JP2579560B2 - Oxidation-resistant treatment of carbon fiber reinforced carbon materials - Google Patents

Oxidation-resistant treatment of carbon fiber reinforced carbon materials

Info

Publication number
JP2579560B2
JP2579560B2 JP3025644A JP2564491A JP2579560B2 JP 2579560 B2 JP2579560 B2 JP 2579560B2 JP 3025644 A JP3025644 A JP 3025644A JP 2564491 A JP2564491 A JP 2564491A JP 2579560 B2 JP2579560 B2 JP 2579560B2
Authority
JP
Japan
Prior art keywords
coating
layer
oxidation
sic
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3025644A
Other languages
Japanese (ja)
Other versions
JPH04243990A (en
Inventor
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3025644A priority Critical patent/JP2579560B2/en
Publication of JPH04243990A publication Critical patent/JPH04243990A/en
Application granted granted Critical
Publication of JP2579560B2 publication Critical patent/JP2579560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温酸化雰囲気下にお
いて優れた酸化抵抗性を発揮する炭素繊維強化炭素材
(以下「C/C材」という。)の耐酸化処理法にに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation resistant method for a carbon fiber reinforced carbon material (hereinafter referred to as "C / C material") which exhibits excellent oxidation resistance in a high-temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】C/C材は、卓越した比強度、比弾性率
を有するうえに優れた耐熱性および化学的安定性を備え
ているため、航空宇宙用をはじめ多くの分野で使用され
る構造材料として有用されている。ところが、この材料
には易酸化性という炭素材固有の材質的な欠点があり、
これが汎用性を阻害する最大のネックとなっている。こ
のため、C/C材の表面に耐酸化性の被覆を施して改質
化する試みが従来からおこなわれており、例えばZrO
2 、Al2 3 、SiC、Si3 4 等のセラミックス
系物質によって被覆処理する方法が提案されている。し
かし、SiC被覆層を除いては、使用時の熱サイクルで
被覆界面に層間剥離や亀裂が生じ、酸化の進行を十分に
阻止する機能が発揮されない。
2. Description of the Related Art C / C materials are used in various fields including aerospace, because they have excellent specific strength and specific elastic modulus, and also have excellent heat resistance and chemical stability. It is useful as a structural material. However, this material has a shortcoming inherent in carbon materials that it is easily oxidizable.
This is the biggest bottleneck in versatility. For this reason, attempts have been made to modify the surface of the C / C material by applying an oxidation-resistant coating to the surface thereof.
2 , a method of coating with a ceramic material such as Al 2 O 3 , SiC, or Si 3 N 4 has been proposed. However, except for the SiC coating layer, delamination and cracks occur at the coating interface during a thermal cycle during use, and the function of sufficiently preventing the progress of oxidation is not exhibited.

【0003】従来、C/C基材の表面にSiCの被覆を
施す方法として、気相反応により生成するSiCを直接
沈着させるCVD法(化学的気相蒸着法)と、基材の炭
素を反応源に利用して珪素成分と反応させることにより
SiCに転化させるコンバージョン法が知られている。
ところが、前者のCVD法を適用して形成したSiC被
覆層は、基材との界面が明確に分離している関係で、熱
衝撃を与えると相互の熱膨張差によって層間剥離現象が
起こり易い。このため、高温域での十分な耐酸化性は望
めない。これに対し、後者のコンバージョン法による場
合には基材の表層部が連続組織としてSiC層を形成す
る傾斜機能材質となるため界面剥離を生じることはない
が、CVD法に比べて緻密性に劣るうえ、反応時、被覆
層に微細なクラックが発生する問題がある。
Conventionally, as a method of coating SiC on the surface of a C / C substrate, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited, and a carbon of the substrate are reacted. There is known a conversion method of converting SiC by reacting with a silicon component by using it as a source.
However, in the SiC coating layer formed by applying the former CVD method, the interface between the SiC coating layer and the base material is clearly separated, and when a thermal shock is applied, a delamination phenomenon easily occurs due to a difference in thermal expansion between the two. For this reason, sufficient oxidation resistance in a high temperature range cannot be expected. On the other hand, in the case of the latter conversion method, the surface layer portion of the base material becomes a functionally graded material forming a SiC layer as a continuous structure, so that there is no occurrence of interfacial delamination, but the denseness is inferior to that of the CVD method. In addition, there is a problem that fine cracks occur in the coating layer during the reaction.

