JPH0525003B2 - - Google Patents

Info

Publication number
JPH0525003B2
JPH0525003B2 JP59269429A JP26942984A JPH0525003B2 JP H0525003 B2 JPH0525003 B2 JP H0525003B2 JP 59269429 A JP59269429 A JP 59269429A JP 26942984 A JP26942984 A JP 26942984A JP H0525003 B2 JPH0525003 B2 JP H0525003B2
Authority
JP
Japan
Prior art keywords
cam
intake
engine
lift
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59269429A
Other languages
Japanese (ja)
Other versions
JPS61145310A (en
Inventor
Seinosuke Hara
Hiromichi Bito
Kazuyuki Miidokoro
Yasuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26942984A priority Critical patent/JPS61145310A/en
Priority to US06/810,176 priority patent/US4708101A/en
Publication of JPS61145310A publication Critical patent/JPS61145310A/en
Publication of JPH0525003B2 publication Critical patent/JPH0525003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • F01L1/34406Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft the helically teethed sleeve being located in the camshaft driving pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば車両用内燃機関に使用され
て、吸・排気弁のリフト特性を機関運転条件に応
じて可変制御する内燃機関の吸・排気弁リフト制
御装置に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is used, for example, in a vehicle internal combustion engine to variably control the lift characteristics of the intake and exhaust valves according to engine operating conditions. The present invention relates to an exhaust valve lift control device.

(従来の技術) バルブオーバラツプや新気充填効率等が常に最
適に設定されるように吸・排気弁のリフト特性
(開閉時期及びリフト量)を可変制御する装置と
して、例えば第10図および第11図に示すもの
がある(参考文献:米国特許第3413965号)。
(Prior art) As a device that variably controls the lift characteristics (opening/closing timing and lift amount) of intake/exhaust valves so that valve overlap, fresh air filling efficiency, etc. are always optimally set, for example, Fig. 10 and There is one shown in FIG. 11 (reference document: US Pat. No. 3,413,965).

このものの概要を図に基づいて説明すると、
吸・排気弁駆動カム1に一端が当接し、他端が
吸・排気弁2のステムエンドに嵌合して揺動自由
に支持されたロツカアーム3の背面3Aを湾曲形
成し、この背面3Aがレバー4に支点接触しなが
らロツカアーム3の両端が揺動することによつて
吸・排気弁駆動カム1のリフトを吸・排気弁2に
伝達するようになつている。特に前記レバー4は
一端が機関本体に揺動自由に軸支されており、該
レバー4の揺動位置(傾斜)を、他端部に当接す
るリフト制御カム5を油圧アクチユエータ等によ
り機関運転条件に応じて適切な位相に回転駆動す
ることによつて制御し、もつてロツカアーム3の
背面3Aとレバー4との接触する支点位置を変化
させて吸・排気弁2のリフト特性を可変制御する
ようにしている。
If you explain the outline of this thing based on a diagram,
The back surface 3A of the rocker arm 3, which has one end in contact with the intake/exhaust valve drive cam 1 and the other end fitted into the stem end of the intake/exhaust valve 2 and is supported in a freely swinging manner, is curved. By swinging both ends of the rocker arm 3 while in fulcrum contact with the lever 4, the lift of the intake/exhaust valve drive cam 1 is transmitted to the intake/exhaust valves 2. In particular, one end of the lever 4 is rotatably supported by the engine body, and the swing position (inclination) of the lever 4 is controlled by a hydraulic actuator or the like to control the lift control cam 5 that abuts the other end under engine operating conditions. The lift characteristic of the intake/exhaust valve 2 is variably controlled by controlling the rotary drive in an appropriate phase according to the rotational speed, thereby changing the fulcrum position where the back surface 3A of the rocker arm 3 and the lever 4 contact. I have to.

例えば、リフト制御カム5によるレバー4の押
し下げ量が大であれば、吸・排気弁駆動カム1の
ベースサークル状態においてレバー4の自由端部
とロツカアーム3とが近接しており、従つて、第
11図の曲線Mで示すように吸・排気弁2の開弁
時期が早まると共にリフト量が大となる。逆に、
リフト制御カム5による押し下げ量が小であれ
ば、吸・排気弁駆動カム1のベースサークル状態
であつてもレバー4の自由端部とロツカアーム3
とが離間しており、従つて、第11図の曲線Nで
示すように吸・排気弁2の開弁時期が遅れると共
にリフト量が小となるのである。
For example, if the lever 4 is pushed down by a large amount by the lift control cam 5, the free end of the lever 4 and the rocker arm 3 are close to each other in the base circle state of the intake/exhaust valve drive cam 1, and therefore, the lever 4 is pushed down by a large amount. As shown by curve M in FIG. 11, as the opening timing of the intake/exhaust valve 2 becomes earlier, the lift amount becomes larger. vice versa,
If the amount of depression by the lift control cam 5 is small, even if the intake/exhaust valve drive cam 1 is in the base circle state, the free end of the lever 4 and the rocker arm 3
Therefore, as shown by curve N in FIG. 11, the opening timing of the intake/exhaust valve 2 is delayed and the lift amount becomes small.

(発明が解決しようとする問題点) しかしながら、このような従来の吸・排気弁リ
フト制御装置にあつては、吸・排気弁のリフト量
および開閉弁時期が運転状態に応じて最適に制御
されるものではなかつたため、実用上多用される
機関中負荷運転時にポンプ損失を低減させつつ、
窒素酸化物(NOX)の生成を抑制することがで
きないという問題点があつた。
(Problems to be Solved by the Invention) However, in such conventional intake/exhaust valve lift control devices, the lift amount and opening/closing timing of the intake/exhaust valves are not optimally controlled according to the operating conditions. Therefore, while reducing pump loss during engine medium load operation, which is often used in practice,
There was a problem that the production of nitrogen oxides (NO x ) could not be suppressed.

