JP2003114387A - Cata-dioptic system and projection exposure device equipped with the same system - Google Patents

Cata-dioptic system and projection exposure device equipped with the same system

Info

Publication number
JP2003114387A
JP2003114387A JP2001308754A JP2001308754A JP2003114387A JP 2003114387 A JP2003114387 A JP 2003114387A JP 2001308754 A JP2001308754 A JP 2001308754A JP 2001308754 A JP2001308754 A JP 2001308754A JP 2003114387 A JP2003114387 A JP 2003114387A
Authority
JP
Japan
Prior art keywords
optical system
mirror
catadioptric
image
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001308754A
Other languages
Japanese (ja)
Other versions
JP2003114387A5 (en
Inventor
Yasuhiro Omura
泰弘 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001308754A priority Critical patent/JP2003114387A/en
Publication of JP2003114387A publication Critical patent/JP2003114387A/en
Publication of JP2003114387A5 publication Critical patent/JP2003114387A5/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cata-dioptic system which has aberrations compensated excellently even in the ultra ultraviolet range without using any large-diameter field lens and has high resolving power and a projection exposure device equipped with the optical system. SOLUTION: The cata-dioptic system has a 1st optical system 100, a field mirror couple 200, and a 2nd optical system 300. The 1st optical system 100 has lens groups G1 and G2, a concave surface mirror M1, and a mirror M2 for optical path separation and forms an intermediate image. The field mirror couple 200 comprise at least one field mirror couple and has a concave surface mirror M4 which is arranged in the space between a reticle R and the concave mirror M1 and reflects light to the 2nd optical system 300. The 2nd optical system 300 has a lens group G3 and forms an image of the reticle R on a wafer W according to the light from the intermediate image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,例えば半導体素子
や液晶表示素子,撮像素子,CCD素子,薄膜磁気ヘッ
ド等のデバイスをフォトリソグラフィ技術を用いて製造
する際に用いられるのに好適な反射屈折光学系および該
光学系を備える投影露光装置に関し,特に紫外線波長域
で高解像度を要する走査型投影露光装置に好適な反射屈
折光学系および該光学系を備える投影露光装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catadioptric element suitable for use in manufacturing a device such as a semiconductor device, a liquid crystal display device, an image pickup device, a CCD device, a thin film magnetic head, etc. using a photolithography technique. The present invention relates to an optical system and a projection exposure apparatus including the optical system, and more particularly to a catadioptric optical system suitable for a scanning projection exposure apparatus that requires high resolution in the ultraviolet wavelength range and a projection exposure apparatus including the optical system.

【0002】[0002]

【従来の技術】半導体素子等を製造するためのフォトリ
ソグラフィ工程において,マスクまたはレチクルのパタ
ーン像を投影光学系を介して,フォトレジスト等が塗布
されたウエハまたはガラスプレート等(以下,まとめて
ウエハという)上に露光する投影露光装置が使用されて
いる。半導体素子等の集積度が向上するにつれて,投影
露光装置に使用されている投影光学系に要求される解像
力は益々高まっている。この要求を満足するためには,
照明光の波長を短くし,且つ投影光学系の開口数(以
下,NAという)を大きくする必要が生じる。
2. Description of the Related Art In a photolithography process for manufacturing a semiconductor device or the like, a pattern image of a mask or a reticle is applied through a projection optical system to a wafer or a glass plate or the like coated with a photoresist or the like (hereinafter referred to as a wafer. That is, a projection exposure apparatus that exposes on top is used. As the degree of integration of semiconductor elements and the like has improved, the resolving power required for the projection optical system used in the projection exposure apparatus has been increasing more and more. To satisfy this requirement,
It is necessary to shorten the wavelength of the illumination light and increase the numerical aperture (hereinafter referred to as NA) of the projection optical system.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,照明光
の波長が短くなると,光の吸収によって実用に耐えうる
硝材の種類は限られ,波長が180nm以下になると,
実用上使える硝材は蛍石だけとなる。単一硝種レンズか
らなる屈折投影光学系では,色収差の補正に限界があ
る。このため,光源となるレーザの極狭帯化が必須とな
り,コストの増大,出力の低下は免れなくなる。また,
屈折光学系では,像面湾曲量を決定するペッツバール和
(Petzval Summation)を0にするた
めに多数の正レンズおよび負レンズを用いる必要があ
る。
However, as the wavelength of the illumination light becomes shorter, the number of types of glass materials that can be practically used due to the absorption of light is limited, and when the wavelength becomes 180 nm or less,
Fluorite is the only glass material that can be used in practice. There is a limit to the correction of chromatic aberration in a refractive projection optical system consisting of a single glass-type lens. For this reason, it is essential to make the laser used as the light source an extremely narrow band, which inevitably increases costs and lowers output. Also,
In the refracting optical system, it is necessary to use a large number of positive lenses and negative lenses in order to make the Petzval summation that determines the amount of curvature of field zero.

【0004】これに対して,凹面鏡は光を収束するとい
う点では凸レンズに対応する素子として考えられるが,
凸レンズとは異なる作用を有する点もある。例えば,凸
レンズは色収差が発生するのに対し,凹面鏡では色収差
が生じない,凸レンズではペッツバール和が正値をとる
のに対し,凹面鏡ではペッツバール和が負値をとる,等
である。このような凹面鏡とレンズを組み合わせた反射
屈折光学系では,これらの特徴を光学設計上最大限活用
し,単純な構成をとりながら色収差や像面湾曲の補正を
はじめ,各収差の補正が可能である。
On the other hand, a concave mirror can be considered as an element corresponding to a convex lens in terms of converging light.
There is also a point that it has an action different from that of the convex lens. For example, chromatic aberration occurs in a convex lens, whereas chromatic aberration does not occur in a concave mirror. Petzval sum takes a positive value in a convex lens, whereas Petzval sum takes a negative value in a concave mirror. In a catadioptric optical system that combines a concave mirror and a lens as described above, it is possible to make maximum use of these features in optical design, and to correct each aberration, including correction of chromatic aberration and field curvature, while taking a simple configuration. is there.

【0005】ところが,凹面鏡を用いた光学系では凹面
鏡に入射する光束と凹面鏡から反射する光束の光路を如
何に分離するかが大きな難点となっており,このため種
々の技術が提案されている。例えば,従来では光路を分
離するために,軸外視野光学系においては,光軸に対し
45度等の角度を持った偏向鏡を用いた方法が多く提案
されている。しかし,この偏向鏡を用いた方法では,光
軸が複数本になり,光学系の調整が格段に難しくなる。
However, in an optical system using a concave mirror, how to separate the optical paths of the light beam incident on the concave mirror and the light beam reflected from the concave mirror becomes a great difficulty, and various techniques have been proposed for this purpose. For example, conventionally, in order to separate the optical paths, in the off-axis field optical system, many methods using a deflecting mirror having an angle of 45 degrees or the like with the optical axis have been proposed. However, in the method using this deflecting mirror, the number of optical axes becomes plural, and it becomes extremely difficult to adjust the optical system.

【0006】そこで,特開2001―27727号公報
に開示された光学系のように,単一光軸をもつ反射屈折
光学系が提案されるようになった。ところが,この光学
系ではレチクル面側に反射面を持つ反射面M1へ入射す
る光束と,反射面M1で反射された後,第2の反射面M
2で反射されてウエハ面側へ進行する光束とを分離する
ために光束が広がり,光軸からの光線高が高くなる。そ
のため,どうしても直後に配置されるフィールドレンズ
が大型化してしまう。大径のフィールドレンズを製作す
るためには,大きな硝材が必要となるが,均質性の良い
大きな硝材を得ることは難しい。また,大径のフィール
ドレンズでは,露光照射エネルギーによる熱的な形状変
化等に起因する収差発生量も大きい。
Therefore, a catadioptric optical system having a single optical axis, such as the optical system disclosed in Japanese Patent Laid-Open No. 2001-27727, has been proposed. However, in this optical system, the light beam incident on the reflecting surface M1 having the reflecting surface on the reticle surface side and the second reflecting surface M after being reflected by the reflecting surface M1.
The light beam spreads in order to separate it from the light beam reflected by 2 and traveling to the wafer surface side, and the height of the light beam from the optical axis increases. As a result, the field lens arranged immediately afterwards will become large. A large glass material is required to manufacture a large-diameter field lens, but it is difficult to obtain a large glass material with good homogeneity. Further, in a large-diameter field lens, the amount of aberration generated due to thermal shape change due to exposure irradiation energy is large.