【0004】このような問題点の解消を図るため、C/
C基材面にSiO接触によるコンバージョン法で第1の
SiC被膜を形成し、さらにその表面をアモルファスS
iCが析出するような条件でCVD法による第2のSi
C被覆層を形成する耐酸化処理法(特願平2−114872
号) 、更にこれを改良して第2の被覆層を減圧加熱下で
ハロゲン化有機珪素化合物を基材組織に間欠的に充填し
て還元熱分解させるパルスCVI法を用いて形成する耐
酸化処理法(特願平2−150640号) が本出願人によって
提案されている。
In order to solve such problems, C /
A first SiC film is formed on the C substrate surface by a conversion method using SiO contact, and the surface is further formed of amorphous S
Second Si by CVD under conditions such that iC is deposited
Oxidation-resistant treatment to form C coating layer (Japanese Patent Application No. 2-148772
The oxidation-resistant treatment formed by using a pulse CVI method in which the second coating layer is further intermittently filled with a halogenated organosilicon compound in a base material tissue under reduced pressure heating under reduced pressure heating to reduce and thermally decompose the second coating layer. A law (Japanese Patent Application No. 2-150640) has been proposed by the present applicant.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記の先行
技術とは異なりコンバージョン法で形成したSiC被覆
内層の上に外層として二珪化モリブデンの耐酸化被膜を
密着性よく形成することによって高度の酸化抵抗性を付
与するC/C材の耐酸化処理法を提供するものである。
The present invention is different from the prior art described above in that an oxidation resistant film of molybdenum disilicide as an outer layer is formed on the inner layer of the SiC coating formed by the conversion method with good adhesion to achieve a high degree of adhesion. An object of the present invention is to provide a method for an oxidation-resistant treatment of a C / C material imparting oxidation resistance.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明により
提供されるC/C材の耐酸化処理法は、炭素繊維強化炭
素材の基材面に、SiOガスを接触させてコンバージョ
ン法によりSiC被覆層を形成する内層被覆工程と、粒
状二珪化モリブデンと珪素含有結合材を含む水性スラリ
ーを塗布したのち加熱して多孔質のMoSi2 被覆層を
形成する外層被覆工程を施すことを構成上の特徴とす
る。
That is, the oxidation-resistant treatment method of the C / C material provided by the present invention is a method of converting a C / C material to a SiC coating by contacting a SiO gas with a substrate surface of a carbon fiber reinforced carbon material by a conversion method. A structural feature is that an inner layer coating step of forming a layer and an outer layer coating step of applying an aqueous slurry containing particulate molybdenum disilicide and a silicon-containing binder and then heating to form a porous MoSi 2 coating layer are performed. And

