n-side electrode 243 is formed on the substrate surface, and heat treatment is performed. The element that has undergone chip division and packaging oscillates at a wavelength of 1.51 μm.
InP-based lasers have a large end face destruction light output from the beginning, but by providing a window structure, 80 mW can be obtained as a light output that can guarantee long-term reliability, which is advantageous for repeaterless long-distance transmission and pumping Er-doped fiber. Become.

【0026】・実施例4 実施例4はInGaAs歪量子井戸レーザに本製造方法
を適用した例である。内部に歪量子井戸レーザ構造を成
長させたウエハ301を幅300μmのバー状に劈開す
る。このバーの前端面、後端面および表面に、MOCV
D法によって、それぞれ厚さ0.5μmのアンドープG
aAs層330A・330B・330Cを形成する。
Example 4 Example 4 is an example in which the present manufacturing method is applied to an InGaAs strained quantum well laser. A wafer 301 having a strained quantum well laser structure grown therein is cleaved into a bar shape having a width of 300 μm. MOCV is attached to the front end face, rear end face and surface of this bar.
Undoped G having a thickness of 0.5 μm by the D method
The aAs layers 330A, 330B and 330C are formed.

【0027】前端面にSi34反射防止膜332、後端
面にSi34/Si/Si34/Si/Si34高反射
率膜334をそれぞれ形成する。
A Si 3 N 4 antireflection film 332 is formed on the front end face, and a Si 3 N 4 / Si / Si 3 N 4 / Si / Si 3 N 4 high reflectance film 334 is formed on the rear end face.

【0028】硫酸:過酸化水素水:水=2:4:100
に混合したエッチャントにバーを浸漬して表面の不要成
長層330Cを除去する。成長面に電極341、裏面に
電極343を形成し、熱処理を行う。その後各チップに
分割しパッケージングする。素子断面図を図7に示す。
n型GaAs基板310にn型Al0・5Ga0・5Asクラ
ッド層312、混晶比xが徐々に0.5→0へ変化する
n型AlxGa1-xAsクラッド層314、厚さ100Å
のアンドープIn0・2Ga0・8As歪量子井戸活性層31
6、混晶比xが徐々に0→0.5へ変化するp型Alx
Ga1-xAsクラッド層318、p型Al0・5Ga0・5
sクラッド層318、p型Al0・5Ga0・5Asクラッド
層320、p型GaAsキャップ層322をMBE法に
よって成長する。p型クラッド層320、p型キャップ
層322を幅3μmのメサ形状となるようにエッチング
し、p型キャップ層322の表面以外をSi34層32
4で覆う。なお、歪量子井戸活性層316に用いたIn
GaAsは一般には基板と格子整合しないが、この実施
例のように非常に膜厚が薄い場合、結晶が歪むことによ
り格子欠陥のない結晶成長をすることが可能である。
Sulfuric acid: hydrogen peroxide water: water = 2: 4: 100
The bar is immersed in the etchant mixed with the above to remove the unnecessary growth layer 330C on the surface. An electrode 341 is formed on the growth surface and an electrode 343 is formed on the back surface, and heat treatment is performed. After that, it is divided into each chip and packaged. A cross-sectional view of the element is shown in FIG.
the n-type GaAs substrate 310 an n-type Al 0 · 5 Ga 0 · 5 As cladding layer 312, n-type Al x Ga 1-x As cladding layer 314 mixed crystal ratio x is changed gradually into 0.5 → 0, thickness 100Å
Undoped In 0 .2 Ga 0 .8 As strained quantum well active layer 31
6, p-type Al x in which the mixed crystal ratio x gradually changes from 0 to 0.5
Ga 1-x As cladding layer 318, p-type Al 0 · 5 Ga 0 · 5 A
The s cladding layer 318, p-type Al 0 · 5 Ga 0 · 5 As cladding layer 320, p-type GaAs cap layer 322 grown by the MBE method. The p-type cladding layer 320 and the p-type cap layer 322 are etched so as to have a mesa shape with a width of 3 μm, and the portions other than the surface of the p-type cap layer 322 are Si 3 N 4 layer 32.
Cover with 4. The In used for the strained quantum well active layer 316
GaAs generally does not have a lattice match with the substrate, but when the film thickness is very thin as in this embodiment, it is possible to grow crystals without lattice defects due to strain of the crystals.

【0029】この半導体レーザは、発光波長が0.98
μmであるので、Erドープ・ファイバの励起用光源と
して用いるのに適している。またInGaAs層316
の混晶比および膜厚を変化させることにより、波長0.
9〜1.1μmの半導体レーザを作ることが可能であ
る。
This semiconductor laser has an emission wavelength of 0.98.
Since it is μm, it is suitable for use as a light source for exciting an Er-doped fiber. InGaAs layer 316
By changing the mixed crystal ratio and the film thickness of the.
It is possible to make a semiconductor laser of 9 to 1.1 μm.

