JPH0525087B2 - - Google Patents

Info

Publication number
JPH0525087B2
JPH0525087B2 JP59169640A JP16964084A JPH0525087B2 JP H0525087 B2 JPH0525087 B2 JP H0525087B2 JP 59169640 A JP59169640 A JP 59169640A JP 16964084 A JP16964084 A JP 16964084A JP H0525087 B2 JPH0525087 B2 JP H0525087B2
Authority
JP
Japan
Prior art keywords
mirror
systems
concave
concave mirror
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59169640A
Other languages
Japanese (ja)
Other versions
JPS6147915A (en
Inventor
Takamasa Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59169640A priority Critical patent/JPS6147915A/en
Priority to US06/764,001 priority patent/US4701035A/en
Publication of JPS6147915A publication Critical patent/JPS6147915A/en
Publication of JPH0525087B2 publication Critical patent/JPH0525087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0657Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は反射光学系に関し、特にIC,LSI等の
集積回路を製造するときの投影露光装置に用いら
れる反射光学系に関するものである。 従来より投影露光装置を用いIC,LSI等の集積
回路のパターンをシリコンウエハーに焼付ける為
の反射光学系が例えば特開昭48−12039号公報、
特開昭53−100230号公報等で提案されている。こ
れらの投影露光装置に用いられている反射光学系
は非常に高い解像力を有している。 投影像の解像力は使用する波長が短くなればな
る程良くなる。この為に、なるべく短波長を放射
する光源が用いられている。 そして画面中心に限らず広い画面にわたり高解
像力が得られるよう略完全に収差補正がなされた
光学系が用いられている。 一般にレンズを用いた結像光学系は色収差を補
正する為に複数のガラス材料を用いて構成されて
いる。短波長側の光は高解像力を得るには有利で
あるが短波長側では色分散が大きい為設計上、色
収差を良好に補正するのが困難である。 この為に高解像力が要求されるICパターン等
の焼付用の結像光学系には反射鏡を用いた光学系
が多く用いられている。 これは反射光学系は色収差がなく、任意の波長
の光を使用することができ、かつ光学系全体の透
過率をレンズ系を用いたときに比べて高めること
ができる等の特徴がある為である。 本発明は反射光学系の特徴を生かした投影露光
装置に好適な高解像力の得られる反射光学系の提
供を目的とする。 この目的を達成する為の本反射光学系は、凹面
鏡、凸面鏡、凹面鏡の順に光を反射して結像させ
るミラー系を複数個有し、各ミラー系を、光軸方
向に関して一方の凹面鏡が他方の凹面鏡と凸面鏡
との間に位置するよう構成し、各ミラー系により
順次結像を繰り返すことにより縮小像を形成する
よう少なくとも一つのミラー系の倍率を縮小にし
且つミラー系間の少なくとも一箇所に光を反射し
て結像させるリレー系を設けたことを特徴とす
る。 次に本発明の実施例を各図と共に説明する。 第1図は本発明の一実施例の反射光学系の概略
図である。同図の反射光学系は第2図に示す3つ
の反射鏡M1,M2,M3より成るミラー系Sを3
個と第3図に示す2つの反射鏡M31,M32より成
るリレー系Fを実質的に同一光軸上に位置するよ
うに、かつ全体の結像倍率が縮少となるように配
置したものであり、これにより高解像力の反射光
学系を達成している。 第1図の実施例では反射鏡M1〜M3で第1のミ
ラー系S1、反射鏡M4〜M6で第2のミラー系S2
反射鏡M7〜M8でリレー系Fそして反射鏡M7
M11で第3のミラー系S3を各々構成している。 又、図示する如く、各ミラー系を光軸方向に関
して一方の凹面鏡が他方の凹面鏡と凸面鏡との間
に位置するよう構成している。 そして物点P1を順次ミラー系S1,S2とリレー
系Fそしてミラー系S3で各々結像を繰り返し、最
終的に像点P4′(P5)に結像倍率1/4.5となるよ
うに結像させている。 次に第1図に示す反射光学系を構成しているミ
ラー系の結像状態を説明する。 第2図において3つの反射鏡M1,M2,M3
物点P1からの光束L1が凹面鏡M1、凸面鏡M2そし
て凹面鏡M3の順に反射した後、像点P1′に結像す
るように配置されている。 第2図に示すミラー系Sの凹面鏡M3は凸面鏡
M2と凹面鏡M1との間に位置するように配置され
ている。 第3図に示すリレー系Fの2つの凹面鏡は物点
P1からの光束を2つの凹面鏡M31,M32により像
点P1′に結像するように配置されている。 本実施例においてリレー系Fを光学的に第2の
ミラー系S2と第3のミラー系S3との間に配置しフ
イールド作用をさせることにより第3のミラー系
S3への光束径を小さくして反射光学系の小型化を
図つている。 本実施例において物体は第4図に示すような円
弧状の一部分Q1を有効面としている。この為に
ミラー系の各反射鏡の外形を必ずしも円形とする
必要はなく不要の所は削除して用いれば全体とし
て反射光学系を小型にすることができる。 本実施例においてミラー系S1,S2,S3を各々凹
面鏡、凸面鏡そして凹面鏡より成るすなわち正、
負そして正の屈折力より成る反射鏡により構成す
ることにより1つのミラー系から発生する諸収
差、特にコマ収差、像面湾曲を少なくして全体的
に良好なる結像性能を得ている。 このように本実施例では第1図に示すようにミ
ラー系S1により物点P1を像点P1′へ、すなわちミ
ラー系S2の物点P2へ、ミラー系S2により物点P2
を像点P2′へすなわちリレー系Fの物点P3へ以下
同様にリレー系Fそしてミラー系S3により順次結
像を繰り返して最終的に物点P1を像点P4′へ縮少
させて結像させている。 本実施例ではミラー系S1,S3の倍率を縮小と
し、リレー系Fの倍率を等倍とし、ミラー系S2
拡大系として構成している。 具体的に各ミラー系及びリレー系の結像倍率を
示すと表−1の如くである。
The present invention relates to a reflective optical system, and more particularly to a reflective optical system used in a projection exposure apparatus for manufacturing integrated circuits such as ICs and LSIs. Conventionally, a reflective optical system for printing patterns of integrated circuits such as ICs and LSIs onto silicon wafers using a projection exposure apparatus has been disclosed, for example, in Japanese Patent Application Laid-open No. 12039/1983.
This has been proposed in Japanese Patent Application Laid-Open No. 53-100230. The reflective optical systems used in these projection exposure apparatuses have extremely high resolving power. The shorter the wavelength used, the better the resolution of the projected image becomes. For this purpose, a light source that emits as short a wavelength as possible is used. In order to obtain high resolution not only in the center of the screen but also over a wide screen, an optical system is used that has almost completely corrected aberrations. Generally, an imaging optical system using a lens is constructed using a plurality of glass materials in order to correct chromatic aberration. Light on the short wavelength side is advantageous for obtaining high resolution, but chromatic dispersion is large on the short wavelength side, so it is difficult to properly correct chromatic aberration due to the design. For this reason, optical systems using reflective mirrors are often used as imaging optical systems for printing IC patterns and the like that require high resolution. This is because reflective optical systems have features such