【0007】C/C基材を構成する炭素繊維には、ポリ
アクリロニトリル系、レーヨン系、ピッチ系など各種原
料から製造された平織、朱子織、綾織などの織布を一次
元または多次元方向に配向した繊維体、フェルト、トウ
が使用され、マトリックス樹脂としてはフェノール系、
フラン系など高炭化性の液状熱硬化性樹脂、タールピッ
チのような熱可塑性物質が用いられる。炭素繊維は、含
浸、塗布などの手段によりマトリックス樹脂で十分に濡
らしたのち半硬化してプリプレグを形成し、ついで積層
加圧成形する。成形体は加熱して樹脂成分を完全に硬化
し、引き続き常法に従って焼成炭化または更に黒鉛化し
てC/C基材を得る。また、用途によってはマトリック
ス樹脂の含浸、硬化、炭化の処理を反復したり、CVD
法を用いてメタン、プロパン等を原料とする熱分解炭素
を沈着させて組織の緻密化を図ることもできる。
[0007] The carbon fibers constituting the C / C substrate include woven fabrics such as plain weave, satin weave and twill weave made of various materials such as polyacrylonitrile-based, rayon-based and pitch-based materials in one-dimensional or multi-dimensional directions. Oriented fiber bodies, felts and tows are used.
A highly carbonized liquid thermosetting resin such as furan or a thermoplastic substance such as tar pitch is used. The carbon fiber is sufficiently wetted with a matrix resin by means of impregnation, coating, or the like, then semi-cured to form a prepreg, and then laminated and pressed. The molded body is heated to completely cure the resin component, and subsequently calcined or carbonized or graphitized in a conventional manner to obtain a C / C base material. Depending on the application, the process of impregnation, curing, and carbonization of the matrix resin may be repeated,
The structure can be densified by depositing pyrolytic carbon using methane, propane, or the like as a raw material by using the method.

【0008】C/C基材には、コンバージョン法により
SiC被膜を形成するための内層被覆工程が施される。
この内層被覆工程は、SiO2 粉末をSiもしくはC粉
末と混合して密閉加熱系に入れ、系内にC/C基材をセ
ットして1700〜2000℃の温度に加熱する方法によりおこ
なわれる。加熱によりSiO2 はSiまたはC成分で還
元され、反応生成したSiOガスがC/C材を構成する
炭素組織と界面反応して表層部をSiCに転化する。該
被覆処理により、C/C基材の表層部が外面に向かうに
従って次第にSiCが密になる傾斜機能組織の多結晶質
SiC被膜が形成される。形成するSiC被膜の適切な
膜厚は30〜300 μm の範囲で、30μm未満では十分な耐
酸化性を得ることができず、また 300μm を越えると急
激な熱サイクル負荷時に被膜剥離が発生するようにな
る。
[0008] The C / C substrate is subjected to an inner layer coating step for forming a SiC film by a conversion method.
This inner layer coating step is performed by a method in which SiO 2 powder is mixed with Si or C powder, put into a closed heating system, and a C / C substrate is set in the system and heated to a temperature of 1700 to 2000 ° C. By heating, SiO 2 is reduced by Si or C components, and the SiO gas generated by the reaction undergoes an interfacial reaction with the carbon structure constituting the C / C material to convert the surface layer into SiC. The coating process forms a polycrystalline SiC film having a functionally graded structure in which the SiC gradually becomes denser as the surface layer portion of the C / C base material moves toward the outer surface. The appropriate film thickness of the SiC film to be formed is in the range of 30 to 300 μm.If it is less than 30 μm, sufficient oxidation resistance cannot be obtained, and if it exceeds 300 μm, film peeling may occur during a rapid thermal cycle load. become.

【0009】外層被覆工程は、前記被覆工程でSiC被
覆層を形成したC/C基材の表面に多孔質のMoSi2
被覆層を形成する段階で、粒状二珪化モリブデンと珪素
含有結合材を含むスラリーを塗布する方法でおこなわれ
る。
In the outer layer coating step, a porous MoSi 2 layer is formed on the surface of the C / C substrate on which the SiC coating layer is formed in the coating step.
The step of forming the coating layer is performed by a method of applying a slurry containing granular molybdenum disilicide and a silicon-containing binder.