(問題点を解決するための手段) この発明は、このような問題点を解決するため
になされたものであつて、吸・排気弁のリフト特
性を機関運転条件に応じて可変制御する内燃機関
の吸・排気弁リフト制御装置において、機関中負
荷運転時に、吸気弁の開弁期間を機関高負荷運転
時よりも減少させるとともに、排気弁の閉弁時期
を排気行程の終期以前に設定する制御手段を設け
たものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and provides an internal combustion engine in which lift characteristics of intake and exhaust valves are variably controlled according to engine operating conditions. In the intake/exhaust valve lift control system of 2017, the intake valve opening period is made shorter during engine medium load operation than during engine high load operation, and the exhaust valve closing timing is set before the end of the exhaust stroke. This means that a means has been established.

(作用) このような構成を有するこの発明にあつては、
機関中負荷運転時に、吸気弁の開弁期間を機関の
高負荷運転時よりも減少させるとともに、排気弁
の閉弁時期を排気行程の終期以前に設定する制御
手段が設けられる。したがつて、機関中負荷運転
時に、吸気弁の開弁期間が高負荷運転時よりも減
少されると、有効な吸入行程が短縮されてポンプ
損失が低減され、機関の熱効率が向上する。
(Function) In this invention having such a configuration,
Control means is provided for reducing the opening period of the intake valve during medium load operation of the engine compared to when the engine is operating under high load, and for setting the closing timing of the exhaust valve to be before the end of the exhaust stroke. Therefore, if the opening period of the intake valve is reduced during medium load operation of the engine compared to during high load operation, the effective suction stroke is shortened, pumping loss is reduced, and the thermal efficiency of the engine is improved.

また、排気弁の閉弁時期が排気行程の終期以前
に設定されると、排気行程の終期に排気ガスの一
部が燃焼室内に閉じ込められて、次サイクルの燃
焼が促進されるとともに、窒素酸化物(NOX
の生成が抑制される。
Additionally, if the exhaust valve close timing is set before the end of the exhaust stroke, part of the exhaust gas will be trapped in the combustion chamber at the end of the exhaust stroke, promoting combustion in the next cycle, and oxidizing nitrogen. Things ( NOx )
generation is suppressed.

(実施例) 以下、この発明の実施例を図面に基づいて説明
する。第1図A,B〜第6図はこの発明の一実施
例を示す図である。まず、構成を説明すると、第
1図Aにおいて、11は吸気弁(または、排気
弁)を示し、12はカム軸13に固着されて所定
のカム面12Aを有する吸気弁駆動カムである。
14はロツカアームであり、このロツカアーム1
4はその下面14Aの一端が駆動カム12に当接
し、他端が吸気弁11のステムエンドに嵌合し、
その背面14Bは第1図A中上方に凸に所定曲率
で湾曲している。15はロツカアーム14の背面
14Bにその平坦な下面15Aが支点接触するレ
バーであり、このレバー15の平坦な上面15B
はリフト制御カム16に係合している。リフト制
御カム16は所定のカム面16Aを有し、後述す
るアクチユエータによつてカム制御軸17を介し
て機関の運転条件に応じて回動制御される。な
お、18はバルブスプリングを、19はシリンダ
ヘツドを、それぞれ示す。また、第1図Bに示す
ように、カム軸13の一端にはタイミングプーリ
20が連結されており、このタイミングプーリ2
0は歯付きのタイミングベルト21を介して図外
の機関クランク軸に連動する。また、タイミング
プーリ20とカム軸13との連結部(固着部)に
は前記駆動カム12の回転位相を制御する位相制
御装置(位相制御手段)22が組込まれている。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIGS. 1A and 1B to FIG. 6 are diagrams showing an embodiment of the present invention. First, to explain the configuration, in FIG. 1A, 11 indicates an intake valve (or exhaust valve), and 12 is an intake valve drive cam fixed to a camshaft 13 and having a predetermined cam surface 12A.
14 is a rotsuka arm, and this rotsuka arm 1
4, one end of its lower surface 14A abuts the drive cam 12, the other end fits into the stem end of the intake valve 11,
The back surface 14B is curved upwardly in FIG. 1A with a predetermined curvature. 15 is a lever whose flat lower surface 15A is in fulcrum contact with the back surface 14B of the rocker arm 14;
is engaged with the lift control cam 16. The lift control cam 16 has a predetermined cam surface 16A, and is rotationally controlled via a cam control shaft 17 by an actuator, which will be described later, in accordance with the operating conditions of the engine. Note that 18 indicates a valve spring, and 19 indicates a cylinder head. Further, as shown in FIG. 1B, a timing pulley 20 is connected to one end of the camshaft 13.
0 is linked to an engine crankshaft (not shown) via a toothed timing belt 21. Further, a phase control device (phase control means) 22 for controlling the rotational phase of the drive cam 12 is incorporated in a connecting portion (fixed portion) between the timing pulley 20 and the camshaft 13.

次に、第2図に基づいてこの位相制御装置22
を説明する。
Next, based on FIG.
Explain.