【0007】本発明は,このような問題に鑑みてなされ
たものであり,その目的とするところは,大径のフィー
ルドレンズを用いることなく,極紫外領域においても良
好に収差補正され高解像力を有する反射屈折光学系およ
び該光学系を備える投影露光装置を提供することにあ
る。
The present invention has been made in view of the above problems, and an object thereof is to satisfactorily correct aberrations even in the extreme ultraviolet region without using a large-diameter field lens and to obtain high resolution. It is an object of the present invention to provide a catadioptric optical system having the same and a projection exposure apparatus including the optical system.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に,本発明の第1の態様にかかる反射屈折光学系は,第
1面の像を第2面上に形成する反射屈折光学系であっ
て,少なくとも1つの凹面ミラーと,少なくとも1つの
光路分離用のミラーとを備え,前記第1面の中間像を形
成する第1光学系と;前記中間像からの光に基づいて前
記第1面の像を前記第2面上に形成する第2光学系と;
前記第1面と前記凹面ミラーのうちの1つとの間の空間
に配置されて前記第2光学系へ光を反射する凹面形状の
ミラーを有するフィールドミラー対と;を備えることを
特徴とする。
In order to solve the above problems, a catadioptric optical system according to a first aspect of the present invention is a catadioptric optical system for forming an image of a first surface on a second surface. A first optical system having at least one concave mirror and at least one optical path separating mirror for forming an intermediate image of the first surface; and the first optical system based on light from the intermediate image. A second optical system for forming a surface image on the second surface;
A field mirror pair having a concave mirror arranged in a space between the first surface and one of the concave mirrors and reflecting light to the second optical system.

【0009】凹面ミラーおよび凹面形状のミラーを用い
ることにより,色収差や像面湾曲の補正が容易になる。
また,フィールドレンズの代わりにフィールドミラー対
を用いることにより,製作上の困難が大きく軽減する。
さらに,フィールドミラーは熱膨張が小さいため,熱的
な変化による収差発生量を小さく抑えることができる。
By using a concave mirror and a concave mirror, it is easy to correct chromatic aberration and field curvature.
Further, by using a pair of field mirrors instead of a field lens, manufacturing difficulties are greatly reduced.
Further, since the field mirror has a small thermal expansion, it is possible to suppress the amount of aberration generated due to a thermal change to be small.

【0010】本発明の第2の態様にかかる反射屈折光学
系は,第1面の像を第2面上に形成する反射屈折光学系
であって,正の屈折力を有する第1レンズ群と;前記第
1レンズ群と前記第2面との間の光路中に配置されて,
負の屈折力を有する第2レンズ群と;前記第2レンズ群
と前記第2面との間の光路中に配置された凹面形状の第
1ミラーと;前記第1ミラーと前記第2面との間の光路
中に配置されて,前記第1面の方向へ向かう光束を前記
第2面の方向に向けて反射する第2ミラーと;前記第2
ミラーと前記第2面との間の光路中に配置された少なく
とも1組のフィールドミラー対と;前記フィールドミラ
ー対と前記第2面との間の光路中に配置されて,開口絞
りを含み,正の屈折力を有する第3レンズ群と;を備
え,前記フィールドミラー対は,前記第1面と前記第1
ミラーとの間の空間に配置されて,前記第3レンズ群へ
向けて光を反射する凹面形状のミラーを有することを特
徴とする。
A catadioptric optical system according to a second aspect of the present invention is a catadioptric optical system that forms an image of a first surface on a second surface, and includes a first lens group having a positive refractive power. Disposed in the optical path between the first lens group and the second surface,
A second lens group having a negative refracting power; a concave first mirror arranged in an optical path between the second lens group and the second surface; the first mirror and the second surface A second mirror that is disposed in an optical path between the second mirror and reflects a light beam directed toward the first surface toward the second surface;
At least one pair of field mirrors disposed in an optical path between the mirror and the second surface; disposed in an optical path between the pair of field mirrors and the second surface, and including an aperture stop, A third lens group having a positive refractive power; wherein the field mirror pair includes the first surface and the first lens group.
It is characterized in that it has a concave mirror arranged in a space between the mirror and reflecting the light toward the third lens group.

【0011】凹面形状のミラーを用いることにより,色
収差や像面湾曲の補正が容易になる。また,フィールド
レンズの代わりにフィールドミラー対を用いることによ
り,製作上の困難が大きく軽減する。さらに,フィール
ドミラーは熱膨張が小さいため,熱的な変化による収差
発生量を小さく抑えることができる。
By using a concave mirror, chromatic aberration and field curvature can be easily corrected. Further, by using a pair of field mirrors instead of a field lens, manufacturing difficulties are greatly reduced. Further, since the field mirror has a small thermal expansion, it is possible to suppress the amount of aberration generated due to a thermal change to be small.

【0012】本発明の第3の態様は,上記第1または第
2の態様において,前記反射屈折光学系を構成する光学
部材は全て単一光軸上に配置されることを特徴とするも
のである。かかる構成によれば,光軸が一本であるた
め,光学系の調整が比較的容易になる。
A third aspect of the present invention is characterized in that, in the first or second aspect, all optical members constituting the catadioptric optical system are arranged on a single optical axis. is there. According to this structure, since there is one optical axis, adjustment of the optical system becomes relatively easy.

【0013】本発明の第4の態様は,上記第1乃至第3
の態様のうち何れか一つの態様において,前記第1面上
に光軸から外れた視野を有し,かつ前記第2面上の光軸
から外れた領域内に前記像を形成することを特徴とする
ものである。
A fourth aspect of the present invention is based on the above first to third aspects.
In any one of the above aspects, the first surface has a field of view off the optical axis, and the image is formed in an area on the second surface off the optical axis. It is what

【0014】本発明の第5の態様は,上記第1乃至第4
の態様のうち何れか一つの態様において,前記第1面の
縮小像を第2面上に形成することを特徴とするものであ
る。
A fifth aspect of the present invention is the above-mentioned first to fourth aspects.
In any one of the above modes, the reduced image of the first surface is formed on the second surface.

【0015】本発明の第6の態様は,上記第1乃至第5
の態様のうち何れか一つの態様において,前記フィール
ドミラー対を構成するミラーは,いずれも平面または凹
面形状を有することを特徴とするものである。かかる構
成によれば,ミラーおよび装置の大型化を避けることが
できる。
A sixth aspect of the present invention is directed to the above first to fifth aspects.
In any one of the above aspects, all the mirrors forming the field mirror pair have a flat or concave shape. With this configuration, it is possible to avoid the mirror and the device from becoming large.

【0016】本発明の第7の態様は,上記第1乃至第6
の態様のうち何れか一つの態様において,屈折光学材料
は全て蛍石からなることを特徴とするものである。これ
より,波長が180nm以下の光源に対して適用可能な
光学系を構成できる。
A seventh aspect of the present invention is the above-mentioned first to sixth aspects.
In any one of the above aspects, all the refractive optical materials are made of fluorite. As a result, an optical system applicable to a light source having a wavelength of 180 nm or less can be configured.

【0017】本発明の第8の態様にかかる投影露光装置
は,前記第1面上に配置された所定のパターンを有する
マスクを照明する照明光学系と,前記所定のパターンの
像を前記第2面上に配置された感光性基板上へ投影する
ための上記第1乃至第7の態様のうち何れか一つの態様
における反射屈折光学系と,を備えることを特徴とす
る。かかる構成よれば,微細なマスクパターン像を高解
像に投影することができ,微細な回路パターンを有する
デバイスの製作が可能となる。
The projection exposure apparatus according to an eighth aspect of the present invention is an illumination optical system for illuminating a mask having a predetermined pattern arranged on the first surface, and an image of the predetermined pattern for the second exposure image. And a catadioptric optical system according to any one of the first to seventh aspects for projecting onto a photosensitive substrate arranged on a surface. With this configuration, a fine mask pattern image can be projected with high resolution, and a device having a fine circuit pattern can be manufactured.

【0018】本発明の第9の態様は,上記第8の態様に
おいて,前記反射屈折光学系は,前記第2面上の光軸か
ら外れた領域に長方形状または円弧形状の露光領域を形
成することを特徴とするものである。
In a ninth aspect of the present invention based on the eighth aspect, the catadioptric optical system forms a rectangular or arc-shaped exposure region in a region off the optical axis on the second surface. It is characterized by that.