as no chromatic aberration, can use light of any wavelength, and can increase the transmittance of the entire optical system compared to when using a lens system. be. An object of the present invention is to provide a reflective optical system that can obtain high resolution and is suitable for a projection exposure apparatus that takes advantage of the characteristics of a reflective optical system. This reflective optical system to achieve this purpose has a plurality of mirror systems that reflect light and form an image in the order of a concave mirror, a convex mirror, and a concave mirror. The magnification of at least one mirror system is reduced so as to form a reduced image by sequentially repeating imaging with each mirror system, and at least one place between the mirror systems is configured to be located between the concave mirror and the convex mirror of It is characterized by the provision of a relay system that reflects light and forms an image. Next, embodiments of the present invention will be described with reference to each drawing. FIG. 1 is a schematic diagram of a reflective optical system according to an embodiment of the present invention. The reflective optical system in the same figure is a mirror system S consisting of three reflectors M 1 , M 2 , M 3 shown in FIG. 2.
A relay system F consisting of two reflecting mirrors M 31 and M 32 shown in FIG. This achieves a reflective optical system with high resolution. In the embodiment shown in FIG. 1, the reflecting mirrors M 1 to M 3 are used as the first mirror system S 1 , the reflecting mirrors M 4 to M 6 are used as the second mirror system S 2 ,
Relay system F with reflector M 7 ~ M 8 and reflector M 7 ~
M11 each constitute a third mirror system S3 . Further, as shown in the figure, each mirror system is configured such that one concave mirror is located between the other concave mirror and convex mirror in the optical axis direction. The object point P 1 is then repeatedly imaged by the mirror systems S 1 and S 2 , the relay system F, and the mirror system S 3 , and finally the image point P 4 ′ (P 5 ) is formed with an imaging magnification of 1/4.5. The image is formed to look like this. Next, the image forming state of the mirror system constituting the reflective optical system shown in FIG. 1 will be explained. In Fig. 2, three reflecting mirrors M 1 , M 2 , and M 3 reflect the light beam L 1 from the object point P 1 to the concave mirror M 1 , the convex mirror M 2 , and the concave mirror M 3 in this order, and then reflect it to the image point P 1 '. arranged to form an image. The concave mirror M3 of the mirror system S shown in Figure 2 is a convex mirror.
It is arranged to be located between M2 and concave mirror M1 . The two concave mirrors of relay system F shown in Figure 3 are object points.
Two concave mirrors M 31 and M 32 are arranged so that the light beam from P 1 is focused on an image point P 1 '. In this embodiment, the relay system F is optically disposed between the second mirror system S 2 and the third mirror system S 3 and acts as a field, thereby forming the third mirror system.
The diameter of the light beam to S 3 is reduced to reduce the size of the reflective optical system. In this embodiment, the object has an arcuate portion Q1 as an effective surface as shown in FIG. For this reason, the external shape of each reflecting mirror in the mirror system does not necessarily have to be circular, and by removing unnecessary portions, the reflecting optical system as a whole can be made smaller. In this embodiment, mirror systems S 1 , S 2 , and S 3 each consist of a concave mirror, a convex mirror, and a concave mirror, that is, positive mirrors,
By constructing the reflector with negative and positive refractive powers, various aberrations generated from a single mirror system, particularly coma aberration and field curvature, are reduced, resulting in overall good imaging performance. In this embodiment , as shown in FIG . P2
to the image point P 2 ′, that is, to the object point P 3 of the relay system F. In the same way, the relay system F and the mirror system S 3 sequentially repeat imaging, and finally the object point P 1 is reduced to the image point P 4 ′. The image is formed by reducing the amount of light. In this embodiment, the magnifications of the mirror systems S 1 and S 3 are reduced, the magnification of the relay system F is equal to the same magnification, and the mirror system S 2 is configured as an enlargement system. Specifically, the imaging magnification of each mirror system and relay system is shown in Table 1.