位相制御装置22は、タイミングプーリ20内
に形成された環状のシリンダ20A内を摺動自由
に往復動してこのシリンダ20A内に油圧室23
を画成する円環状のピストン24と、このピスト
ン24に当接しピストン24の往復動によりコイ
ルスプリング25の付勢力に抗してカム軸13に
沿つてスライドするスライダ26と、このスライ
ダ26の移動をコイルスプリング25を介して規
制するストツパ部材27と、を有している。スラ
イダ26には、第3図に示すように、その中空部
内面に螺旋状のメススプライン26Aが形成さ
れ、またその一端部には前記ピストン24が当接
するフランジ部26Bが、その他端部にはシリン
ダ20Aの内壁に形成された一条の溝20Bに摺
動自在に支持される突状部26Cが、それぞれ形
成されている。また、前記カム軸13の一端部に
は、第3図に示すように、螺旋状のオススプライ
ン13Aが形成されており、このオススプライン
13Aは前記スライダ26のスプライン26Aと
噛合するようになつている。
The phase control device 22 freely slides and reciprocates within an annular cylinder 20A formed within the timing pulley 20 to create a hydraulic chamber 23 within the cylinder 20A.
an annular piston 24 that defines an annular piston 24; a slider 26 that comes into contact with the piston 24 and slides along the camshaft 13 against the biasing force of the coil spring 25 due to the reciprocating motion of the piston 24; and a stopper member 27 that restricts the movement via a coil spring 25. As shown in FIG. 3, the slider 26 has a spiral female spline 26A formed on the inner surface of the hollow portion thereof, and has a flange portion 26B at one end thereof, on which the piston 24 comes into contact, and the other end thereof. Projections 26C are respectively formed to be slidably supported in a groove 20B formed in the inner wall of the cylinder 20A. Further, as shown in FIG. 3, a spiral male spline 13A is formed at one end of the camshaft 13, and this male spline 13A is adapted to mesh with a spline 26A of the slider 26. There is.

第2図中28はカム軸13内およびタイミング
プーリ20内に形成された油圧通路であり、この
油圧通路28の一端は前記油圧室23に、その他
端は外部の油圧供給通路29に、それぞれ連通し
ている。この油圧供給通路29の他端は途中で2
つに分岐し、一方の通路29Aはオイルポンプ3
0に、他方の通路29Bは、油圧制御弁31に、
それぞれ連通している。油圧制御弁31はエンジ
ン回転数、絞り弁開度、吸入負圧、吸入空気量等
の機関運転条件に応じて制御回路32によりオイ
ルポンプ30から油圧室23へ供給する油圧を制
御する。なお、33は前記ストツパ部材27をカ
ム軸13の端面に固定する押えボルトである。
Reference numeral 28 in FIG. 2 is a hydraulic passage formed within the camshaft 13 and the timing pulley 20. One end of this hydraulic passage 28 communicates with the hydraulic chamber 23, and the other end communicates with an external hydraulic pressure supply passage 29. are doing. The other end of this hydraulic pressure supply passage 29 is
One passage 29A is the oil pump 3
0, the other passage 29B is connected to the hydraulic control valve 31,
They are connected to each other. The hydraulic control valve 31 controls the hydraulic pressure supplied from the oil pump 30 to the hydraulic chamber 23 by a control circuit 32 according to engine operating conditions such as engine speed, throttle valve opening, suction negative pressure, and intake air amount. Note that 33 is a presser bolt for fixing the stopper member 27 to the end surface of the camshaft 13.

次に、第4図に基づいて前記カム制御軸17の
回動を制御するアクチユエータを説明する。同図
において、13は上述のようにクランク軸に同期
して駆動回転されるカム軸であり、17はこのカ
ム軸13の上方に平行に設けられた上記リフト制
御カム16のカム制御軸である。このカム制御軸
17は以下の歯車機構及び一対のステツピングク
ラツチ45A,45Bを介してカム軸13に対し
て正逆転自在に連結されている。
Next, an actuator that controls the rotation of the cam control shaft 17 will be explained based on FIG. In the figure, 13 is a camshaft driven and rotated in synchronization with the crankshaft as described above, and 17 is a cam control shaft of the lift control cam 16 provided above and parallel to this camshaft 13. . The cam control shaft 17 is connected to the cam shaft 13 through a gear mechanism and a pair of stepping clutches 45A and 45B so as to be freely reversible in the forward and reverse directions.

すなわち、前端に上述のようにタイミングプー
リ20を固着したカム軸13の後端に第1歯車4
1を固着し、この第1歯車41に噛合する一対の
第2歯車43A,43Bをその側方に軸支してい
る。第2歯車43A,43Bの各回転軸42A,
42Bには第3歯車44A,44Bをそれぞれ固
着している。第3歯車44A,44Bにそれぞれ
噛合する第4歯車46A,46Bは、それぞれこ
の第3歯車44A,44Bの下方に設けられ、そ
の回転力はステツピングクラツチ45A,45B
によつて回転軸49A,49Bに伝達可能とされ
ている。回転軸49Aには第5歯車50が固設さ
れ、この第5歯車50には延長軸17Aに固設し
た第6歯車52が噛合している。なお、延長軸1
7Aは上記カム制御軸17と同軸に設けられてカ
ツプリング55により一体回転するよう連結され
ている。また、回転軸49Bにはプーリ51が固
設され、このプーリ51と上記延長軸17Aに固
設したプーリ53との間にはベルト54が掛け渡
されている。
That is, the first gear 4 is attached to the rear end of the camshaft 13 to which the timing pulley 20 is fixed as described above to the front end.
A pair of second gears 43A and 43B meshing with the first gear 41 are pivotally supported on the sides thereof. Each rotating shaft 42A of the second gear 43A, 43B,
Third gears 44A and 44B are respectively fixed to 42B. Fourth gears 46A, 46B that mesh with third gears 44A, 44B, respectively, are provided below third gears 44A, 44B, and their rotational force is applied to stepping clutches 45A, 45B.
can be transmitted to the rotating shafts 49A, 49B. A fifth gear 50 is fixed to the rotating shaft 49A, and a sixth gear 52 fixed to the extension shaft 17A meshes with the fifth gear 50. In addition, extension shaft 1
7A is provided coaxially with the cam control shaft 17 and connected to the cam control shaft 17 by a coupling 55 so as to rotate together. Further, a pulley 51 is fixed to the rotating shaft 49B, and a belt 54 is stretched between the pulley 51 and a pulley 53 fixed to the extension shaft 17A.