【0010】二珪化モリブデンの粒径は狭い範囲に限定
されるものではなく、数μm から150 μm 程度までの範
囲内で、形成されるMoSi2 被覆層が多孔質組織とな
るような粒度に配合される。好適な粒組成は、粒径37μ
m 以下を60〜100 重量%、粒径37〜150 μm を 0〜40重
量%とすることである。珪素含有結合材は、珪酸ナトリ
ウム、珪酸エチルおよびコロイド状シリカから選択さ
れ、粒状二珪化モリブデンと共に水に分散させてスラリ
ー化する。該水性スラリーは、配合組成を制御すること
により粘度を 500〜2000cpに調整することが望ましい。
塗布はドクターブレード法、ヘラ塗り、刷毛塗り、スプ
レー噴射などを用いておこない、全表面が均一に被覆さ
れるまで十分に処理する。塗布後のC/C基材は乾燥し
たのち300 ℃付近まで加熱して珪素含有結合材を硬化す
る。
[0010] The particle size of molybdenum disilicide is not limited to a narrow range, but within a range of several µm to about 150 µm, the MoSi 2 coating layer formed should have a particle size such that the MoSi 2 coating layer has a porous structure. Is done. The preferred grain composition is 37μ particle size
m is 60 to 100% by weight, and the particle size of 37 to 150 μm is 0 to 40% by weight. The silicon-containing binder is selected from sodium silicate, ethyl silicate and colloidal silica and is dispersed in water with the particulate molybdenum disilicide to form a slurry. It is desirable to adjust the viscosity of the aqueous slurry to 500 to 2000 cp by controlling the composition.
The coating is performed using a doctor blade method, a spatula coating, a brush coating, a spray injection, and the like, and is sufficiently processed until the entire surface is uniformly coated. The C / C substrate after application is dried and then heated to around 300 ° C. to cure the silicon-containing binder.

【0011】このようにして形成される多孔質MoSi
2 被覆層の好適な膜厚は、30〜100 μm の範囲である。
膜厚が30μm 未満であると耐酸化性被膜としての十分な
機能が果たせず、100μm を越えると熱応力に対する緩
和機能が低下してクラックが発生し易くなる。したがっ
て、1回の塗布操作で前記範囲の膜厚が得られない場合
には、塗布操作を反復して膜厚を調整することが好まし
い対応となる。
The thus formed porous MoSi
Suitable thickness of 2 cover layer is in the range of 30 to 100 [mu] m.
If the film thickness is less than 30 μm, the film cannot function sufficiently as an oxidation-resistant film, and if it exceeds 100 μm, the function of relaxing thermal stress is reduced and cracks are easily generated. Therefore, when a film thickness in the above range cannot be obtained by one coating operation, it is preferable to adjust the film thickness by repeating the coating operation.

【0012】上記の構成において、内層被覆工程と外層
被覆工程との間にSiO2 ガラス膜による中間被覆層を
介在させると、内層SiC被覆層の微細なクラックを充
填封止し、かつ内層と外層MoSi2 被覆層との密着性
を高めるために有効となる。該中間被覆工程は、テトラ
エトキシシラン(Si(OC2H5)4)を塩酸と水の混合溶液によ
り予めpH1〜3に調整して加水分解重合するゾル−ゲ
ル法によりゾル化し、生成したSiO2 ゾルを内層被覆
処理を施したC/C基材に真空含浸したのち300〜500
℃に加熱してゾル成分をSiO2 ガラスに転化すること
によっておこなわれる。
In the above structure, when an intermediate coating layer of a SiO 2 glass film is interposed between the inner coating step and the outer coating step, fine cracks in the inner SiC coating layer are filled and sealed, and the inner and outer layers are sealed. This is effective for improving the adhesion to the MoSi 2 coating layer. In the intermediate coating step, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) is converted into a sol by a sol-gel method in which the pH is adjusted to pH 1 to 3 in advance with a mixed solution of hydrochloric acid and water, and the mixture is hydrolyzed and polymerized. 2 300 to 500 sol after vacuum impregnation of C / C substrate with inner layer coating treatment
This is done by heating to ℃ to convert the sol component to SiO 2 glass.