【表】 本実施例では全体として結像倍率1/4.5を達成
するのに3つのミラー系と1つのリレー系を表−
1に示すような結像倍率を有するように構成する
ことにより全体的に収差補正をバランス良く行つ
ている。 特にミラー系S2を拡大系とすることによりミラ
ー系S1,S4とリレー系Fで生じたコマ収差、像面
湾曲及び歪曲収差等を良好に補正している。 本実施例では複数のミラー系で反射光学系を構
成する場合に生じる光束のケラレを第2のミラー
系S2とリレー系Fとの間と、第3のミラー系S3
後方に全反射鏡H1,H2を配置して防止してい
る。 本実施例において特に光束のケラレを少なくし
かつ全体的に良好なる光学性能を得る為にはミラ
ー系S1,S3を構成する凹面鏡M1、凸面鏡M2そし
て凹面鏡M3の曲率半径を各々R1,R2,R3とする
とき R1/R2≧2 ……(1) R1/R3>1 ……(2) なる諸条件を満足させるのが好ましい。 条件式(1),(2)は物体の有効画面が第4図に示す
ように円弧状の一部分であるとき、軸外収差の発
生を押えつつ、ミラー系全体の小型化を図りかつ
物体からの光束がケラレることなく所定位置に結
像させる為のものである。 条件式(1)を外れるとコマフレアーが増大し又光
束のケラレが多くなつてくる。又条件式(2)を外れ
ると凹面鏡M3の曲率半径が凹面鏡M1に比べ大き
くなりすぎミラー系全体としての小型化を図りつ
つ所定の屈折力を得るのが困難となつてくる。 特に本実施例において像面湾曲を少なくし高コ
ントラストの物体像を得るには前記ミラー系S1
S3における3つの反射鏡の曲率半径R1,R2,R3
を更に |R1|>|R3|>|R2| ……(3) とすることである。 この条件を外れると像面湾曲が大きくなり光束
のケラレが大きくなつてくると共に複数のミラー
系を組み合わせた反射光学系において良好なる収
差補正を行うのが困難となる。 又本実施例において光束のケラレを少なくしミ
ラー系の小型化を図る為に好ましくは前記ミラー
系S2の凹面鏡M1、凸面鏡M2そして凹面鏡M3
曲率半径を各々R1′,R2′,R3′とするとき R1′/R2′>1 R1′/R3′>1 ……(4) なる条件を満足することである。 この条件を外れるとミラー系S1により結像され
た物体像を光束のケラレをなくした状態でリレー
系Fの物点に結像させるのが困難となる。 そしてフイールド系として用いるリレー系Fを
ミラー系S2からの光束を効率的に収斂して第3の
ミラー系S3の物点に結像させる為には前記リレー
系Fの凹面鏡M31,M32の曲率半径を各々R31
R32とするとき |R31/R32<1 ……(5) なる条件を満足することが好ましい。 この条件を外れるとフイールド系としての作用
が十分でなくなりミラー系S3を小型化にするのが
困難となつてくる。 尚本発明において物体像の結像調整をミラー系
S1〜S3そしてリレー系の少なくとも1つのミラー
系を移動させて行うのが収差補正及び倍率調整上
好ましい。 次に第1図に示す実施例の諸数値を示す。Ri
は物点P1から数えて第i番目の反射鏡の曲率半
径、Dは各反射鏡との間隔で光の進行方向に沿つ
て左方から右方に測つたときを正、その逆を負と
して示す。 物体の有効画面はスリット幅で2mm、有効Fナ
ンバーは3.3(NA=0.15)である。物点P1の有効
画面幅は光軸からの高さ218〜220mmの範囲内であ
る。 R (D) 1 −640 −280 2 −140.5 270 3 −385 −1010 4 564.26 335 5 439.67 −280 6 448.68 580 7 −422.38 −292.5 8 1011.5 625 9 −489 −320 10 −167.58 310 11 −449.79 以上のように本発明によれば4つのミラー系を
適切に組み合わせることにより、高解像力の反射
光学系を達成することができる。
[Table] In this example, three mirror systems and one relay system are required to achieve an overall imaging magnification of 1/4.5.
By configuring the lens to have an imaging magnification as shown in 1, aberration correction is performed in a well-balanced manner overall. In particular, by using the mirror system S 2 as a magnifying system, coma aberration, field curvature, distortion, etc. caused by the mirror systems S 1 and S 4 and the relay system F can be effectively corrected. In this embodiment, the vignetting of the light beam that occurs when a reflective optical system is configured with a plurality of mirror systems is totally reflected between the second mirror system S 2 and the relay system F, and to the rear of the third mirror system S 3 . Mirrors H 1 and H 2 are placed to prevent this. In this embodiment, in order to particularly reduce vignetting of the light beam and obtain good overall optical performance, the radii of curvature of concave mirror M 1 , convex mirror M 2 , and concave mirror M 3 constituting mirror systems S 1 and S 3 are adjusted respectively. When R 1 , R 2 , and R 3 , it is preferable to satisfy the following conditions: R 1 /R 2 ≧2 (1) R 1 /R 3 >1 (2). Conditional expressions (1) and (2) are used to reduce the size of the entire mirror system while suppressing the occurrence of off-axis aberrations when the effective screen of the object is a part of an arc shape as shown in Figure 4. This is to allow the light beam to form an image at a predetermined position without vignetting. If conditional expression (1) is not satisfied, coma flare will increase and vignetting of the luminous flux will increase. If conditional expression (2) is not satisfied, the radius of curvature of concave mirror M3 becomes too large compared to concave mirror M1 , making it difficult to obtain a predetermined refractive power while downsizing the mirror system as a whole. In particular, in this embodiment, in order to reduce field curvature and obtain a high contrast object image, the mirror system S 1 ,