従つて、カム軸13の回転は第1、第2歯車4
1,43A,43B、及び第3、第4歯車44
A,44B,46A,46Bにより減速された
後、ステツピングクラツチ45A,45Bを介し
て断続的に回転軸49A,49Bに伝達され、さ
らに、第5、第6歯車50,52及びプーリ5
1,53を介して延長軸17Aからカム制御軸1
7に伝達される。このとき、各ステツピングクラ
ツチ45A,45Bは互いに独立して上記制御回
路32からの制御信号S1,S2により駆動される。
すなわち、両回転軸42A,42Bが共に第4図
中矢印A方向に回転している場合、ステツピング
クラツチ45Aが接続(駆動)されると(ステツ
ピングクラツチ45Bは切離)、回転軸49Aが
図中矢印B方向に回転し、カム制御軸17を矢印
C方向に回転させる一方、ステツピングクラツチ
45Bが接続されると(ステツピングクラツチ4
5Aは切離)、回転軸49Bは矢印B方向に回転
し、カム制御軸17を逆方向(D方向)に回転さ
せるのである。ここに、各ステツピングクラツチ
45A,45Bはパルス状の入力を与えることに
より所定の回転角度だけクラツチの接続を行うも
のである。なお、制御回路32には、エンジン回
転数、スロツトル開度、クラツチ、ギヤ等の信号
が入力され、各信号より判別した機関の運転条件
に応じてパルス状の制御信号S1,S2を択一的に各
ステツピングクラツチ45A,45Bに出力する
ものである。
Therefore, the rotation of the camshaft 13 is caused by the rotation of the first and second gears 4.
1, 43A, 43B, and third and fourth gears 44
After being decelerated by A, 44B, 46A, 46B, the transmission is intermittently transmitted to rotating shafts 49A, 49B via stepping clutches 45A, 45B, and further transmitted to fifth and sixth gears 50, 52 and pulley 5.
1,53 from the extension shaft 17A to the cam control shaft 1.
7. At this time, the stepping clutches 45A and 45B are driven independently from each other by control signals S 1 and S 2 from the control circuit 32.
That is, when both rotating shafts 42A and 42B are rotating in the direction of arrow A in FIG. 4, when stepping clutch 45A is connected (driven) (stepping clutch 45B is disengaged), rotating shaft 49A is The cam control shaft 17 is rotated in the direction of arrow B in the figure, and the cam control shaft 17 is rotated in the direction of arrow C. When the stepping clutch 45B is connected (stepping clutch 45B is
5A indicates separation), the rotating shaft 49B rotates in the direction of arrow B, and rotates the cam control shaft 17 in the opposite direction (direction D). Here, each stepping clutch 45A, 45B connects the clutch by a predetermined rotation angle by applying a pulse-like input. Note that signals such as engine speed, throttle opening, clutch, gear, etc. are input to the control circuit 32, and pulse-shaped control signals S 1 and S 2 are selected according to the engine operating conditions determined from each signal. This signal is uniformly output to each stepping clutch 45A, 45B.

上述した位相制御装置22、アクチユエータ、
カム制御軸17、リフト制御カム16およびレバ
ー15は制御手段を構成し、機関の中負荷運転時
に吸気弁の開弁期間を機関高負荷運転時よりも減
少させるとともに、排気弁の閉弁時期を排気行程
の終期以前に設定するよに制御するものである。
The above-mentioned phase control device 22, actuator,
The cam control shaft 17, the lift control cam 16, and the lever 15 constitute a control means that reduces the opening period of the intake valve during medium load operation of the engine compared to during high load operation of the engine, and also controls the closing timing of the exhaust valve. This is controlled so that it is set before the end of the exhaust stroke.

次に作用を説明する。 Next, the action will be explained.

機関の低速低負荷時において、リフト制御カム
16が回動し、リフト量が小さいカム面16Aで
レバー15に当接するようにすると、レバー15
の自由端部の下面15Aがロツカアーム14の背
面14Bから離間するため、吸気弁11のリフト
量は、第5図の曲線Xで示すように、小さくな
る。なお、ここでリフト制御カム16はカム制御
軸17を介して後述するアクチユエータ機構によ
り回動駆動される。
When the engine is running at low speed and under low load, if the lift control cam 16 rotates and contacts the lever 15 with the cam surface 16A with a small lift amount, the lever 15
Since the lower surface 15A of the free end of the rocker arm 14 is separated from the back surface 14B of the rocker arm 14, the lift amount of the intake valve 11 becomes smaller as shown by the curve X in FIG. Here, the lift control cam 16 is rotationally driven by an actuator mechanism, which will be described later, via a cam control shaft 17.