【0019】また,本発明の第10の態様にかかる投影
露光方法は,マスク上の所定のパターンを感光性基板へ
投影する投影露光方法であって,前記第1面上に配置さ
れた所定のパターンを有するマスクを照明し,上記第1
乃至第7の態様のうち何れか一つの態様における反射屈
折光学系を用いて,前記所定のパターンの像を前記第2
面上に形成し,前記第2面上に配置された感光性基板上
に前記所定のパターンを転写することを特徴とする。こ
のとき,前記所定のパターンの像を,前記第2面上での
光軸から外れた領域であって,長方形状または円弧形状
の領域内に形成することが好ましい。
A projection exposure method according to a tenth aspect of the present invention is a projection exposure method for projecting a predetermined pattern on a mask onto a photosensitive substrate, the predetermined exposure method being arranged on the first surface. Illuminating a mask having a pattern, the first
Through the catadioptric optical system according to any one of the seventh to seventh aspects, the image of the predetermined pattern is formed into the second image.
It is characterized in that it is formed on a surface and the predetermined pattern is transferred onto a photosensitive substrate arranged on the second surface. At this time, it is preferable that the image of the predetermined pattern is formed in a region off the optical axis on the second surface and in a rectangular or arc-shaped region.

【0020】[0020]

【発明の実施の形態】以下,図面に基づいて本発明の実
施の形態を詳細に説明する。なお,以下の説明及び添付
図面において,略同一の機能及び構成を有する構成要素
については,同一符号を付すことにより,重複説明を省
略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. In addition, in the following description and the accompanying drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be omitted.

【0021】図1は,本発明の典型的な反射屈折光学系
の構成断面図である。この反射屈折光学系は,第1面の
像を第2面上に形成する結像光学系である。以下では第
1面をレチクルR,第2面をウエハWとして説明する。
レチクルR上には所定のパターンが形成されている。な
お,レチクルRの代わりにマスクとしてもよい。反射屈
折光学系は,第1光学系100と,フィールドミラー対
200と,第2光学系300とを有する。
FIG. 1 is a sectional view showing the configuration of a typical catadioptric optical system according to the present invention. This catadioptric optical system is an imaging optical system that forms an image of the first surface on the second surface. Hereinafter, the first surface will be described as the reticle R, and the second surface will be described as the wafer W.
A predetermined pattern is formed on the reticle R. A mask may be used instead of the reticle R. The catadioptric system includes a first optical system 100, a field mirror pair 200, and a second optical system 300.

【0022】第1光学系100は,正の屈折力を有する
第1レンズ群G1と,第1レンズ群G1とウエハWとの
間の光路中に配置されて,負の屈折力を有する第2レン
ズ群G2と,第2レンズ群G2とウエハWとの間の光路
中に配置された凹面ミラーM1と,凹面ミラーM1とウ
エハWとの間の光路中に配置されて,レチクルRの方向
へ向かう光束をウエハWの方向に向けて反射する光路分
離用のミラーM2とを有する。第1光学系100は,レ
チクルRの中間像を形成する。
The first optical system 100 is disposed in the optical path between the first lens group G1 having a positive refracting power and the first lens group G1 and the wafer W, and has the second refracting power having a negative refracting power. The lens group G2, the concave mirror M1 arranged in the optical path between the second lens group G2 and the wafer W, and the concave mirror M1 arranged in the optical path between the concave mirror M1 and the wafer W, toward the reticle R. And a mirror M2 for separating an optical path, which reflects a light flux directed toward the wafer W. The first optical system 100 forms an intermediate image of the reticle R.

【0023】フィールドミラー対200は,ミラーM2
とウエハWとの間の光路中に配置されており,少なくと
も1組のフィールドミラー対からなる。図1に示す例で
は,フィールドミラー対200は,共に凹面形状のミラ
ーM3,凹面ミラーM4とから構成されている。凹面ミ
ラーM4は,レチクルRと凹面ミラーM1との間の空間
に配置されて第2光学系300へ光を反射する。なお,
フィールドミラー対200を構成するミラーはいずれも
平面または凹面形状を有することが好ましい。
The field mirror pair 200 includes a mirror M2
Is arranged in the optical path between the wafer W and the wafer W, and is composed of at least one field mirror pair. In the example shown in FIG. 1, the field mirror pair 200 is composed of a concave mirror M3 and a concave mirror M4. The concave mirror M4 is arranged in the space between the reticle R and the concave mirror M1 and reflects light to the second optical system 300. In addition,
It is preferable that all the mirrors forming the field mirror pair 200 have a flat or concave shape.

【0024】第2光学系300は,フィールドミラー対
200とウエハWとの間の光路中に配置されて,開口絞
りASを含み,正の屈折力を有する第3レンズ群G3を
有する。また,第2光学系300は,第1光学系100
が形成した中間像からの光に基づいてレチクルR上のパ
ターンの縮小像をウエハW上に形成する。
The second optical system 300 is arranged in the optical path between the field mirror pair 200 and the wafer W, includes an aperture stop AS, and has a third lens group G3 having a positive refractive power. In addition, the second optical system 300 is the first optical system 100.
A reduced image of the pattern on the reticle R is formed on the wafer W based on the light from the intermediate image formed by.

【0025】反射屈折光学系を構成する光学部材は全て
単一光軸AX上に配置されており,レチクルR上に光軸
から外れた視野を有し,かつウエハW上の光軸から外れ
た領域内にレチクルRの縮小像を形成する。
All the optical members constituting the catadioptric optical system are arranged on the single optical axis AX, have a field of view on the reticle R that is off the optical axis, and are off the optical axis on the wafer W. A reduced image of the reticle R is formed in the area.

【0026】図1に示すように,レチクルR上で光軸A
X外から発した光束は第1光学系100の第1レンズ群
G1,および第2レンズ群G2によって第1ミラーM1
に導かれる。第1ミラーM1で反射された光束は,再び
第2レンズ群G2を通り,レチクルR方向に進む。図1
に示す例では第2レンズ群G2は1枚のレンズにより構
成され,光束はこのレンズを往復透過する。その後光束
は,第1レンズ群G1のうち最もウエハW側のレンズの
近傍に配置されたミラーM2で反射され,中間像を形成
する。
As shown in FIG. 1, on the reticle R, the optical axis A
The light flux emitted from outside X is reflected by the first lens group G1 and the second lens group G2 of the first optical system 100 to form the first mirror M1.
Be led to. The light flux reflected by the first mirror M1 passes through the second lens group G2 again and advances in the reticle R direction. Figure 1
In the example shown in (2), the second lens group G2 is composed of one lens, and the light flux passes through this lens back and forth. After that, the light flux is reflected by the mirror M2 arranged in the vicinity of the lens closest to the wafer W in the first lens group G1 to form an intermediate image.

【0027】中間像からの光束はフィールドミラー対2
00の一方のミラーM3によりレチクルRの方向に向け
て反射された後,他方の凹面ミラーM4により再びウエ
ハWの方向に反射され,第2光学系300へ入射する。
フィールドミラー対200により,光軸AXから遠ざか
ろうとする光束を再び光軸AX方向に向けて,光軸AX
からの光線高を低くして第2光学系300へ入射させる
ことができる。
The luminous flux from the intermediate image is field mirror pair 2
After being reflected in the direction of the reticle R by one mirror M3 of No. 00, it is reflected in the direction of the wafer W again by the other concave mirror M4 and enters the second optical system 300.
By the field mirror pair 200, the light flux that is going to move away from the optical axis AX is directed again in the optical axis AX direction, and
It is possible to lower the height of the light beam from the light source and make it enter the second optical system 300.

【0028】第2結像光学系300に入った光束は,開
口絞りASにより光束径を制限されると共に,第3レン
ズ群G3により収束され,レチクルR上のパターンの縮
小像をウエハW上に形成する。
The light beam entering the second image-forming optical system 300 has its beam diameter limited by the aperture stop AS, and is converged by the third lens group G3 to form a reduced image of the pattern on the reticle R on the wafer W. Form.

【0029】図2は上述の反射屈折光学系により形成さ
れるウエハW面上での露光領域を説明する図である。図
2において,光軸AXを中心とする半径Aの円は光束が
通らない遮光部である。この円の外周部にある幅Bの円
環部は光軸AXから外れた軸外光線が到達する露光可能
領域である。そのうち,幅X,長さYの円弧状の領域を
実露光領域とできる。スキャン露光においては幅Xの方
向にスキャンすることで大きな露光エリアを実現でき
る。
FIG. 2 is a view for explaining an exposure area on the surface of the wafer W formed by the above-mentioned catadioptric optical system. In FIG. 2, a circle having a radius A centered on the optical axis AX is a light-shielding portion through which a light beam does not pass. An annular portion having a width B on the outer peripheral portion of this circle is an exposureable region where an off-axis ray off the optical axis AX reaches. Of these, an arc-shaped area having a width X and a length Y can be used as the actual exposure area. In scan exposure, a large exposure area can be realized by scanning in the width X direction.