Radius of curvature R 1 , R 2 , R 3 of the three reflectors at S 3
Further, |R 1 |>|R 3 |>|R 2 | ...(3) If this condition is violated, the curvature of field increases, the vignetting of the light beam increases, and it becomes difficult to perform good aberration correction in a reflective optical system that combines a plurality of mirror systems. Further, in this embodiment, in order to reduce vignetting of the light beam and to downsize the mirror system, it is preferable that the radius of curvature of the concave mirror M 1 , convex mirror M 2 and concave mirror M 3 of the mirror system S 2 be set to R 1 ′ and R 2 , respectively. ′, R 3 ′, the following conditions are satisfied: R 1 ′/R 2 ′>1 R 1 ′/R 3 ′>1 (4). If this condition is not met, it becomes difficult to form the object image formed by the mirror system S1 onto the object point of the relay system F with no vignetting of the light beam. In order for the relay system F used as a field system to efficiently converge the light flux from the mirror system S 2 and image it on the object point of the third mirror system S 3 , the concave mirrors M 31 , M of the relay system F are used. 32 radius of curvature as R 31 ,
When R 32 , it is preferable to satisfy the following condition: |R 31 /R 32 <1 (5). If this condition is exceeded, the function as a field system will not be sufficient and it will become difficult to downsize the mirror system S3 . In addition, in the present invention, the imaging adjustment of the object image is performed using a mirror system.
In terms of aberration correction and magnification adjustment, it is preferable to move S 1 to S 3 and at least one mirror system of the relay system. Next, various numerical values of the embodiment shown in FIG. 1 will be shown. Ri
is the radius of curvature of the i-th reflecting mirror counting from object point P 1 , and D is the distance between each reflecting mirror when measured from left to right along the direction of light travel, and the opposite is negative. Shown as The effective screen of the object is 2 mm in slit width, and the effective F number is 3.3 (NA = 0.15). The effective screen width of the object point P1 is within a height range of 218 to 220 mm from the optical axis. R (D) 1 -640 -280 2 -140.5 270 3 -385 -1010 4 564.26 335 5 439.67 -280 6 448.68 580 7 -422.38 -292.5 8 1011.5 625 9 -489 -320 10 -167.5 8 310 11 −449.79 or more According to the present invention, a reflective optical system with high resolution can be achieved by appropriately combining four mirror systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、
第2図、第3図は第1図の一部分の説明図、第4
図は本発明に係る物体の有効画面の説明図、第5
図は第1図の光学系の諸収差図である。 図中Yは物高、S1〜S3は各々ミラー系、Fはリ
レー系、M1〜M11は各々反射鏡を示す。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention;
Figures 2 and 3 are explanatory diagrams of a portion of Figure 1;
Figure 5 is an explanatory diagram of the effective screen of an object according to the present invention.
The figure is a diagram showing various aberrations of the optical system shown in FIG. 1. In the figure, Y indicates the object height, S 1 to S 3 each indicate a mirror system, F indicates a relay system, and M 1 to M 11 each indicate a reflecting mirror.