このとき、レバー15の上下動(リフト制御カ
ム16の回動)と同時に位相制御装置22が作動
する。すなわち、油圧室23にオイルポンプ30
を介して導入される油圧は機関の運転条件(例え
ば負荷)に応じて油圧制御弁31により制御さ
れ、この油圧によりピストン24を介してスライ
ダ26がコイルスプリング25の付勢力に抗して
第2図中右方向または左方向に移動する。このた
め、スライダ26のメススプライン26Aに嵌合
しているカム軸13のオススプライン13Aを介
してカム軸13が回動するので、カム軸13の駆
動カム12の回転位相が進み側または遅れ側に制
御される。
At this time, the phase control device 22 operates simultaneously with the vertical movement of the lever 15 (rotation of the lift control cam 16). That is, the oil pump 30 is installed in the hydraulic chamber 23.
The hydraulic pressure introduced via the engine is controlled by a hydraulic pressure control valve 31 according to the operating conditions (for example, load) of the engine, and this hydraulic pressure causes the slider 26 to move through the piston 24 against the biasing force of the coil spring 25. Move to the right or left in the diagram. Therefore, since the camshaft 13 rotates via the male spline 13A of the camshaft 13 that is fitted to the female spline 26A of the slider 26, the rotational phase of the drive cam 12 of the camshaft 13 is on the leading side or the lagging side. controlled by.

低速低負荷時は、スライダ26は第2図中右側
へ移動するので(第2図中上半分に図示)、カム
軸13はメスオススプライン13A,26Aを介
して一方向に回転し、駆動カム12はその位相が
進み側へ制御される。したがつて、吸気弁11の
開弁、閉弁時期が、第5図中曲線Yで示す従来例
のそれに比較して進み側へずれる。ここで、駆動
カム12が同一カム軸13上に設けられている通
常のSOHC機関では、同図中曲線Eで示すよう
に、排気弁11の開弁、閉弁時期も進み側にずれ
るので、吸・排気弁のオーバーラツプ量が小さく
なり、かつ、吸気弁11の閉弁時期は吸気行程の
下死点前となる。その結果、燃焼室内の残留ガス
が減少し、燃焼状態の改善を図ることができると
ともに、吸気弁11の閉弁時期を早めることによ
り、吸気弁11の開弁期間を第5図中、曲線で
示す機関高負荷運転時よりも減少させて有効の吸
入行程を短縮できるので、ポンプ損失を低減し、
機関の熱効率を向上させることができる。なお、
ここで機関の有効な吸入行程とは吸気弁11が開
弁している吸入行程であり、この行程を短縮する
と、機関気筒内に充填されている混合気量が制限
されるため、絞り弁がその分だけ開状態となり、
吸入負圧を減少できるので、気筒内で発生するポ
ンプ損失を低減でき、また、機関の中負荷運転時
にあつても、駆動カム12の位相をさらに進み側
に制限することにより、第6図中、曲線Xで示す
ように機関高負荷運転時(第6図中、曲線J参
照)よりも開弁期間を減少させて有効な吸入行程
を短縮することができ、上述したものと同様な効
果を得ることができる。
At low speed and low load, the slider 26 moves to the right in FIG. 2 (shown in the upper half of FIG. 2), so the camshaft 13 rotates in one direction via the female and male splines 13A and 26A, and the drive cam 12 is controlled so that its phase is advanced. Therefore, the opening and closing timings of the intake valve 11 are shifted to the advanced side compared to those of the conventional example shown by curve Y in FIG. Here, in a normal SOHC engine in which the drive cam 12 is provided on the same camshaft 13, the opening and closing timings of the exhaust valve 11 are also shifted to the advance side, as shown by curve E in the figure. The amount of overlap between the intake and exhaust valves is reduced, and the closing timing of the intake valve 11 is before the bottom dead center of the intake stroke. As a result, the residual gas in the combustion chamber is reduced and the combustion condition can be improved, and by advancing the closing timing of the intake valve 11, the opening period of the intake valve 11 can be changed as shown by the curve in FIG. The effective suction stroke can be shortened compared to when the engine is running at high load, reducing pump loss.
The thermal efficiency of the engine can be improved. In addition,
Here, the effective intake stroke of the engine is the intake stroke in which the intake valve 11 is open, and if this stroke is shortened, the amount of air-fuel mixture filled in the engine cylinder is limited, so the throttle valve is closed. It becomes open state by that much,
Since the suction negative pressure can be reduced, the pump loss generated in the cylinder can be reduced, and even during medium load operation of the engine, by further limiting the phase of the drive cam 12 to the advance side, it is possible to reduce the pump loss generated in the cylinder. , as shown by curve X, the valve opening period can be reduced and the effective suction stroke can be shortened compared to when the engine is operated at high load (see curve J in Figure 6), and the same effect as described above can be achieved. Obtainable.

ところで、上述したような実用上最も多用され
る機関の中負荷運転域においては、有害成分であ
る窒素酸化物(NOX)の排出が問題となり、通
常この運転域においては吸気中への排気ガス還流
(EGR)を行うので、そのためにEGR量を制御す
る還流手段(例えばEGRコントロールバルブ等)
が必要となつていた。
By the way, in the medium-load operation range of engines that are most frequently used in practice, as mentioned above, the emission of nitrogen oxides ( NO Since reflux (EGR) is performed, a reflux means (for example, an EGR control valve, etc.) that controls the amount of EGR is required.
was becoming necessary.

しかしながら、この発明では、機関の中負荷運
転時には駆動カム12の位相をさらに進み側に制
御することにより、第6図中曲線Fで示すよう
に、排気弁の閉弁時期が上死点前になるので、排
気行程の終期に排気ガスの一部を燃焼室内に封じ
込めることができる(矢印K参照)。このように
封じ込まれた排気ガスは高温であるため(外部通
路に導入されるEGRガスはその通路により冷却
される)、次のサイクルの燃焼を促進する効果と
窒素酸化物(NOX)の生成を抑制する効果を有
する。
However, in this invention, by controlling the phase of the drive cam 12 further to the advanced side during medium load operation of the engine, the exhaust valve closing timing is moved before top dead center, as shown by curve F in FIG. Therefore, part of the exhaust gas can be confined within the combustion chamber at the end of the exhaust stroke (see arrow K). Since the exhaust gas trapped in this way is high temperature (EGR gas introduced into the external passage is cooled by that passage), it has the effect of promoting combustion in the next cycle and reducing nitrogen oxides (NO x ). It has the effect of suppressing the production.