【0030】次に本発明にかかる反射屈折光学系の数値
実施例について説明する。 [第1実施例]図3は第1実施例の反射屈折光学系の構
成断面図である。本実施例の反射屈折光学系は,光束の
通る順に,レチクルRの中間像を形成する第1光学系1
00と,フィールドミラー対200と,中間像からの光
に基づいてレチクルRの像をウエハW上に形成する第2
光学系300を有する。第1光学系100は,レチクル
R側から光路に沿って順に,2枚の凸レンズからなる第
1レンズ群G1と,1枚の凹レンズからなる第2レンズ
群G2と,凹面ミラーM1と,凸面形状の光路分離用の
ミラーM2とを有する。
Next, numerical examples of the catadioptric system according to the present invention will be described. [First Embodiment] FIG. 3 is a sectional view showing the arrangement of a catadioptric optical system according to the first embodiment. The catadioptric optical system of the present embodiment is a first optical system 1 that forms an intermediate image of a reticle R in the order in which a light beam passes.
00, the field mirror pair 200, and the second image forming image of the reticle R on the wafer W based on the light from the intermediate image.
It has an optical system 300. The first optical system 100 includes, in order from the reticle R side along the optical path, a first lens group G1 including two convex lenses, a second lens group G2 including one concave lens, a concave mirror M1, and a convex surface shape. And a mirror M2 for separating the optical path.

【0031】フィールドミラー対200はミラーM2と
ウエハWとの間の光路中に配置されており,凹面ミラー
M3,M4を有する。凹面ミラーM4は,レチクルRと
凹面ミラーM1との間の空間に配置されて第2光学系3
00へ光を反射する。第2光学系300は,開口絞りA
Sを含み,全体で正の屈折力をもつ第3レンズ群G3を
有する。
The field mirror pair 200 is arranged in the optical path between the mirror M2 and the wafer W, and has concave mirrors M3 and M4. The concave mirror M4 is disposed in the space between the reticle R and the concave mirror M1 and is arranged in the second optical system 3
The light is reflected to 00. The second optical system 300 has an aperture stop A
It has a third lens group G3 including S and having a positive refracting power as a whole.

【0032】反射屈折光学系を構成する光学部材は全て
単一光軸AX上に配置されており,レチクルR上に光軸
から外れた視野を有し,かつウエハW上の光軸から外れ
た領域内にレチクルRの縮小像を形成する。また,屈折
光学材料は全て蛍石からなる。
All the optical members constituting the catadioptric optical system are arranged on the single optical axis AX, have a field of view on the reticle R that is off the optical axis, and are off the optical axis on the wafer W. A reduced image of the reticle R is formed in the area. The refractive optical material is made of fluorite.

【0033】第1実施例にかかる反射屈折光学系の諸元
値を表1に示す。表1において,NAはウエハW側の開
口数,λは基準波長,d0はレチクルR面から最もレチ
クルR面側の光学面までの距離,WDは最もウエハW面
側の光学面からウエハW面までの距離を示す。番号は,
レチクルR側からの光路に沿った順のレンズ,反射面の
番号を示す。各レンズにおいて光路順に先に通る面を前
面,後に通る面を後面としている。CXは凸面,CCは
凹面を意味する。A(1)〜A(7)は非球面を意味
し,APERTURE STOPは開口絞りを意味す
る。
Table 1 shows specifications of the catadioptric system according to the first example. In Table 1, NA is the numerical aperture on the wafer W side, λ is the reference wavelength, d0 is the distance from the reticle R surface to the optical surface closest to the reticle R surface, and WD is the optical surface closest to the wafer W surface to the wafer W surface. Indicates the distance to. The number is
The numbers of lenses and reflecting surfaces in the order along the optical path from the reticle R side are shown. The front surface of each lens is the front surface, and the rear surface is the rear surface. CX means convex and CC means concave. A (1) to A (7) mean an aspherical surface, and APERTURE STOP means an aperture stop.

【0034】各面の非球面データを表2に示す。非球面
は,光軸に垂直な方向の高さをyとし,非球面の頂点に
おける接平面から高さyにおける非球面上の位置までの
光軸に沿った距離(サグ量)をZとし,頂点の曲率半径
をrとし,円錐係数をKとし,n次の非球面係数をA〜
Fとしたとき,以下の数式で表される。表2中のCUR
V=1/rである。 Z=(y2/r)/[1+{1−(1+K)・y2/r2
1/2]+A・y4+B・y6 +C・y8+D・y10+E・y
12+F・y14 ここで,本実施例の諸元値における曲率半径,間隔の単
位の一例としてmmを用いることができる。基準波長に
おける蛍石の屈折率は1.55930666であり,分
散(dn/dλ)は−2.6E−6/pmである。
Table 2 shows aspherical surface data of each surface. Aspherical surface
Is y, the height in the direction perpendicular to the optical axis, and
From the tangent plane at a position on the aspherical surface at height y
Let Z be the distance (sag amount) along the optical axis, and the radius of curvature of the vertex
Is r, the conical coefficient is K, and the aspherical coefficient of the nth order is A ~
When F, it is expressed by the following mathematical formula. CUR in Table 2
V = 1 / r. Z = (y2/ R) / [1+ {1- (1 + K) ・ y2/ R2}
1/2] + A ・ yFour+ B ・ y6 + C ・ y8+ D ・ yTen+ E ・ y
12+ F ・ y14 Here, the radius of curvature and the interval of the values in the specifications of this embodiment are
Mm can be used as an example of the unit. At the reference wavelength
The index of refraction of fluorspar in 1.55930666 is
The dispersion (dn / dλ) is -2.6E-6 / pm.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】図4に,本実施例の反射屈折光学系の子午
方向(TANGENTIAL方向)及び球欠方向(SA
GITAL方向)における横収差(コマ収差)を示す。
図4において,IMは像高を表わし,IM=8.75,
IM=11.5,及び最大像高のIM=14.25,の
3つの点における収差を示す。図中,実線は基準波長1
57.62nm,点線は基準波長+0.4pm,一点鎖
線は基準波長−0.4pmでの収差をそれぞれ示してい
る。各収差図より明らかなとおり,本実施例の反射屈折
光学系は,各像高において,良好な収差補正がなされ,
特に±0.4pmという波長域にわたり良好に色収差補
正が達成されている。
FIG. 4 shows the catadioptric optical system of the present embodiment in the meridional direction (TANGENTIAL direction) and the sagittal direction (SA).
The lateral aberration (coma aberration) in the GITAL direction is shown.
In FIG. 4, IM represents image height, IM = 8.75,
Aberrations at three points, IM = 11.5, and maximum image height IM = 14.25 are shown. In the figure, the solid line is the reference wavelength 1.
57.62 nm, the dotted line shows the aberration at the reference wavelength +0.4 pm, and the alternate long and short dash line shows the aberration at the reference wavelength -0.4 pm. As is clear from each aberration diagram, the catadioptric optical system of the present embodiment is well corrected for aberrations at each image height.
In particular, chromatic aberration correction is successfully achieved over a wavelength range of ± 0.4 pm.

【0038】本実施例により形成される露光領域は,円
弧型露光エリアとなり,その大きさは図2に示した記号
を用いて表すと,A=8.75,B=5.5,X=4,
Y=22となる。以上よりわかるように本実施例では,
大きな露光エリアを確保できる。なお,像高,露光エリ
アの単位は,表1において曲率半径,間隔の単位として
mmを採用した場合にはmmである。なお,以下の実施
例においても本実施例と同様の記号を用いる。
The exposure area formed by this embodiment is an arc-shaped exposure area, and its size is represented by the symbols shown in FIG. 2, A = 8.75, B = 5.5, X = 4,
Y = 22. As can be seen from the above, in this embodiment,
A large exposure area can be secured. The unit of the image height and the exposure area is mm when the unit of the radius of curvature and the unit of interval in Table 1 is mm. In the following embodiments, the same symbols as in this embodiment are used.