【0030】最大光出力としては、120mWが得られ
た。
As the maximum light output, 120 mW was obtained.

【0031】[0031]

【発明の効果】本発明の半導体レーザの製造方法は、端
面を露出させてから窓層を形成する高出力レーザを製造
する際において、工程を増やす事なく不要成長層を除去
することができる。また本製造方法を使えば窓層の成長
時に不要成長層が形成されても構わないので、不要成長
層が形成されないように表面を覆うことによって生じる
窓層の不均一性が生じない。
According to the method of manufacturing a semiconductor laser of the present invention, the unnecessary growth layer can be removed without increasing the number of steps when manufacturing a high-power laser in which the end face is exposed and then the window layer is formed. Further, if the present manufacturing method is used, the unnecessary growth layer may be formed during the growth of the window layer, so that the nonuniformity of the window layer caused by covering the surface so that the unnecessary growth layer is not formed does not occur.

【0032】本製造方法は、窓を構成する材料がAlG
aAs系、InGaAlP系、InGaAsP系などど
れでも適用することができる。
In this manufacturing method, the material forming the window is AlG.
Any of aAs system, InGaAlP system, InGaAsP system, etc. can be applied.

【0033】従って本発明は、非常に優れた特性を有す
る窓構造半導体レーザの普及、それを用いた各種機器の
高性能化、低価格化に大いに役立つ。
Therefore, the present invention is very useful for popularization of window structure semiconductor lasers having extremely excellent characteristics, high performance of various devices using the same, and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例による半導体レーザの製造法の工
程を説明するための素子断面図である。
FIG. 1 is an element cross-sectional view for explaining a process of a method for manufacturing a semiconductor laser according to a first embodiment.

【図2】第1の実施例における不要成長層と反射防止膜
のエッチング液浸漬時間と残存膜厚の関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between an immersion time of an unnecessary growth layer and an antireflection film in an etching solution and a remaining film thickness in the first embodiment.

【図3】第1の実施例に用いた電極形成方法の説明図で
ある。
FIG. 3 is an explanatory diagram of an electrode forming method used in the first embodiment.

【図4】第1の実施例に用いた半導体レーザの断面図で
ある。
FIG. 4 is a cross-sectional view of the semiconductor laser used in the first embodiment.

【図5】第2の実施例に用いた半導体レーザの断面図で
ある。
FIG. 5 is a sectional view of a semiconductor laser used in a second embodiment.

【図6】第3の実施例に用いた半導体レーザの断面図で
ある。
FIG. 6 is a sectional view of a semiconductor laser used in a third embodiment.

【図7】第4の実施例に用いた半導体レーザの断面図で
ある。
FIG. 7 is a sectional view of a semiconductor laser used in a fourth embodiment.

【図8】従来例における端面窓層および不要成長層の形
成の説明図である。
FIG. 8 is an explanatory diagram of formation of an end face window layer and an unnecessary growth layer in a conventional example.

【図9】従来例における、カバーを用いて不要成長層の
形成を防ぐ方法の説明図である。
FIG. 9 is an explanatory diagram of a method of preventing the formation of an unnecessary growth layer by using a cover in a conventional example.

【符号の説明】[Explanation of symbols]