なお、機関の高負荷運転時においては、第5図
および第6図において排気弁について破線G,H
で示すようにリフト量が大きいリフト特性とな
り、吸気弁11についても破線I,Jで示すよう
に、リフト量が大きいリフト特性となる。したが
つて、高負荷運転時においては、高充填効率を得
ることができ、機関出力を高めることができる。
Note that when the engine is operating under high load, the exhaust valves are marked with broken lines G and H in Figures 5 and 6.
As shown by broken lines I and J, the lift characteristic has a large lift amount, and the intake valve 11 also has a lift characteristic with a large lift amount, as shown by broken lines I and J. Therefore, during high-load operation, high charging efficiency can be obtained and engine output can be increased.

ここで、前記リフト制御カム16の回動は、ア
クチユエータの作動により、カム制御軸17を介
して行われる。以下、第4図のアクチユエータの
作動を説明する。
Here, the lift control cam 16 is rotated via the cam control shaft 17 by the operation of an actuator. The operation of the actuator shown in FIG. 4 will be explained below.

エンジンのクランク軸と同期して回転するカム
軸13は、第4図中左側からみて時計回り方向に
回転しており、このとき各回転軸42A,42B
は第1歯車41および第2歯車43A,43Bを
介して反時計回り方向に回転する(矢印A)。ま
た、第4歯車46A,46Bはこれらの歯車列に
より所定の減速比で減速されて、各回転軸42
A,42Bに固設された第3歯車44A,44B
を介して時計回り方向に回転することになる。
The camshaft 13, which rotates in synchronization with the engine crankshaft, rotates clockwise when viewed from the left side in FIG.
rotates counterclockwise via the first gear 41 and second gears 43A and 43B (arrow A). Further, the fourth gears 46A and 46B are reduced in speed by a predetermined reduction ratio by these gear trains, and the respective rotation shafts 42
Third gears 44A and 44B fixed to A and 42B
It will rotate clockwise through.

ここで、一方のステツピングクラツチ45Aに
制御回路32からパルス信号を入力すると、ステ
ツピングクラツチ45Aはパルス信号に応じて所
定励磁時間だけ励磁されて一方の第4歯車46A
と一方のシヤフト49Aとを連結しこれを矢印B
方向に所定角度だけ回転させる。したがつて、カ
ム制御軸17は第5歯車50、第6歯車52およ
び延長軸17Aを介して所定角度だけ矢印C方向
に回転することになる。したがつて、リフト制御
カム16がカム制御軸17を介して回転し、例え
ばリフト量が小さいカム面16Aでレバー15に
当接する。
Here, when a pulse signal is input from the control circuit 32 to one stepping clutch 45A, the stepping clutch 45A is excited for a predetermined excitation time according to the pulse signal, and one of the fourth gears 46A
and one shaft 49A, and connect this with arrow B.
Rotate by a predetermined angle in the direction. Therefore, the cam control shaft 17 rotates by a predetermined angle in the direction of arrow C via the fifth gear 50, the sixth gear 52, and the extension shaft 17A. Therefore, the lift control cam 16 rotates via the cam control shaft 17 and comes into contact with the lever 15, for example, at the cam surface 16A with a small lift amount.

次に、他方のステツピングクラツチ45Bを励
磁すると、他方の回転軸49Bの時計回り方向の
(矢印B方向)回転はタイミングプーリ51,5
3を介して延長軸17Aからカム制御軸17に伝
達され、カム制御軸17は時計回り(矢印D)方
向に所定量回転する。したがつて、リフト制御カ
ム16も同方向に回転し、例えばリフト量が大き
なカム面16Aでレバー15に当接するようにな
る。なお、各ステツピングクラツチ45A,45
Bをともに非励磁としたときは、各回転軸42
A,42Bはカム軸13に同期して空転し、リフ
ト制御軸17の回動は行われない。
Next, when the other stepping clutch 45B is energized, the clockwise rotation (in the direction of arrow B) of the other rotating shaft 49B is caused by the timing pulleys 51 and 5.
3 from the extension shaft 17A to the cam control shaft 17, and the cam control shaft 17 rotates a predetermined amount in the clockwise (arrow D) direction. Therefore, the lift control cam 16 also rotates in the same direction, and comes into contact with the lever 15, for example, with the cam surface 16A having a large lift amount. In addition, each stepping clutch 45A, 45
When both B are de-energized, each rotating shaft 42
A and 42B idle in synchronization with the camshaft 13, and the lift control shaft 17 does not rotate.

また、リフト制御カム16のカム面16Aを機
関の運転条件に応じて選択するためには、ステツ
ピングクラツチ45A,45Bのステツプ数とス
テツプ角をそれぞれ適宜設定すれば良い。また、
カム軸13の回転数が高い場合には、ステツピン
グクラツチ45A,45Bの励磁時間を短くする
ことにより、所定のステツプ角でステツピングク
ラツチ45A,45Bを作動させることができ、
また歯車列による減速比を大きくとることによ
り、リフト制御カム16の回動誤差を小さくする
ことができる。さらに、この実施例では、歯車と
して平歯車を用いたが、ウオーム歯車、あるい
は、はずみ歯車を用いても良いことは勿論であ
る。
Further, in order to select the cam surface 16A of the lift control cam 16 according to the operating conditions of the engine, the number of steps and the step angle of the stepping clutches 45A and 45B may be set appropriately. Also,
When the rotational speed of the camshaft 13 is high, the stepping clutches 45A, 45B can be operated at a predetermined step angle by shortening the excitation time of the stepping clutches 45A, 45B.
Further, by increasing the reduction ratio by the gear train, the rotational error of the lift control cam 16 can be reduced. Furthermore, although spur gears are used as gears in this embodiment, it goes without saying that worm gears or spiral gears may also be used.