【0039】[第2実施例]図5は第2実施例の反射屈
折光学系の構成断面図である。本実施例の反射屈折光学
系は,光束の通る順に,レチクルRの中間像を形成する
第1光学系100と,フィールドミラー対200と,中
間像からの光に基づいてレチクルRの像をウエハW上に
形成する第2光学系300を有する。第1光学系100
は,レチクルR側から光路に沿って順に,2枚の凸レン
ズからなる第1レンズ群G1と,1枚の凹レンズからな
る第2レンズ群G2と,凹面ミラーM1と,凸面形状の
光路分離用のミラーM2とを有する。
[Second Embodiment] FIG. 5 is a sectional view showing the arrangement of a catadioptric optical system according to the second embodiment. The catadioptric optical system according to the present embodiment includes a first optical system 100 that forms an intermediate image of the reticle R, a field mirror pair 200, and an image of the reticle R on the wafer based on the light from the intermediate image in the order in which the light flux passes. It has a second optical system 300 formed on W. First optical system 100
Is a first lens group G1 composed of two convex lenses, a second lens group G2 composed of one concave lens, a concave mirror M1, and a convex optical path separation unit in order from the reticle R side along the optical path. And a mirror M2.

【0040】フィールドミラー対200はミラーM2と
ウエハWとの間の光路中に配置されており,凹面ミラー
M3,M4を有する。凹面ミラーM4は,レチクルRと
凹面ミラーM1との間の空間に配置されて第2光学系3
00へ光を反射する。第2光学系300は,開口絞りA
Sを含み,全体で正の屈折力をもつ第3レンズ群G3を
有する。
The field mirror pair 200 is arranged in the optical path between the mirror M2 and the wafer W and has concave mirrors M3 and M4. The concave mirror M4 is disposed in the space between the reticle R and the concave mirror M1 and is arranged in the second optical system 3
The light is reflected to 00. The second optical system 300 has an aperture stop A
It has a third lens group G3 including S and having a positive refracting power as a whole.

【0041】反射屈折光学系を構成する光学部材は全て
単一光軸AX上に配置されており,レチクルR上に光軸
から外れた視野を有し,かつウエハW上の光軸から外れ
た領域内にレチクルRの縮小像を形成する。また,屈折
光学材料は全て蛍石からなる。
All the optical members constituting the catadioptric system are arranged on the single optical axis AX, have a field of view on the reticle R that is off the optical axis, and are off the optical axis on the wafer W. A reduced image of the reticle R is formed in the area. The refractive optical material is made of fluorite.

【0042】第2実施例にかかる反射屈折光学系の諸元
値を表3に示す。各面の非球面データを表4に示す。表
3,表4における記号の定義はそれぞれ表1,表2と同
様である。ここで,本実施例の諸元値における曲率半
径,間隔の単位の一例としてmmを用いることができ
る。
Table 3 shows specifications of the catadioptric optical system according to the second example. Table 4 shows aspherical surface data of each surface. The definitions of symbols in Tables 3 and 4 are the same as those in Tables 1 and 2, respectively. Here, mm can be used as an example of the unit of the radius of curvature and the interval in the specification values of this embodiment.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】図6に,本実施例の反射屈折光学系の子午
方向(TANGENTIAL方向)及び球欠方向(SA
GITAL方向)における横収差(コマ収差)を示す。
図6において,IMは像高を表わし,IM=9.1,I
M=11.85,及び最大像高のIM=14.6,の3
つの点における収差を示す。図中,実線は基準波長15
7.62nm,点線は基準波長+0.4pm,一点鎖線
は基準波長−0.4pmでの収差をそれぞれ示してい
る。各収差図より明らかなとおり,本実施例の反射屈折
光学系は,各像高において,良好な収差補正がなされて
いる。特に±0.4pmという波長域にわたり良好に色
収差補正が達成されている。
FIG. 6 shows the catadioptric optical system of this embodiment in the meridional direction (TANGENTIAL direction) and the sagittal direction (SA).
The lateral aberration (coma aberration) in the GITAL direction is shown.
In FIG. 6, IM represents the image height, and IM = 9.1, I
M = 11.85, and IM of maximum image height = 14.6, 3
Aberrations at two points are shown. In the figure, the solid line is the reference wavelength 15
7.62 nm, the dotted line shows the aberration at the reference wavelength +0.4 pm, and the alternate long and short dash line shows the aberration at the reference wavelength -0.4 pm. As is apparent from each aberration diagram, the catadioptric optical system of the present embodiment has excellent aberration correction at each image height. In particular, chromatic aberration correction is successfully achieved over a wavelength range of ± 0.4 pm.

【0046】本実施例により形成される露光領域は,円
弧型露光エリアとなり,その大きさは図2に示した記号
を用いて表すと,A=9.1,B=5.5,X=4,Y
=22となる。以上よりわかるように本実施例において
も,大きな露光エリアを確保できる。なお,像高,露光
エリアの単位は,表3において曲率半径,間隔の単位と
してmmを採用した場合にはmmである。
The exposure area formed by this embodiment is an arc-shaped exposure area, and its size is represented by the symbols shown in FIG. 2, A = 9.1, B = 5.5, X = 4, Y
= 22. As can be seen from the above, a large exposure area can be secured also in this embodiment. The unit of the image height and the exposure area is mm when the radius of curvature and the unit of the interval in Table 3 are mm.

【0047】以上より,上記第1,第2実施例の反射屈
折光学系は共に,以下に述べる多数の長所を有する。フ
ィールドレンズの代わりにフィールドミラーを用いたこ
とにより,製作が容易になり,熱的変化による収差発生
量を小さく抑えることができる。凹面ミラーを含む反射
屈折光学系を採用し,0.84という高開口数をもちな
がら良好な収差補正がなされている。特に,屈折光学材
料が蛍石のみであるにもかかわらず,±0.4pmとい
う波長域にわたり良好に色収差補正が達成されている。
蛍石のみでレンズを構成しているため,極紫外領域の波
長を有する光源にも適用可能である。よって,レチクル
上のパターンを高解像にウエハ上に形成することが可能
である。また,大きな露光エリアを確保できるので,良
好なスループットを得ることができる。
As described above, both the catadioptric optical systems of the first and second embodiments have many advantages described below. By using a field mirror instead of a field lens, manufacturing is easier and the amount of aberration generated by thermal changes can be suppressed to a small level. By using a catadioptric system including a concave mirror, good aberration correction is achieved while having a high numerical aperture of 0.84. In particular, although the refractive optical material is only fluorite, chromatic aberration correction is successfully achieved over the wavelength range of ± 0.4 pm.
Since the lens is composed of only fluorite, it can be applied to light sources with wavelengths in the extreme ultraviolet region. Therefore, the pattern on the reticle can be formed on the wafer with high resolution. Also, since a large exposure area can be secured, good throughput can be obtained.

【0048】図7は本発明の実施の形態に係る反射屈折
光学系を適用した投影光学系を備えた投影露光装置の全
体構成を概略的に示す図である。なお,図7において,
投影光学系を構成する投影光学系8の光軸AXに平行に
Z軸を,光軸AXに垂直な面内において図7の紙面に平
行にX軸を,紙面に垂直にY軸を設定している。また,
投影光学系8の物体面には所定の回路パターンが形成さ
れた投影原版としてレチクルRが配置され,投影光学系
8の像面には,基板としてのフォトレジストが塗布され
たウエハWが配置されている。
FIG. 7 is a diagram schematically showing the overall configuration of a projection exposure apparatus having a projection optical system to which the catadioptric system according to the embodiment of the present invention is applied. In addition, in FIG.
The Z axis is set parallel to the optical axis AX of the projection optical system 8 that constitutes the projection optical system, the X axis is set parallel to the paper surface of FIG. 7 in the plane perpendicular to the optical axis AX, and the Y axis is set perpendicular to the paper surface. ing. Also,
A reticle R is arranged as a projection original plate having a predetermined circuit pattern formed on the object plane of the projection optical system 8, and a wafer W coated with a photoresist as a substrate is arranged on the image plane of the projection optical system 8. ing.

【0049】光源1から射出された光は,照明光学系2
を介して,所定のパターンが形成されたレチクルRを均
一に照明する。光源1から照明光学系2までの光路に
は,必要に応じて光路を変更するための1つ又は複数の
折り曲げミラーが配置される。
The light emitted from the light source 1 is emitted by the illumination optical system 2
The reticle R on which a predetermined pattern is formed is uniformly illuminated via. In the optical path from the light source 1 to the illumination optical system 2, one or a plurality of bending mirrors for changing the optical path are arranged as needed.