【0013】[0013]

【作用】本発明の耐酸化処理法によれば、内層被覆工程
でC/C基材の表面にコンバージョン法による多結晶質
のSiC被覆層が形成される。このSiC被覆層は緻密
で密着性の高い傾斜機能組織を有しており、容易に界面
剥離することはない。ついで外層として被覆されるMo
Si2 層は多孔質として形成されるため内層SiCとの
熱膨張差から生じる界面の熱応力を巧みに緩和して亀裂
等の発生を阻止するとともに、高温酸化雰囲気に曝され
た際にはMoSi2がSiO2 ガラスに転化し、表層面
を均一な保護被膜として被覆する。このような作用を介
して過酷な高温酸化条件においても安定した高耐酸化性
能が付与される。
According to the oxidation-resistant treatment method of the present invention, a polycrystalline SiC coating layer is formed on the surface of the C / C substrate by the conversion method in the inner layer coating step. This SiC coating layer has a dense and functionally graded functional structure and does not easily peel off at the interface. Mo coated as outer layer
Since the Si 2 layer is formed as porous, the thermal stress at the interface caused by the difference in thermal expansion between the Si 2 layer and the inner layer SiC is skillfully alleviated to prevent the occurrence of cracks and the like. 2 is converted to SiO 2 glass and coats the surface as a uniform protective coating. Through such an action, stable high oxidation resistance is provided even under severe high-temperature oxidation conditions.

【0014】内層被覆工程と外層被覆工程との間に中間
被覆工程を介在させる構成を採る場合には、形成される
SiO2 ガラスがSiC内層の微細なクラックを目詰め
し、かつ外層MoSi2 層との密着性を高めるために機
能する。したがって、前記の耐酸化性を安定度を一層向
上させることができる。
In the case where an intermediate coating step is interposed between the inner layer coating step and the outer layer coating step, the formed SiO 2 glass plugs fine cracks in the SiC inner layer and the outer MoSi 2 layer It works to increase the adhesion with Therefore, the above-mentioned oxidation resistance can be further improved in stability.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 (1) C/C基材の作製 ポリアクリロニトリル系高強度高弾性タイプの平織炭素
繊維布にフェノール樹脂初期縮合物〔大日本インキ工業
(株)製〕をマトリックスとして十分に塗布し、48時間
風乾してプリプレグシートを作成した。このプリプレグ
シートを積層してモールドに入れ、加熱温度110 ℃、適
用圧力20kg/cm2の条件で複合成形した。成形体を250 ℃
の温度に加熱して完全に硬化したのち、窒素雰囲気に保
持された焼成炉に移し、5℃/hr の昇温速度で2000℃ま
で上昇し5時間保持して焼成炭化した。このようにし
て、炭素繊維の体積含有率(Vf)65%、見掛比重1.65g/cc
のC/C基材を作製した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 (1) Preparation of C / C base material A polyacrylonitrile-based high-strength, high-elasticity type plain woven carbon fiber cloth was sufficiently coated with a phenolic resin initial condensate (manufactured by Dainippon Ink Industries, Ltd.) as a matrix. It was air-dried for 48 hours to prepare a prepreg sheet. The prepreg sheets were laminated and placed in a mold, and composite-molded under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . 250 ° C
After the mixture was completely cured by heating to a temperature of 2.degree. C., it was transferred to a baking furnace maintained in a nitrogen atmosphere, heated to 2000.degree. C. at a rate of 5.degree. In this way, the carbon fiber volume content (Vf) 65%, apparent specific gravity 1.65 g / cc
Was prepared.

【0016】(2) 内層被覆工程 SiO2 粉末とSi粉末をモル比2:1の配合比率にな
るように混合し、混合粉末を黒鉛ルツボに入れ上部にC
/C基材をセットした。この黒鉛ルツボを電気炉に移
し、内部をArガスで十分に置換したのち50℃/hr の速
度で1850℃まで昇温し、2時間保持してC/C基材の表
層部に傾斜機能を有する多結晶質のSiC被覆層を形成
した。形成されたSiC被覆層の厚さは約50μm であっ
たが、その表面に幅10μm 程度の亀裂が所々に発生して
いることが認められた。
(2) Inner layer coating step The SiO 2 powder and the Si powder are mixed in a molar ratio of 2: 1 and the mixed powder is put into a graphite crucible and C
/ C substrate was set. The graphite crucible was transferred to an electric furnace, and the inside was sufficiently replaced with Ar gas. Then, the temperature was raised to 1850 ° C. at a rate of 50 ° C./hr, and the temperature was maintained for 2 hours to provide a tilting function to the surface layer of the C / C base material. To form a polycrystalline SiC coating layer. Although the thickness of the formed SiC coating layer was about 50 μm, it was recognized that cracks having a width of about 10 μm were generated in some places on the surface.