また、ステツピングクラツチはリフト制御カム
として多面カムを用いた場合にはさらに有効とな
る。
Furthermore, the stepping clutch becomes even more effective when a multifaceted cam is used as the lift control cam.

次に、第7図〜第9図は多面カムを用いたこの
発明の他の実施例を示したものである。
Next, FIGS. 7 to 9 show another embodiment of the present invention using a multifaceted cam.

第7図において、61はカム軸62に固着され
た駆動カムを、63を吸気弁または排気弁を、そ
れぞれ示す。64はロツカアームであり、このロ
ツカアーム64の一端は駆動カム61に、他端は
吸気弁63のステムエンドに、それぞれ当接して
いる。ロツカアーム64の背面64Aにはフオー
ク65Aを有するレバー65が支点接触し、この
レバー65の一端には複数個の略平らな面で形成
されたカム面66Aを有するリフト制御カム66
が係合し、他端の凹陥部65Bにはゼロラツシユ
アジヤスタ67が嵌合している。リフト制御カム
66にはカム制御軸68が挿通され、第8図に示
すように、リフト制御カム66とカム制御軸68
とは、コイルスプリング69により連結されてい
る。また、第9図に示すように、リフト制御カム
66の両側から突出する円筒部66Bは、ブラケ
ツト70と、ブラケツト70に、ボルト71で締
結されたキヤツプ72との間に回動自由に保持さ
れている。また、第8図において、カム制御軸6
8の一端はアクチユエータ72に連結され、アク
チユエータ72は制御回路73により機関運転条
件に基づいて駆動される。
In FIG. 7, reference numeral 61 indicates a drive cam fixed to a camshaft 62, and reference numeral 63 indicates an intake valve or an exhaust valve. Reference numeral 64 denotes a rocker arm, one end of which abuts against the drive cam 61, and the other end abuts against the stem end of the intake valve 63, respectively. A lever 65 having a fork 65A is in fulcrum contact with the back surface 64A of the rocker arm 64, and a lift control cam 66 has a cam surface 66A formed of a plurality of substantially flat surfaces at one end of the lever 65.
A zero lash adjuster 67 is fitted into the concave portion 65B at the other end. A cam control shaft 68 is inserted through the lift control cam 66, and as shown in FIG.
and are connected by a coil spring 69. Further, as shown in FIG. 9, the cylindrical portion 66B protruding from both sides of the lift control cam 66 is rotatably held between a bracket 70 and a cap 72 fastened to the bracket 70 with bolts 71. ing. In addition, in FIG. 8, the cam control shaft 6
8 is connected to an actuator 72, and the actuator 72 is driven by a control circuit 73 based on engine operating conditions.

ここで、前記カム軸62の端部には図示しない
前記実施例と同様の位相制御装置が設けられてお
り、駆動カム61はこの位相制御装置によりその
位相が進み側または遅れ側に制御される。
Here, a phase control device (not shown) similar to the above embodiment is provided at the end of the camshaft 62, and the phase of the drive cam 61 is controlled by this phase control device to the leading side or the delayed side. .

したがつて、この実施例においては、バルブリ
フトの制御トルクを大巾に低減できる等の効果を
有するだけでなく、バルブの開閉弁時期を機関の
運転条件に応じて好適に制御することができる。
その他の構成および効果は前記実施例と同様であ
る。
Therefore, in this embodiment, not only the valve lift control torque can be significantly reduced, but also the valve opening/closing timing can be suitably controlled according to the operating conditions of the engine. .
Other configurations and effects are similar to those of the previous embodiment.

(効果) 以上説明してきたように、この発明によれば、
機関中負荷運転時に、吸気弁の開弁期間を機関高
負荷運転時よりも減少させる制御手段を設けてい
るため、機関中負荷運転時に有効な吸入行程を短
縮されせポンプ損失を低減させることができ、機
関の熱効率を向上させることができる。
(Effects) As explained above, according to this invention,
Since a control means is provided to reduce the opening period of the intake valve during engine medium load operation compared to during engine high load operation, the effective suction stroke can be shortened and pump loss can be reduced during engine medium load operation. It is possible to improve the thermal efficiency of the engine.