【0050】また,照明光学系2は,例えば露光光の照
度分布を均一化するためのフライアイレンズや内面反射
型インテグレータからなり,所定のサイズ・形状の面光
源を形成するオプティカルインテグレータや,レチクル
R上での照明領域のサイズ・形状を規定するための可変
視野絞り(レチクルブラインド),この視野絞りの像を
レチクル上へ投影する視野絞り結像光学系などの光学系
を有する。なお,光源1から視野絞りまでの光学系とし
て,例えば米国特許第5,345,292号に開示され
た照明光学系を適用することができる。
The illumination optical system 2 is composed of, for example, a fly-eye lens for uniformizing the illuminance distribution of exposure light and an internal reflection type integrator, and an optical integrator for forming a surface light source of a predetermined size and shape, and a reticle. It has an optical system such as a variable field stop (reticle blind) for defining the size and shape of the illumination area on R, and a field stop imaging optical system for projecting an image of this field stop onto the reticle. As the optical system from the light source 1 to the field stop, for example, the illumination optical system disclosed in US Pat. No. 5,345,292 can be applied.

【0051】レチクルRは,レチクルホルダ4を介し
て,レチクルステージ5上においてXY平面に平行に保
持されている。レチクルRには転写すべきパターンが形
成されており,照明光学系2からの光で照明される。レ
チクルステージ5は,図示を省略した駆動系の作用によ
り,レチクル面(すなわちXY平面)に沿って二次元的
に移動可能であり,その位置座標はレチクル移動鏡6を
用いた干渉計7によって計測され且つ位置制御されるよ
うに構成されている。
The reticle R is held on the reticle stage 5 via the reticle holder 4 in parallel with the XY plane. A pattern to be transferred is formed on the reticle R and illuminated with light from the illumination optical system 2. The reticle stage 5 can be two-dimensionally moved along the reticle surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer 7 using a reticle moving mirror 6. And position controlled.

【0052】レチクルRに形成されたパターンからの光
は,投影光学系8を介して,感光性基板であるウエハW
上にパターン像を形成する。ウエハWは,ウエハホルダ
10を介して,ウエハステージ11上においてXY平面
に平行に保持されている。そして,レチクルR上での照
明領域と実質的に相似形状の露光領域にパターン像が形
成される。
Light from the pattern formed on the reticle R is transmitted through the projection optical system 8 to the wafer W which is a photosensitive substrate.
Form a pattern image on top. The wafer W is held in parallel with the XY plane on the wafer stage 11 via the wafer holder 10. Then, a pattern image is formed in the exposure area that is substantially similar to the illumination area on the reticle R.

【0053】ウエハステージ11は,図示を省略した駆
動系の作用によりウエハ面(すなわちXY平面)に沿っ
て二次元的に移動可能であり,その位置座標はウエハ移
動鏡12を用いた干渉計13によって計測され且つ位置
制御されるように構成されている。
The wafer stage 11 can be two-dimensionally moved along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinate is an interferometer 13 using a wafer moving mirror 12. It is configured to be measured and position controlled by.

【0054】投影光学系8によって規定されるレチクル
R上の視野領域(照明領域)及びウエハW上の投影領域
(露光領域)は,X方向に沿って短辺を有する長方形状
あるいはX方向に狭い幅を有する円弧形状である。従っ
て,駆動系及び干渉計7,13などを用いてレチクルR
及びウエハWの位置合わせを行い,図示無きオートフォ
ーカス/オートレベリング系を用いてウエハWを投影光
学系の結像面に位置決めする。そして,この露光領域及
び照明領域の短辺方向すなわちX方向に沿ってレチクル
テージ5とウエハステージ11とを,ひいてはレチクル
RとウエハWとを同期的に移動(走査)させる。これに
より,ウエハW上には露光領域の長辺に等しい幅を有し
且つウエハWの走査量(移動量)に応じた長さを有する
領域に対してレチクルパターンが走査露光される。
The visual field area (illumination area) on the reticle R and the projection area (exposure area) on the wafer W defined by the projection optical system 8 are rectangular with short sides along the X direction or narrow in the X direction. It is an arc shape having a width. Therefore, by using the drive system and interferometers 7 and 13, the reticle R
Then, the wafer W is aligned, and the wafer W is positioned on the image plane of the projection optical system using an autofocus / autoleveling system (not shown). Then, the reticle tage 5 and the wafer stage 11, and thus the reticle R and the wafer W, are moved (scanned) synchronously along the short side direction of the exposure area and the illumination area, that is, the X direction. As a result, the reticle pattern is scanned and exposed on the area of the wafer W having a width equal to the long side of the exposure area and a length corresponding to the scanning amount (movement amount) of the wafer W.

【0055】なお,光源1からウエハWまでの光路の全
体にわたって,露光光がほとんど吸収されることのない
窒素やヘリウムガスなどの不活性ガスの雰囲気が形成さ
れている。
An entire atmosphere of the optical path from the light source 1 to the wafer W is formed with an atmosphere of an inert gas such as nitrogen or helium gas in which exposure light is hardly absorbed.

【0056】以上,添付図面を参照しながら本発明にか
かる好適な実施形態について説明したが,本発明はかか
る例に限定されないことは言うまでもない。当業者であ
れば,特許請求の範囲に記載された技術的思想の範疇内
において,各種の変更例または修正例に想到し得ること
は明らかであり,それらについても当然に本発明の技術
的範囲に属するものと了解される。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention is also applicable to them. Be understood to belong to.

【0057】例えば,半導体素子の製造に用いられる露
光装置だけでなく,液晶表示素子などを含むディスプレ
イの製造に用いられる,デバイスパターンをガラスプレ
ート上に転写する露光装置,薄膜磁気ヘッドの製造に用
いられる,デバイスパターンをセラミックウエハ上に転
写する露光装置,撮像素子(CCDなど)の製造に用い
られる露光装置などにも本発明を適用することができ
る。また,レチクルまたはマスクを製造するためにガラ
ス基板またはシリコンウエハなどに回路パターンを転写
する露光装置にも,本発明を適用することができる。
For example, it is used not only in an exposure apparatus used for manufacturing a semiconductor element, but also in an exposure apparatus for transferring a device pattern onto a glass plate used for manufacturing a display including a liquid crystal display element, and for manufacturing a thin film magnetic head. The present invention can be applied to an exposure apparatus for transferring a device pattern onto a ceramic wafer, an exposure apparatus used for manufacturing an image pickup device (CCD, etc.), and the like. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate, a silicon wafer, or the like to manufacture a reticle or mask.

【0058】[0058]

【発明の効果】以上,詳細に説明したように本発明によ
れば,大径のフィールドレンズを用いることなく,極紫
外領域においても良好に収差補正され,微細なパターン
を高解像に投影可能な反射屈折光学系を提供できる。ま
た,本発明によれば,極めて微細化された投影原版のパ
ターンの像を基板上に良好に投影露光可能な投影露光装
置を提供でき,微細な回路パターンを高解像に形成する
ことができる。
As described above in detail, according to the present invention, it is possible to satisfactorily correct aberrations even in the extreme ultraviolet region without using a large-diameter field lens, and to project a fine pattern with high resolution. It is possible to provide a catadioptric optical system. Further, according to the present invention, it is possible to provide a projection exposure apparatus capable of excellently projecting and exposing an image of a pattern of an extremely miniaturized projection original onto a substrate, and it is possible to form a fine circuit pattern with high resolution. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係る反射屈折光学系の
構成断面図である。
FIG. 1 is a cross-sectional configuration diagram of a catadioptric optical system according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係る反射屈折光学系に
より形成される露光領域を説明する図である。
FIG. 2 is a diagram illustrating an exposure area formed by the catadioptric optical system according to the embodiment of the present invention.

【図3】 本発明の第1実施例の反射屈折光学系の構成
断面図である。
FIG. 3 is a sectional view showing the configuration of a catadioptric optical system according to the first embodiment of the present invention.

【図4】 第1実施例の反射屈折光学系の横収差図であ
る。
FIG. 4 is a lateral aberration diagram of the catadioptric optical system of the first example.

【図5】 本発明の第2実施例の反射屈折光学系の構成
断面図である。
FIG. 5 is a structural cross-sectional view of a catadioptric optical system according to a second embodiment of the present invention.

【図6】 第2実施例の反射屈折光学系の横収差図であ
る。
FIG. 6 is a lateral aberration diagram of the catadioptric optical system of the second example.