【0017】(3) 外層被覆工程 粒径37μm 以下の粒状二珪化モリブデン粉末60重量%
を、珪酸ナトリウム11重量%および水29重量%とよく撹
拌混合し、粘度1500cpのスラリーを調製した。この水性
スラリーを、内層被覆処理されたC/C基材の表面にヘ
ラで均一に塗布し室温で2時間風乾したのち、100℃/hr
の昇温速度で300 ℃まで昇温し、30分間保持した。形
成されたMoSi2 被覆層の膜厚は、50μm であった。
(3) Outer layer coating step 60% by weight of granular molybdenum disilicide powder having a particle size of 37 μm or less
Was thoroughly mixed with 11% by weight of sodium silicate and 29% by weight of water to prepare a slurry having a viscosity of 1500 cp. This aqueous slurry is uniformly applied to the surface of the C / C base material that has been subjected to the inner layer coating treatment with a spatula, air-dried at room temperature for 2 hours, and then heated at 100 ° C./hr.
The temperature was raised to 300 ° C. at the temperature rising rate, and maintained for 30 minutes. The thickness of the formed MoSi 2 coating layer was 50 μm.

【0018】(5) 耐酸化性の評価 上記の被覆処理を施したC/C基材を空気雰囲気に保持
された電気炉に入れ、1000℃に30分間保持−自然冷却−
1200℃に30分間保持−自然冷却−1400℃に30分間保持−
自然冷却−1600℃に30分間保持−自然冷却の条件で熱サ
イクル処理を施した。その各温度段階におけるC/C基
材の重量変化を測定し、その結果を表1に示した。
(5) Evaluation of Oxidation Resistance The C / C substrate subjected to the coating treatment described above is placed in an electric furnace maintained in an air atmosphere and maintained at 1000 ° C. for 30 minutes -natural cooling-
Hold at 1200 ° C for 30 minutes-Natural cooling-Hold at 400 ° C for 30 minutes-
Natural cooling-Hold at 1600 ° C for 30 minutes-Heat cycle treatment was performed under the condition of natural cooling. The change in weight of the C / C substrate at each temperature stage was measured, and the results are shown in Table 1.

【0019】実施例2 実施例1の内層被覆工程と外層被覆工程との間に、次の
中間被覆工程を挿入した。その他は実施例1と同一の条
件で3段階被覆による耐酸化処理を施した。テトラエト
キシシラン(Si(OC2H5)4)〔東芝シリコーン(株)製〕と
エタノールの混合溶液(モル比1:7)に塩酸水溶液を
pH3.0 になるように添加し、常温で1時間撹拌して加
水分解重合をおこなってSiO2 ゾルを作成した。この
ゾル中に内層被覆処理を施したC/C基材を浸漬し、1
時間真空含浸したのち1昼夜室温で乾燥した。乾燥後、
500℃の温度で10分間加熱してゾル成分をSiO2 ガラ
ス膜に転化させた。このようにして被覆処理されたC/
C基材につき、実施例1と同様の熱サイクル試験をおこ
ない、結果を表1に併載した。
Example 2 The following intermediate coating step was inserted between the inner layer coating step and the outer layer coating step of Example 1. Other than that, an oxidation resistance treatment by three-step coating was performed under the same conditions as in Example 1. To a mixed solution of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) (manufactured by Toshiba Silicone Co., Ltd.) and ethanol (molar ratio 1: 7), an aqueous hydrochloric acid solution was added so as to have a pH of 3.0, and the solution was added at room temperature. The mixture was stirred for a period of time to carry out hydrolysis polymerization to prepare a SiO 2 sol. The C / C substrate having been subjected to the inner layer coating treatment is immersed in this sol,
After vacuum impregnation for an hour, it was dried at room temperature for one day. After drying,
The sol component was heated to a temperature of 500 ° C. for 10 minutes to convert the sol component into a SiO 2 glass film. C / thus coated
The same heat cycle test as in Example 1 was performed for the C base material, and the results are shown in Table 1.