Claims (1)

【特許請求の範囲】 1 凹面鏡、凸面鏡、凹面鏡の順に光を反射して
結像させるミラー系を複数個有し、各ミラー系
を、光軸方向に関して一方の凹面鏡が他方の凹面
鏡と凸面鏡との間に位置するよう構成し、各ミラ
ー系により順次結像を繰り返すことにより縮小像
を形成するよう少なくとも一つのミラー系の倍率
を縮小にし且つミラー系間の少なくとも一箇所に
光を反射して結像させるリレー系F1を設けたこ
とを特徴とする反射光学系。 2 前記複数個のミラー系は、物体側から順にミ
ラー系S1,S2,S3を含み、前記リレー系F1は2
個の凹面鏡を備え、ミラー系S1,S3の倍率が縮小
に設定され、ミラー系S2の倍率が拡大に設定さ
れ、前記リレー系F1の倍率が等倍に設定されて
おり、前記ミラー系S1,S3の凹面鏡、凸面鏡、凹
面鏡の曲率半径をR1,R2,R3、前記ミラー系の
S2の凹面鏡、凸面鏡、凹面鏡の曲率半径をR1′,
R2′,R3′、前記リレー系F1の物体側の凹面鏡の
曲率半径をR31、像側の凹面鏡の曲率半径をR32
とした時、以下の条件を満たすことを特徴とする
特許請求の範囲第1項記載の反射光学系。 R1/R2≧2 R1/R3>1 |R1|>|R3|>|R2| R1′/R2′>1 R1′/R3′>1 |R31/R32|<1
[Scope of Claims] 1 It has a plurality of mirror systems that reflect light and form an image in the order of a concave mirror, a convex mirror, and a concave mirror, and each mirror system is arranged so that one concave mirror connects the other concave mirror and convex mirror in the optical axis direction. The magnification of at least one mirror system is reduced so as to form a reduced image by sequentially repeating imaging by each mirror system, and the light is reflected at at least one point between the mirror systems to form a reduced image. A reflective optical system characterized by being provided with a relay system F1 for imaging. 2. The plurality of mirror systems include mirror systems S 1 , S 2 , and S 3 in order from the object side, and the relay system F 1 includes 2 mirror systems.
The magnification of mirror systems S 1 and S 3 is set to reduction, the magnification of mirror system S 2 is set to enlargement, the magnification of relay system F 1 is set to equal magnification, and Let R 1 , R 2 , R 3 be the radius of curvature of the concave mirror, convex mirror, and concave mirror of mirror systems S 1 and S 3, and let R 1 , R 2 , R 3 be
The radius of curvature of the concave mirror, convex mirror, and concave mirror of S 2 is R 1 ′,
R 2 ′, R 3 ′, the radius of curvature of the concave mirror on the object side of the relay system F 1 is R 31 , and the radius of curvature of the concave mirror on the image side is R 32
2. A reflective optical system according to claim 1, wherein the reflective optical system satisfies the following conditions. R 1 /R 2 2 R 1 / R 3 >1 | R 1 |> | R 3 |>|R 2 | R 32 |<1
JP59169640A 1984-08-14 1984-08-14 Reflecting optical system Granted JPS6147915A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59169640A JPS6147915A (en) 1984-08-14 1984-08-14 Reflecting optical system
US06/764,001 US4701035A (en) 1984-08-14 1985-08-09 Reflection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169640A JPS6147915A (en) 1984-08-14 1984-08-14 Reflecting optical system