【図7】 本発明の実施の形態に係る投影露光装置の概
略構成図である。
FIG. 7 is a schematic configuration diagram of a projection exposure apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 照明光学系 4 レチクルホルダ 5 レチクルステージ 6 レチクル移動鏡 7,13 干渉計 8 投影光学系(反射屈折光学系) 10 ウエハホルダ 11 ウエハステージ 12 ウエハ移動鏡 100 第1光学系 200 フィールドミラー対 300 第2光学系 AS 開口絞り AX 光軸 G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 M1,M4 凹面ミラー M2,M3 ミラー R レチクル W ウエハ 1 light source 2 Illumination optical system 4 Reticle holder 5 Reticle stage 6 Reticle moving mirror 7,13 interferometer 8 Projection optical system (catadioptric system) 10 Wafer holder 11 Wafer stage 12 Wafer moving mirror 100 First optical system 200 field mirror pair 300 Second optical system AS aperture stop AX optical axis G1 first lens group G2 Second lens group G3 Third lens group M1, M4 concave mirror M2, M3 mirror R reticle W wafer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1面の像を第2面上に形成する反射屈
折光学系であって,少なくとも1つの凹面ミラーと,少
なくとも1つの光路分離用のミラーとを備え,前記第1
面の中間像を形成する第1光学系と;前記中間像からの
光に基づいて前記第1面の像を前記第2面上に形成する
第2光学系と;前記第1面と前記凹面ミラーのうちの1
つとの間の空間に配置されて前記第2光学系へ光を反射
する凹面形状のミラーを有するフィールドミラー対と;
を備えることを特徴とする反射屈折光学系。
1. A catadioptric optical system for forming an image of a first surface on a second surface, comprising at least one concave mirror and at least one optical path separating mirror.
A first optical system that forms an intermediate image of a surface; a second optical system that forms an image of the first surface on the second surface based on light from the intermediate image; the first surface and the concave surface One of the mirrors
A field mirror pair having a concave mirror disposed in a space between the two and reflecting the light to the second optical system;
A catadioptric optical system comprising:
【請求項2】 第1面の像を第2面上に形成する反射屈
折光学系であって,正の屈折力を有する第1レンズ群
と;前記第1レンズ群と前記第2面との間の光路中に配
置されて,負の屈折力を有する第2レンズ群と;前記第
2レンズ群と前記第2面との間の光路中に配置された凹
面形状の第1ミラーと;前記第1ミラーと前記第2面と
の間の光路中に配置されて,前記第1面の方向へ向かう
光束を前記第2面の方向に向けて反射する第2ミラー
と;前記第2ミラーと前記第2面との間の光路中に配置
された少なくとも1組のフィールドミラー対と;前記フ
ィールドミラー対と前記第2面との間の光路中に配置さ
れて,開口絞りを含み,正の屈折力を有する第3レンズ
群と;を備え,前記フィールドミラー対は,前記第1面
と前記第1ミラーとの間の空間に配置されて,前記第3
レンズ群へ向けて光を反射する凹面形状のミラーを有す
ることを特徴とする反射屈折光学系。
2. A catadioptric optical system for forming an image of a first surface on a second surface, the first lens group having a positive refractive power; and the first lens group and the second surface. A second lens group disposed in an optical path between them and having a negative refractive power; a concave first mirror disposed in an optical path between the second lens group and the second surface; A second mirror which is arranged in an optical path between the first mirror and the second surface and reflects a light beam traveling in the direction of the first surface toward the direction of the second surface; At least one pair of field mirrors disposed in an optical path between the second surface; and an aperture stop disposed in an optical path between the field mirror pair and the second surface, A third lens group having a refractive power; and the field mirror pair is provided between the first surface and the first mirror. Placed in the space of the third
A catadioptric system having a concave mirror that reflects light toward a lens group.
【請求項3】 前記反射屈折光学系を構成する光学部材
は全て単一光軸上に配置されることを特徴とする請求項
1または2に記載の反射屈折光学系
3. The catadioptric optical system according to claim 1, wherein all the optical members constituting the catadioptric optical system are arranged on a single optical axis.
【請求項4】 前記第1面上に光軸から外れた視野を有
し,かつ前記第2面上の光軸から外れた領域内に前記像
を形成することを特徴とする請求項1乃至3の何れか一
項に記載の反射屈折光学系。
4. The image is formed in an area off the optical axis on the first surface, and the image is formed in an area off the optical axis on the second surface. 3. The catadioptric optical system according to any one of 3 above.
【請求項5】 前記第1面の縮小像を第2面上に形成す
ることを特徴とする請求項1乃至4の何れか一項に記載
の反射屈折光学系。
5. The catadioptric system according to claim 1, wherein the reduced image of the first surface is formed on the second surface.
【請求項6】 前記フィールドミラー対を構成するミラ
ーは,いずれも平面または凹面形状を有することを特徴
とする請求項1乃至5の何れか一項に記載の反射屈折光
学系。
6. The catadioptric optical system according to claim 1, wherein each of the mirrors forming the field mirror pair has a flat or concave shape.
【請求項7】 屈折光学材料は全て蛍石からなることを
特徴とする請求項1乃至6の何れか一項に記載の反射屈
折光学系。
7. The catadioptric optical system according to claim 1, wherein the dioptric material is made of fluorite.
【請求項8】 前記第1面上に配置された所定のパター
ンを有するマスクを照明する照明光学系と,前記所定の
パターンの像を前記第2面上に配置された感光性基板上
へ投影するための請求項1乃至7の何れか一項に記載の
反射屈折光学系と,を備えることを特徴とする投影露光
装置。
8. An illumination optical system for illuminating a mask having a predetermined pattern arranged on the first surface, and an image of the predetermined pattern projected onto a photosensitive substrate arranged on the second surface. A projection exposure apparatus comprising: the catadioptric optical system according to claim 1.
【請求項9】 前記反射屈折光学系は,前記第2面上の
光軸から外れた領域に長方形状または円弧形状の露光領
域を形成することを特徴とする請求項8に記載の投影露
光装置。
9. The projection exposure apparatus according to claim 8, wherein the catadioptric optical system forms a rectangular or arc-shaped exposure area in an area off the optical axis on the second surface. .
JP2001308754A 2001-10-04 2001-10-04 Cata-dioptic system and projection exposure device equipped with the same system Pending JP2003114387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308754A JP2003114387A (en) 2001-10-04 2001-10-04 Cata-dioptic system and projection exposure device equipped with the same system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308754A JP2003114387A (en) 2001-10-04 2001-10-04 Cata-dioptic system and projection exposure device equipped with the same system

Publications (2)

Publication Number Publication Date
JP2003114387A true JP2003114387A (en) 2003-04-18
JP2003114387A5 JP2003114387A5 (en) 2005-08-18

Family

ID=19128013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308754A Pending JP2003114387A (en) 2001-10-04 2001-10-04 Cata-dioptic system and projection exposure device equipped with the same system

Country Status (1)

Country Link
JP (1) JP2003114387A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107011A1 (en) * 2003-05-06 2004-12-09 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
JP2005115127A (en) * 2003-10-09 2005-04-28 Nikon Corp Catadioptric projection optical system, exposure device and exposing method
WO2005098504A1 (en) * 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US7218453B2 (en) 2005-02-04 2007-05-15 Carl Zeiss Smt Ag Projection system, in particular for a microlithographic projection exposure apparatus
EP1828829A1 (en) * 2004-12-23 2007-09-05 Carl Zeiss SMT AG High aperture lens with an obscured pupil
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2008516434A (en) * 2004-10-08 2008-05-15 カール ツァイス エスエムテー アクチェンゲゼルシャフト Projection optical system
CN100405119C (en) * 2003-05-06 2008-07-23 株式会社尼康 Projection optical system,exposure apparatus and exposure method
EP2006739A2 (en) 2004-01-14 2008-12-24 Carl Zeiss SMT AG Catadioptric projection objective
US7557996B2 (en) 2005-04-29 2009-07-07 Carl Zeiss Smt Ag Projection objective
JP2010026526A (en) * 2009-10-26 2010-02-04 Nikon Corp Catadioptric projection optical system, exposure device and exposure method
US7672047B2 (en) 2004-01-14 2010-03-02 Carl Zeiss Smt Ag Catadioptric projection objective
US7682031B2 (en) 2004-12-23 2010-03-23 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
EP2189848A2 (en) 2004-07-14 2010-05-26 Carl Zeiss SMT AG Catadioptric projection objective
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US7869138B2 (en) 2006-03-27 2011-01-11 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
JP2011257762A (en) * 2011-07-04 2011-12-22 Nikon Corp Catadioptric projection optical system, exposure device, and exposure method
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8199400B2 (en) 2004-01-14 2012-06-12 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8411251B2 (en) 2006-12-28 2013-04-02 Carl Zeiss Smt Gmbh Optical element and illumination optics for microlithography
JP2013191871A (en) * 2013-05-13 2013-09-26 Nikon Corp Cata-dioptric type projection optical system, exposure device, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8705005B2 (en) 2006-02-17 2014-04-22 Carl Zeiss Smt Gmbh Microlithographic illumination system
JP2014194552A (en) * 2014-04-28 2014-10-09 Nikon Corp Cata-dioptric type projection optical system, exposure device, and exposure method
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
JP2015096959A (en) * 2005-05-12 2015-05-21 株式会社ニコン Projection optical system, exposure device, and exposure method
JP2016075931A (en) * 2015-11-30 2016-05-12 株式会社ニコン Exposure equipment, exposure method, and device production method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538256B (en) 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
KR101521407B1 (en) * 2003-05-06 2015-05-18 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
KR20150034817A (en) * 2003-05-06 2015-04-03 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
EP1630585A1 (en) * 2003-05-06 2006-03-01 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
KR101481935B1 (en) * 2003-05-06 2015-01-14 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
KR101516141B1 (en) 2003-05-06 2015-05-04 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
KR101194449B1 (en) 2003-05-06 2012-10-24 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and method of manufacturing micro device
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7312463B2 (en) 2003-05-06 2007-12-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
CN100405119C (en) * 2003-05-06 2008-07-23 株式会社尼康 Projection optical system,exposure apparatus and exposure method
KR101790914B1 (en) 2003-05-06 2017-10-26 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
EP2722703A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2004107011A1 (en) * 2003-05-06 2004-12-09 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101516142B1 (en) 2003-05-06 2015-05-04 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
KR101647934B1 (en) 2003-05-06 2016-08-11 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
EP2672307A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2722704A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
EP1630585A4 (en) * 2003-05-06 2010-07-14 Nikon Corp Projection optical system, and exposure apparatus and exposure method
EP2722702A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
KR101516140B1 (en) 2003-05-06 2015-05-04 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
US7190530B2 (en) 2003-08-12 2007-03-13 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
JP2005115127A (en) * 2003-10-09 2005-04-28 Nikon Corp Catadioptric projection optical system, exposure device and exposing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
US8730572B2 (en) 2004-01-14 2014-05-20 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8289619B2 (en) 2004-01-14 2012-10-16 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8208199B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8339701B2 (en) 2004-01-14 2012-12-25 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8355201B2 (en) 2004-01-14 2013-01-15 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US7679821B2 (en) 2004-01-14 2010-03-16 Carl Zeiss Smt Ag Catadioptric projection objective
US8416490B2 (en) 2004-01-14 2013-04-09 Carl Zeiss Smt Gmbh Catadioptric projection objective
US7672047B2 (en) 2004-01-14 2010-03-02 Carl Zeiss Smt Ag Catadioptric projection objective
US8804234B2 (en) 2004-01-14 2014-08-12 Carl Zeiss Smt Gmbh Catadioptric projection objective including an aspherized plate
EP2006739A2 (en) 2004-01-14 2008-12-24 Carl Zeiss SMT AG Catadioptric projection objective
US7869122B2 (en) 2004-01-14 2011-01-11 Carl Zeiss Smt Ag Catadioptric projection objective
US8199400B2 (en) 2004-01-14 2012-06-12 Carl Zeiss Smt Gmbh Catadioptric projection objective
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7446952B2 (en) 2004-04-08 2008-11-04 Carl Zeiss Smt Ag Catadioptric projection objective
JP2007532938A (en) * 2004-04-08 2007-11-15 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective
WO2005098506A1 (en) * 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Catadioptric projection objective
US8363315B2 (en) 2004-04-08 2013-01-29 Carl Zeiss Smt Gmbh Catadioptric projection objective with mirror group
WO2005098504A1 (en) * 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7712905B2 (en) 2004-04-08 2010-05-11 Carl Zeiss Smt Ag Imaging system with mirror group
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
EP2189848A2 (en) 2004-07-14 2010-05-26 Carl Zeiss SMT AG Catadioptric projection objective
US9891535B2 (en) 2004-10-08 2018-02-13 Carl Zeiss Smt Gmbh Optical projection system
JP2015007784A (en) * 2004-10-08 2015-01-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection optical system
JP2008516434A (en) * 2004-10-08 2008-05-15 カール ツァイス エスエムテー アクチェンゲゼルシャフト Projection optical system
JP2012042967A (en) * 2004-10-08 2012-03-01 Carl Zeiss Smt Gmbh Projection optical system
US9557653B2 (en) 2004-10-08 2017-01-31 Carl Zeiss Smt Gmbh Optical projection system
US9104016B2 (en) 2004-10-08 2015-08-11 Carl Zeiss Smt Gmbh Optical projection system
EP1828829A1 (en) * 2004-12-23 2007-09-05 Carl Zeiss SMT AG High aperture lens with an obscured pupil
US8004755B2 (en) 2004-12-23 2011-08-23 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8632195B2 (en) 2004-12-23 2014-01-21 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US9304407B2 (en) 2004-12-23 2016-04-05 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8317345B2 (en) 2004-12-23 2012-11-27 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US7682031B2 (en) 2004-12-23 2010-03-23 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
US7218453B2 (en) 2005-02-04 2007-05-15 Carl Zeiss Smt Ag Projection system, in particular for a microlithographic projection exposure apparatus
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557996B2 (en) 2005-04-29 2009-07-07 Carl Zeiss Smt Ag Projection objective
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015096959A (en) * 2005-05-12 2015-05-21 株式会社ニコン Projection optical system, exposure device, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9465300B2 (en) 2005-09-13 2016-10-11 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US9341953B2 (en) 2006-02-17 2016-05-17 Carl Zeiss Smt Gmbh Microlithographic illumination system
US8705005B2 (en) 2006-02-17 2014-04-22 Carl Zeiss Smt Gmbh Microlithographic illumination system
US7869138B2 (en) 2006-03-27 2011-01-11 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8810927B2 (en) 2006-03-27 2014-08-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
US7965453B2 (en) 2006-03-28 2011-06-21 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus including the same
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
US8411251B2 (en) 2006-12-28 2013-04-02 Carl Zeiss Smt Gmbh Optical element and illumination optics for microlithography
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010026526A (en) * 2009-10-26 2010-02-04 Nikon Corp Catadioptric projection optical system, exposure device and exposure method
JP2011257762A (en) * 2011-07-04 2011-12-22 Nikon Corp Catadioptric projection optical system, exposure device, and exposure method
JP2013191871A (en) * 2013-05-13 2013-09-26 Nikon Corp Cata-dioptric type projection optical system, exposure device, and exposure method
JP2014194552A (en) * 2014-04-28 2014-10-09 Nikon Corp Cata-dioptric type projection optical system, exposure device, and exposure method
JP2016075931A (en) * 2015-11-30 2016-05-12 株式会社ニコン Exposure equipment, exposure method, and device production method

Similar Documents

Publication Publication Date Title
JP2003114387A (en) Cata-dioptic system and projection exposure device equipped with the same system
JP4717974B2 (en) Catadioptric optical system and projection exposure apparatus provided with the optical system
USRE38421E1 (en) Exposure apparatus having catadioptric projection optical system
US5861997A (en) Catadioptric reduction projection optical system and exposure apparatus having the same
US6639734B2 (en) Catadioptric imaging system and a projection exposure apparatus provided with said imaging system
JP4292497B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2001185480A (en) Optical projection system and projection exposure device equipped with the system
JP2003015040A (en) Projection optical system and exposure device equipped therewith
US7119880B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP2004252363A (en) Reflection type projection optical system
USRE38438E1 (en) Catadioptric reduction projection optical system and exposure apparatus having the same
US7990609B2 (en) Catadioptric imaging system with prolate spheroidal-shaped mirrors
JP2002208551A (en) Reflection/refraction optical system and projection aligner
JP2004029625A (en) Projection optical system, exposure device, and exposure method
JP2004317534A (en) Catadioptric image-formation optical system, exposure device, and exposure method
US6947121B2 (en) Projection optical system, a projection exposure apparatus provided with the same, as well as a device manufacturing method
JP2021113998A (en) Catadioptric optical system, illumination optical system, exposure apparatus and article manufacturing method
JP2004138926A (en) Projection optical system and exposure apparatus equipped therewith
JP2001244168A (en) Aligner and method of manufacturing microdevice using the same
JP2004170869A (en) Imaging optical system, and device and method for exposure
JP2004031808A (en) Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner
US7692767B2 (en) Projection optical system and exposure apparatus with the same
JP4707924B2 (en) Projection optical system, exposure apparatus, and microdevice manufacturing method
JP2002169083A (en) Objective optical system, aberration measuring device, projection exposing device, manufacture of those, and manufacture of micro device
JP2004258178A (en) Projection optical system and aligner provided with the projection optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311