【0020】実施例3 外層被覆工程に用いた二珪化モリブデンの粒組成を粒径
37μm 以下80重量%、37〜150 μm 20重量%とした外
は、実施例2と同様にして3段階被覆による耐酸化処理
をおこなった。このようにして被覆処理されたC/C基
材につき、実施例1と同様の熱サイクル試験をおこな
い、結果を表1に併載した。
Example 3 The particle composition of molybdenum disilicide used in the outer layer coating step was
Oxidation resistance treatment by three-step coating was performed in the same manner as in Example 2 except that the weight was set to 80% by weight of 37 μm or less and 20% by weight of 37 to 150 μm. The same thermal cycle test as in Example 1 was performed on the C / C base material thus coated, and the results are shown in Table 1.

【0021】比較例1 内層被覆工程によるSiC層の膜厚を200 μm と厚く形
成し、その他は実施例2と同一条件の中間被覆工程によ
りSiO2 ガラス膜を形成した。この段階に被覆処理さ
れたC/C基材につき、実施例1と同様の熱サイクル試
験をおこない、結果を表1に併載した。
Comparative Example 1 An SiO 2 glass film was formed by an intermediate coating process under the same conditions as in Example 2 except that the thickness of the SiC layer was formed to be as large as 200 μm by the inner coating process. The same thermal cycle test as in Example 1 was performed on the C / C substrate coated at this stage, and the results are shown in Table 1.

【0022】比較例2 比較例1で被覆処理されたC/C基材を、硼酸トリブチ
ル(B(OC9H2 7)3 溶液中に浸漬して1時間真空含浸したの
ち乾燥し、600 ℃で10分間加熱処理を施してSiO2
ラス層を硼珪酸ガラス質に転化した。 このようにして被覆処理されたC/C基材につき、実施
例1と同様の熱サイクル試験をおこない、結果を表1に
併載した。
[0022] Comparative Example 2 Comparative Example 1 coated the treated C / C substrate, borate tributyl (B (OC 9 H 2 7 ) 3 solution immersed and dried After 1 hour a vacuum impregnation in, 600 ° C. The SiO 2 glass layer was converted to borosilicate glass by heating for 10 minutes in the same manner.The C / C base material thus coated was subjected to the same heat cycle test as in Example 1, and the results were obtained. It is also shown in Table 1.

【0025】 本発明の実施例によるC/C基材は外層のMoSi2
がSiO2 ガラスに転化する過程で若干に重量増加を伴
うが、1600℃処理時においても酸化による重量減少は極
めて少ない。これに対し、比較例においては1000℃処理
段階においてすでに酸化消耗が生じ、1600℃処理時では
材質崩壊する程度まで酸化が進行する。
[0025] The C / C substrate according to an embodiment of the present invention has an outer layer of MoSi 2
Is slightly increased in the process of conversion into SiO 2 glass, but the weight loss due to oxidation is extremely small even at 1600 ° C. On the other hand, in the comparative example, oxidation was already consumed at the 1000 ° C. treatment stage, and oxidation proceeded to the extent that the material collapsed at the 1600 ° C. treatment.

【0026】[0026]