Publications (2)

Publication Number Publication Date
JPS6147915A JPS6147915A (en) 1986-03-08
JPH0525087B2 true JPH0525087B2 (en) 1993-04-09

Family

ID=15890235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169640A Granted JPS6147915A (en) 1984-08-14 1984-08-14 Reflecting optical system

Country Status (1)

Country Link
JP (1) JPS6147915A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603225B2 (en) * 1986-07-11 1997-04-23 キヤノン株式会社 X-ray projection exposure apparatus and semiconductor manufacturing method
US5071240A (en) * 1989-09-14 1991-12-10 Nikon Corporation Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
US5052763A (en) * 1990-08-28 1991-10-01 International Business Machines Corporation Optical system with two subsystems separately correcting odd aberrations and together correcting even aberrations
EP1860477B1 (en) * 2005-02-15 2011-07-27 Nikon Corporation Projection optical system, exposure equipment and device manufacturing method

Also Published As

Publication number Publication date
JPS6147915A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
US5071240A (en) Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
US4701035A (en) Reflection optical system
US4685777A (en) Reflection and refraction optical system
JP3747958B2 (en) Catadioptric optics
JP3747951B2 (en) Catadioptric optics
JPH103039A (en) Reflective/refractive optical system
KR20000011933A (en) Catadioptric optical system and exposure apparatus having the same
JPH1020195A (en) Cata-dioptric system
JP2003114387A (en) Cata-dioptic system and projection exposure device equipped with the same system
JPH0533368B2 (en)
JPH0812329B2 (en) Projection lens
EP0604093B1 (en) Catadioptric reduction projection optical system
JPH07128592A (en) Reduction stepping lens
JPH0525087B2 (en)
JP3812051B2 (en) Catadioptric projection optical system
JPH0525086B2 (en)
JP2002055277A (en) Relay image-formation optical system, and illumination optical device and exposure device equipped with the optical system
JPH10170820A (en) Optical system with diffractive optical element
JPS6147917A (en) Reflecting optical system
JPH05188298A (en) Reflective and refractive reduction projection optical system
JPH0525088B2 (en)
JP2000098230A (en) Reflecting reduction image-forming optical system, aligner equipped therewith and exposing method using the same optical system
JPH1010429A (en) Double image-formation optical system
EP0527043B1 (en) Catadioptric reduction projection optical system
JPH0772393A (en) Reflection, reduction and projection optical system