また、上記制御手段によつて排気弁の閉弁時期
を排気行程の終期以前に設定しているため、排気
行程の終期に排気ガスの一部を燃焼室内に閉じ込
めて、次サイクルの燃焼を促進することができる
とともに、窒素酸化物の生成を抑制することがで
きる。
In addition, since the exhaust valve closing timing is set before the end of the exhaust stroke by the above control means, part of the exhaust gas is trapped in the combustion chamber at the end of the exhaust stroke to promote combustion in the next cycle. It is possible to suppress the generation of nitrogen oxides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B〜第6図はこの発明に係る内燃機
関の吸・排気弁リフト制御装置の一実施例を示し
た図であり、第1図Aはその縦断面図、第1図B
はその要部平面図、第2図はその位相制御装置の
断面図、第3図は第2図のスライダ及びカム軸端
部を示す分解斜視図、第4図はリフト制御カムを
駆動するアクチユエータ機構の全体構成を示す平
面図、第5図および第6図はバルブリフト特性を
示す各グラフ、第7図〜第9図はこの発明の他の
実施例を示す図であり、第7図はその縦断面図、
第8図はその要部平面図、第9図はリフト制御カ
ムの取付方法を示す分解斜視図、第10図および
第11図は従来の吸・排気弁リフト制御装置示す
図であり、第10図はその縦断面図、第11図は
そのバルブリフト特性を示すグラフである。 11……吸・排気弁、15……レバー(制御手
段)、16……リフト制御カム(制御手段)、17
……カム制御軸(制御手段)、22……位相制御
装置(制御手段)。
1A, B to 6 are diagrams showing an embodiment of an intake/exhaust valve lift control device for an internal combustion engine according to the present invention, and FIG. 1A is a longitudinal cross-sectional view thereof, and FIG. 1B
2 is a sectional view of the phase control device, FIG. 3 is an exploded perspective view showing the end of the slider and camshaft in FIG. 2, and FIG. 4 is an actuator that drives the lift control cam. FIGS. 5 and 6 are graphs showing valve lift characteristics; FIGS. 7 to 9 are views showing other embodiments of the present invention; FIG. Its vertical sectional view,
FIG. 8 is a plan view of the main part, FIG. 9 is an exploded perspective view showing how to install a lift control cam, FIGS. 10 and 11 are views showing a conventional intake/exhaust valve lift control device, and FIG. The figure is a longitudinal sectional view thereof, and FIG. 11 is a graph showing its valve lift characteristics. 11... Intake/exhaust valve, 15... Lever (control means), 16... Lift control cam (control means), 17
... cam control shaft (control means), 22 ... phase control device (control means).

Claims (1)

【特許請求の範囲】[Claims] 1 吸・排気弁のリフト特性を機関運転条件に応
じて可変制御する内燃機関の吸・排気弁リフト制
御装置において、機関中負荷運転時に、吸気弁の
開弁期間を機関高負荷運転時よりも減少させると
ともに、排気弁の閉弁時期を排気行程の終期以前
に設定する制御手段を設けたことを特徴とする内
燃機関の吸・排気弁リフト制御装置。
1. In an internal combustion engine intake/exhaust valve lift control device that variably controls the lift characteristics of the intake/exhaust valves according to engine operating conditions, the opening period of the intake valve is made shorter during engine medium load operation than during engine high load operation. 1. An intake/exhaust valve lift control device for an internal combustion engine, characterized in that it is provided with a control means for setting the valve closing timing of the exhaust valve to before the end of the exhaust stroke.
JP26942984A 1984-12-20 1984-12-20 Device for controlling lift of intake and exhaust valves in internal combustion engine Granted JPS61145310A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26942984A JPS61145310A (en) 1984-12-20 1984-12-20 Device for controlling lift of intake and exhaust valves in internal combustion engine
US06/810,176 US4708101A (en) 1984-12-20 1985-12-18 Driving apparatus for intake and exhaust valves of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26942984A JPS61145310A (en) 1984-12-20 1984-12-20 Device for controlling lift of intake and exhaust valves in internal combustion engine

Publications (2)

Publication Number Publication Date
JPS61145310A JPS61145310A (en) 1986-07-03
JPH0525003B2 true JPH0525003B2 (en) 1993-04-09

Family

ID=17472302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26942984A Granted JPS61145310A (en) 1984-12-20 1984-12-20 Device for controlling lift of intake and exhaust valves in internal combustion engine

Country Status (1)

Country Link
JP (1) JPS61145310A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332109A (en) * 1993-01-11 1993-12-14 Honda Motor Co Ltd Valve system of internal combustion engine
AUPN567195A0 (en) * 1995-09-27 1995-10-19 Orbital Engine Company (Australia) Proprietary Limited Valve timing for four stroke internal combustion engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542247A (en) * 1978-09-20 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS5888413A (en) * 1981-11-19 1983-05-26 Nissan Motor Co Ltd Intake and exhaust valve driving gear of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542247A (en) * 1978-09-20 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS5888413A (en) * 1981-11-19 1983-05-26 Nissan Motor Co Ltd Intake and exhaust valve driving gear of internal combustion engine

Also Published As

Publication number Publication date
JPS61145310A (en) 1986-07-03

Similar Documents

Publication Publication Date Title
CN1965150B (en) Valve gear for multi-cylinder internal combustion engine
US4716863A (en) Internal combustion engine valve actuation system
JP2007107544A (en) System and method for controlling load and combustion in internal combustion engine by valve drive according to multiple lift cycle
US6679207B1 (en) Engine valve actuation system
US7258100B2 (en) Internal combustion engine control
JPH0510161A (en) Variable tappet valve system of internal combustion engine
US20030121484A1 (en) Continuously variable valve timing, lift and duration for internal combustion engine
US20050087159A1 (en) Engine valve actuation system
US20030127063A1 (en) Continually variable valve timing, lift, and duration for internal combustion engine
US7228829B1 (en) Continuously variable valve timing device
JPH07324610A (en) Variable valve driving apparatus
JP2800036B2 (en) Variable valve mechanism for internal combustion engine
EP0854273A1 (en) Variable valve timing and valve events mechanism for an internal combustion engine
JPH0525003B2 (en)
JPH0580561B2 (en)
US7819097B2 (en) Poppet cylinder valve operating system for internal combustion engine
US6352060B1 (en) Variable timing poppet valve apparatus
JP6278037B2 (en) Valve operating device for internal combustion engine
JPS6210411A (en) Lift control device for intake/exhaust valve of internal combustion engine
JP2002242626A (en) Variable valve system of internal combustion engine
JPS603924Y2 (en) valve timing control device
JPH0619766Y2 (en) Intake and exhaust system for internal combustion engine
JPS60159320A (en) Exhaut valve control device of diesel engine
JPS5930169Y2 (en) vortex combustion engine
GB2384271A (en) Valve operating mechanisms

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term