2・・・内部成長済バー 30・30B・・・窓層 30C・・・不要成
長層 32・34・・・反射膜 40・42・44
・46・・・電極
2 ... Internally grown bar 30 / 30B ... Window layer 30C ... Unnecessary growth layer 32/34 ... Reflective film 40/42/44
・ 46 ・ ・ ・ Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に活性層を含む発光構造を
結晶成長させ、レーザ光の出射端面を露出させた後、前
記出射端面および基板の少なくとも一方の表面に気相成
長法で前記活性層よりも広いバンドギャップを有する半
導体層を再結晶成長させた半導体レーザにおいて、前記
再結晶成長半導体層の形成された出射端面上に反射膜層
を設けた後、前記基板の少なくとも一方の表面に再成長
された半導体層を、前記反射膜層をほとんどエッチング
しないエッチャントに浸漬することによりエッチング
し、前記基板の表面に電極を形成することを特徴とする
半導体レーザの製造方法。
1. A light emitting structure including an active layer is crystal-grown on a semiconductor substrate to expose a laser light emitting end face, and then the active layer is formed on at least one surface of the emitting end face and the substrate by vapor phase epitaxy. In a semiconductor laser in which a semiconductor layer having a wider band gap is recrystallized, a reflection film layer is provided on the emission end face on which the recrystallized semiconductor layer is formed, and then the recrystallization is performed on at least one surface of the substrate. A method for manufacturing a semiconductor laser, wherein the grown semiconductor layer is etched by immersing it in an etchant that hardly etches the reflective film layer, and an electrode is formed on the surface of the substrate.
【請求項2】 前記エッチャントとして硫酸を含む溶液
を用いることを特徴とする請求項1記載の半導体レーザ
の製造方法。
2. The method of manufacturing a semiconductor laser according to claim 1, wherein a solution containing sulfuric acid is used as the etchant.
【請求項3】 前記エッチャントとしてアンモニアを含
む溶液を用いることを特徴とする請求項1記載の半導体
レーザの製造方法。
3. The method of manufacturing a semiconductor laser according to claim 1, wherein a solution containing ammonia is used as the etchant.
【請求項4】 前記エッチャントとしてフッ酸を含む溶
液を用いることを特徴とする請求項1記載の半導体レー
ザの製造方法。
4. The method of manufacturing a semiconductor laser according to claim 1, wherein a solution containing hydrofluoric acid is used as the etchant.
JP4697692A 1992-03-04 1992-03-04 Manufacturing method of semiconductor laser Expired - Fee Related JP2849501B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4697692A JP2849501B2 (en) 1992-03-04 1992-03-04 Manufacturing method of semiconductor laser
US07/995,064 US5413956A (en) 1992-03-04 1992-12-22 Method for producing a semiconductor laser device
EP92311823A EP0558856B1 (en) 1992-03-04 1992-12-24 A method for producing a semiconductor laser device
EP97106425A EP0789430B1 (en) 1992-03-04 1992-12-24 A method of producing a semiconductor laser device
DE69224617T DE69224617T2 (en) 1992-03-04 1992-12-24 Manufacturing process for a semiconductor laser
DE69230694T DE69230694T2 (en) 1992-03-04 1992-12-24 Manufacturing method of a semiconductor laser device
US08/314,585 US5571750A (en) 1992-03-04 1994-09-28 Method for producing a semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4697692A JP2849501B2 (en) 1992-03-04 1992-03-04 Manufacturing method of semiconductor laser

Publications (2)

Publication Number Publication Date
JPH05251825A true JPH05251825A (en) 1993-09-28
JP2849501B2 JP2849501B2 (en) 1999-01-20

Family

ID=12762273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4697692A Expired - Fee Related JP2849501B2 (en) 1992-03-04 1992-03-04 Manufacturing method of semiconductor laser

Country Status (1)

Country Link
JP (1) JP2849501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element
JP2018098263A (en) * 2016-12-08 2018-06-21 住友電気工業株式会社 Quantum cascade semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element
JP2018098263A (en) * 2016-12-08 2018-06-21 住友電気工業株式会社 Quantum cascade semiconductor laser

Also Published As

Publication number Publication date
JP2849501B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
EP1437809B1 (en) Compound semiconductor laser
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
US5413956A (en) Method for producing a semiconductor laser device
Horie et al. Reliability improvement of 980-nm laser diodes with a new facet passivation process
CN110459952A (en) The production method that SAG improves semiconductor laser chip reliability is grown by selective area
JP4447728B2 (en) Semiconductor laser element
JP2849500B2 (en) Manufacturing method of semiconductor laser
JP3782230B2 (en) Manufacturing method of semiconductor laser device and manufacturing method of group III-V compound semiconductor element
JPH1117248A (en) High reflecting film structure for semiconductor laser and semiconductor laser
JP2849501B2 (en) Manufacturing method of semiconductor laser
JP2001068789A (en) Semiconductor laser
JPH0248151B2 (en)
Oe et al. GaInAsP/InP planar stripe lasers prepared by using sputtered SiO2 film as a Zn‐diffusion mask
JP4249920B2 (en) End face window type semiconductor laser device and manufacturing method thereof
JPH10223978A (en) Semiconductor laser and its manufacture
JP3257662B2 (en) Semiconductor laser end face passivation method and jig
JPH1168226A (en) Semiconductor laser element and manufacture thereof
JP3205589B2 (en) Semiconductor thin film growth method
JPH10313148A (en) Manufacture of semiconductor laser device
KR100278629B1 (en) Semiconductor laser diode and manufacturing method thereof
JP3115490B2 (en) Semiconductor laser device
JP3410959B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0722697A (en) Semiconductor laser element and manufacture thereof
JPS61236185A (en) Preparation of semiconductor laser element
JP3564918B2 (en) Semiconductor laser and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101106

LAPS Cancellation because of no payment of annual fees