【発明の効果】以上のとおり、本発明によれば表面に傾
斜機能を有する多結晶質のSiC内層とMoSi2 の外
層を被覆形成する工程を介して高度の耐酸化性を備える
C/C基材を製造することが可能となる。したがって、
高温酸化雰囲気の過酷な条件に晒される構造部材用途に
適用して安定性能の確保、耐久寿命の延長化などの効果
が発揮される。
As described above, according to the present invention, a C / C group having a high degree of oxidation resistance is formed through a step of coating a polycrystalline SiC inner layer having a gradient function on its surface and an outer layer of MoSi 2. It becomes possible to manufacture materials. Therefore,
When applied to structural members that are exposed to severe conditions in a high-temperature oxidizing atmosphere, effects such as securing stable performance and extending durable life are exhibited.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維強化炭素材の基材面に、SiO
ガスを接触させてコンバージョン法によりSiC被覆層
を形成する内層被覆工程と、粒状二珪化モリブデンと珪
素含有結合材を含む水性スラリーを塗布したのち加熱し
て多孔質のMoSi2 被覆層を形成する外層被覆工程を
施すことを特徴とする炭素繊維強化炭素材の耐酸化処理
法。
1. The method according to claim 1, wherein the carbon fiber reinforced carbon material has
An inner layer coating step of forming a SiC coating layer by a conversion method by contacting a gas, and an outer layer of applying an aqueous slurry containing granular molybdenum disilicide and a silicon-containing binder and then heating to form a porous MoSi 2 coating layer An oxidation-resistant treatment method for a carbon fiber reinforced carbon material, which comprises performing a coating step.
【請求項2】 内層被覆工程と外層被覆工程との間に、
テトラエトキシシランを加水分解重合して生成したSi
2 ゾルを含浸させたのち加熱してSi02 ガラス膜を
形成する中間被覆工程を介在させる請求項1記載の炭素
繊維強化炭素材の耐酸化処理法。
2. Between the inner layer coating step and the outer layer coating step,
Si produced by hydrolysis polymerization of tetraethoxysilane
O 2 sol oxidation treatment of the carbon fiber reinforced carbon material according to claim 1, wherein interposing the intermediate coating process for forming a Si0 2 glass layer is heated after impregnated with.
JP3025644A 1991-01-25 1991-01-25 Oxidation-resistant treatment of carbon fiber reinforced carbon materials Expired - Fee Related JP2579560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025644A JP2579560B2 (en) 1991-01-25 1991-01-25 Oxidation-resistant treatment of carbon fiber reinforced carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025644A JP2579560B2 (en) 1991-01-25 1991-01-25 Oxidation-resistant treatment of carbon fiber reinforced carbon materials

Publications (2)

Publication Number Publication Date
JPH04243990A JPH04243990A (en) 1992-09-01
JP2579560B2 true JP2579560B2 (en) 1997-02-05

Family

ID=12171543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025644A Expired - Fee Related JP2579560B2 (en) 1991-01-25 1991-01-25 Oxidation-resistant treatment of carbon fiber reinforced carbon materials

Country Status (1)

Country Link
JP (1) JP2579560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064950A (en) * 2016-06-03 2016-11-02 陕西科技大学 A kind of quickly preparation C/C MoSi2the method of composite
CN106116624A (en) * 2016-06-03 2016-11-16 陕西科技大学 A kind of C/C MoSi2mo5si3siO2the preparation method of composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318352C (en) * 2005-08-11 2007-05-30 中国科学院山西煤炭化学研究所 Preparation method of charcoal material surface gradient coating for resisting oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064950A (en) * 2016-06-03 2016-11-02 陕西科技大学 A kind of quickly preparation C/C MoSi2the method of composite
CN106116624A (en) * 2016-06-03 2016-11-16 陕西科技大学 A kind of C/C MoSi2mo5si3siO2the preparation method of composite
CN106064950B (en) * 2016-06-03 2018-06-22 陕西科技大学 A kind of quick preparation C/C-MoSi2The method of composite material
CN106116624B (en) * 2016-06-03 2018-07-17 陕西科技大学 A kind of C/C-MoSi2-Mo5Si3-SiO2The preparation method of composite material

Also Published As

Publication number Publication date
JPH04243990A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0585513B2 (en)
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP4208217B2 (en) Method for producing oxidation-resistant C / C composite material
JP3682094B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3818606B2 (en) Carbon fiber reinforced carbon composite
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH0524921A (en) Production of oxidation resistance c/c composite
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JPH1059789A (en) Antioxidant treatment of carbon fiber reinforced carbon material
JPH0794353B2 (en) Oxidation resistance treatment method for carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees