JPH0524853B2 - - Google Patents

Info

Publication number
JPH0524853B2
JPH0524853B2 JP20305087A JP20305087A JPH0524853B2 JP H0524853 B2 JPH0524853 B2 JP H0524853B2 JP 20305087 A JP20305087 A JP 20305087A JP 20305087 A JP20305087 A JP 20305087A JP H0524853 B2 JPH0524853 B2 JP H0524853B2
Authority
JP
Japan
Prior art keywords
nitrogen
temperature
composite carbonitride
present
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20305087A
Other languages
Japanese (ja)
Other versions
JPS6445703A (en
Inventor
Kazutaka Isobe
Masaaki Tobioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20305087A priority Critical patent/JPS6445703A/en
Publication of JPS6445703A publication Critical patent/JPS6445703A/en
Publication of JPH0524853B2 publication Critical patent/JPH0524853B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、極めて強靭で高品質な窒素含有サー
メツトの製造に必要とする硬質原料の、Ti,
Ta,Nb,Wの複合炭窒化物の製造法に関する。
本発明による複合炭窒化物を原料とした窒素含有
サーメツトは例えば高速、高送り条件下で使用す
る切削工具等に有効に利用できる。 〔従来の技術〕 Ti,Ta,Nb,W等の炭窒化物をNiやCo等の
金属で結合した窒素含有サーメツトは、従来の窒
素を含有しないサーメツトに比べ、その硬質分散
相が著しく微粒になるため、切削工具としての耐
塑性変形性、耐熱疲労性が大幅に改善されること
が知られている(特公昭49−1364号公報)。 ところで、この種のサーメツトの作製におい
て、真空中での焼結を行うと、サーメツト合金中
に含有される炭窒化物が分解し、いわゆる脱窒現
象が起きて窒素添加の効果が減少したり、また、
その際に生じた窒素ガスが焼結体から充分に抜け
ずに焼結後にポアとして残存し、いずれも窒素含
有サーメツトの工具としての信頼性を著しく低下
させることになる。 そのために、上記特公昭49−1364号公報には、
該サーメツトを真空中ではなく窒素雰囲気中で焼
結することにより、窒化物の分解を抑えるという
技術が開示されている。 さらに、含有窒素量が増すと脱窒量も増すた
め、その抑制のためには雰囲気窒素圧を80Torr
以上必要とするが、焼結時の該サーメツトからの
脱ガスが不充分となる欠点があつた。 その克服法として、サーメツト中に含有される
金属元素の複合炭窒化物を予め製造して、窒素解
離圧を下げ、焼結中の脱窒を極力抑える方法が提
案されている(例えば特公昭56−51201号公報
等)。 さらに、該複合炭窒化物の粉末を微粒にするた
めに、酸化物を出発原料とし、これに炭素粉末を
混合し、窒素気流中にて加熱させるという試みが
なされている(例えば特開昭61−291408号公報
等)。 また、このような従来の複合炭窒化物の製造法
は、開放型ボート送りの連続炉で、窒素を流した
ままの状態にして、ボートを順次送つていく方式
で行なうのが一般的であつた。 〔発明が解決しようとする問題点〕 しかしながら、従来の酸化物と炭素との混合物
に窒素を流して複合炭窒化物を作製するという方
法では、遊離炭素、酸素が残存し、得られた複合
炭窒化物を原料に用いたサーメツトを作製する際
の焼結過程における焼結性を劣化させ、その結
果、工具としての特性である耐摩耗性や靭性を低
下させてしまうという問題があつた。 本発明はこの問題点を解決して、金属酸化物と
炭素粉末を原料として、酸素や遊離炭素の残存を
防止し、しかも微細な粉末で焼結性の良いTi,
Ta,Nb,Wの複合炭窒化物の製造法を提案する
ことを目的とするものである。 〔問題点を解決するための手段及び作用〕 上記の問題点の解決手段を求めて、本発明者ら
は、酸化物を出発原料とした複合炭窒化物の生成
過程について詳細な検討を行つた。 その結果、前記のように窒素を流した状態で開
放型ボート送り方式で、酸化物原料から複合炭窒
化物を作製する従来法は、明らかに製造工程が簡
略化されており、かつ酸化物原料自体が元来微粒
な粉末であるため、生成する複合炭窒化物粉末も
微粒になる点で有効なものであるが、その反応は
非常に複雑であることが判つた。これは、還元反
応に加え、炭化、窒化各反応が起こり、さらに固
溶化反応も生じるためであり、加熱に伴い、まず
各酸化物の還元反応がCOガスの発生として進行
し、引き続き窒化、炭化が重なり合うように起こ
るものであるという知見を得た。 従つてこの知見によれば、酸素を完全除去する
ためには、還元終了温度まで高真空に保ち、その
後窒素を供給するのが理想的手段であるといえ
る。しかし、実際には窒素を流さなければある温
度から粒成長が始まり、当初の目的である微粒化
が充分には図れない。 本発明者らは、これらの状況に鑑みて、酸化物
を原料とし、酸素除去、遊離炭素の残留防止と微
粒化の両方を達成できるような加熱方法、特に雰
囲気条件と温度条件について研究を重ね、TiO2
Ta2O5,Nb2O5,WO3及び炭素粉末を出発原料と
して混合し、該混合物を真空中で加熱した後、
1200℃以上1500℃以下の温度で雰囲気中に窒素供
給を開始し、引き続き該窒素雰囲気中で1500℃以
上2100℃以下の温度に保持して反応せしめること
を特徴とするTi,Ta,Nb,Wの複合炭窒化物の
製造法である本発明に到達したのである。 本発明はTi,Ta,Nb,WをそれぞれTiO2
Ta2O5,Ob2O5,WO3という酸化物で供給し、こ
れに炭素粉末を混合し、これを加熱処理するに際
し、まず還元反応が進行する低温側では真空雰囲
気で加熱し、加熱昇温を続けて1200℃以上1500℃
以下までの範囲において雰囲気への窒素供給を開
始し、引き続きこの窒素雰囲気中で1500℃以上
2100℃以下で加熱することにより炭窒化反応をさ
せてTi,Ta,Nb,Wの複炭窒化物を得る方法で
ある。窒素雰囲気圧力を30Torr以上10気圧以下
とすることが特に好ましい。 このように酸化物を出発原料に用いることで、
微粉末が得られ、また、酸化物の還元反応中は充
分に真空を保持するので、酸素含有量を著しく低
下させることができ、かつ、酸素はCOガスとし
て抜けるため、炭化するために必要な量の炭素以
外に還元のために混合しておいた炭素も、その役
割を果して抜けてゆく。その結果、残留酸素や遊
離炭素の著しく少ない良質な複合炭窒化物が得ら
れる。 従つて、本発明の複合炭窒化物を用いてサーメ
ツトを作製すると、非常に焼結性が良く、切削特
性においても耐摩耗性、靭性、耐熱亀裂性の極め
て優れた、信頼性の高い合金が得られるのであ
る。 以下、本発明における一般的方法と制限理由を
述べる。 1 真空加熱条件 真空度は10-3Torr以上10Torr以下とする。
10-3Torr未満では効果に差異がなく、10Torrを
越えると酸素、遊離炭素を充分に除去することが
できない。真空に保持する時間については特に制
限するところはない。 2 昇温速度 常温(加熱処理開始)から1500℃以上2100℃以
下の最高到達温度までの全温度域で1〜100℃/
分が好ましい。1℃/分より小さいと粒成長する
し、100℃/分より大きいと、酸素、遊離炭素を
充分に除去することができない。 3 窒素供給開始温度 1200℃以上1500℃以下で窒素供給を開始する。
1200℃未満で供給すると、該複合炭窒化物中に酸
素が残留し、1500℃を越えても窒素供給しないで
おくと粒成長をきたし、合金の硬度を低下させる
ことになるので好ましくない。 4 加熱処理中の窒素雰囲気圧力 30Torr以上10気圧以下とする。30Torr未満で
は窒素供給による微細化の効果が得られず、また
10気圧を越えてもその効果に差異はないに加え、
設備的に無駄が生じるので好ましくない。 5 反応温度 窒素雰囲気中で1500℃以上2100℃以下で保持し
反応させる。1500℃未満では固溶が不充分で好ま
しくなく、一方、2100℃を越えると粒生長が著し
くなるので好ましくない。 6 最高到達温度での保持時間 10分以上5時間以下が好ましい。10分未満では
還元反応が不充分であり、5時間を越えると粒成
長をきたすので好ましくない。 〔実施例〕 以下、実施例により本発明を具体的に説明す
る。各実施例、比較例において、真空度は炉から
排気管に20cm入つた位置で測定した。 実施例 1 TiO2粉末、Ta2O5粉末、Nb2O5粉末,WO3
末とC粉末を混合して水練り造粒し、1400℃まで
0.1Torrの真空中で加熱の後、PN2=400Torrの窒
素を導入し、1650℃で1時間保持し、本発明の複
合炭窒化物Aを得た。なお加熱処理開始から1650
℃までの昇温速度は10℃/分で行なつた。 比較として、同様に造粒したものをPN2
400Torrの窒素雰囲気下で1650℃まで10℃/分の
昇温速度で加熱し、この条件で1時間保持した比
較品Bを得た。 A,B各試料の分析結果を第1表に示す。第1
表から、本発明品Aと比較品Bは粒度では殆んで
差がないものの、本発明品Aでは遊離炭素及び酸
素量が著しく減少していることが明らかに判る。 得られた複合炭窒化物A,BにそれぞれNi,
Coを8重量ずつ添加して、サーメツト合金を作
製すべく、1420℃で1時間焼結した。得られた合
金は、本発明品Aを原料としたものには巣が殆ん
ど存在しなかつたのに対し、比較品Bを原料とし
たものはA06タイプ(超硬工具協会規格CIS
006B−1983)の巣が認められた。 実施例 2 Ti:Ta:Nb:W=0.82:0.06:0.06:0.06、
C:N=0.56:0.44、非金属成分/金属成分の比
が1.0となるように、第1表のように金属又は酸
化物、炭化物又は炭窒化物を混合し、各試料につ
いて1350℃まで0.2Torrの真空加熱後、1350℃か
らPN2=1気圧で窒素を導入し、この窒素雰囲気
下1650℃で2時間保持した。加熱処理開始から
1650℃までの昇温は12℃/分で行なつた。得られ
た本発明品Cと比較品D,Eの複合炭窒化物につ
いての分析結果を第2表に示す。 この結果、本発明品Cは、酸化物原料を用いず
金属粉を用いた比較品Dに比べ粒度が非常に小さ
く遊離炭素量酸素量共に減少していること、また
炭化物、炭窒化物を原料とする比較品Eに比べて
も酸素量は遊離炭素ともに少なく、粒度ははるか
に小さいことが判る。すなわち本発明品が最も微
細であることが認められた。
[Industrial Field of Application] The present invention is directed to hard raw materials such as Ti,
This article relates to a method for producing a composite carbonitride of Ta, Nb, and W.
The nitrogen-containing cermet made from composite carbonitride according to the present invention can be effectively used, for example, in cutting tools used under high-speed, high-feed conditions. [Prior art] Nitrogen-containing cermets, which are made by bonding carbonitrides such as Ti, Ta, Nb, and W with metals such as Ni and Co, have a hard dispersed phase that is significantly finer than that of conventional cermets that do not contain nitrogen. Therefore, it is known that the plastic deformation resistance and thermal fatigue resistance of cutting tools are significantly improved (Japanese Patent Publication No. 1364/1983). By the way, when sintering in a vacuum in the production of this type of cermet, the carbonitrides contained in the cermet alloy decompose, a so-called denitrification phenomenon occurs, and the effect of nitrogen addition decreases. Also,
The nitrogen gas generated at this time does not escape sufficiently from the sintered body and remains as pores after sintering, which significantly reduces the reliability of the nitrogen-containing cermet as a tool. For this reason, the above-mentioned Japanese Patent Publication No. 1364-1984 states that
A technique has been disclosed in which the decomposition of nitrides is suppressed by sintering the cermet in a nitrogen atmosphere rather than in a vacuum. Furthermore, as the amount of nitrogen content increases, the amount of denitrification also increases, so to suppress this, it is necessary to increase the atmospheric nitrogen pressure to 80 Torr.
Although the above is necessary, there is a drawback that degassing from the cermet during sintering is insufficient. As a method to overcome this problem, a method has been proposed in which a composite carbonitride of the metal elements contained in the cermet is produced in advance to lower the nitrogen dissociation pressure and to minimize denitrification during sintering (for example, −51201, etc.). Furthermore, in order to make the composite carbonitride powder into fine particles, attempts have been made to use an oxide as a starting material, mix carbon powder with it, and heat it in a nitrogen stream (for example, in JP-A-61 −291408, etc.). In addition, conventional methods for producing composite carbonitrides are generally carried out in an open boat-fed continuous furnace, in which the boats are fed one after another while nitrogen is kept flowing. Ta. [Problems to be solved by the invention] However, in the conventional method of producing composite carbonitride by flowing nitrogen through a mixture of oxide and carbon, free carbon and oxygen remain, and the resulting composite carbon There has been a problem in that the sinterability in the sintering process when producing cermets using nitrides as a raw material deteriorates, and as a result, the wear resistance and toughness, which are characteristics of tools, decrease. The present invention solves this problem and uses metal oxide and carbon powder as raw materials to prevent oxygen and free carbon from remaining.
The purpose of this study is to propose a method for producing composite carbonitrides of Ta, Nb, and W. [Means and effects for solving the problems] In search of a means for solving the above problems, the present inventors conducted a detailed study on the production process of composite carbonitrides using oxides as starting materials. . As a result, the conventional method of producing composite carbonitride from oxide raw materials using the open boat feeding method under flowing nitrogen as described above clearly simplifies the manufacturing process and Since the composite carbonitride powder itself is originally a fine powder, it is effective in that the resulting composite carbonitride powder also becomes fine particles, but the reaction was found to be very complicated. This is because, in addition to the reduction reaction, carbonization and nitridation reactions occur, as well as a solid solution reaction. With heating, the reduction reaction of each oxide progresses as CO gas is generated, followed by nitridation and carbonization. We obtained the knowledge that these events occur in a manner that overlaps with each other. Therefore, according to this knowledge, in order to completely remove oxygen, it can be said that the ideal means is to maintain a high vacuum until the reduction end temperature and then supply nitrogen. However, in reality, unless nitrogen is flowed, grain growth begins at a certain temperature, making it impossible to achieve sufficient atomization, which is the original objective. In view of these circumstances, the present inventors have conducted repeated research on a heating method that uses oxides as raw materials and can achieve both oxygen removal, prevention of residual free carbon, and atomization, particularly on atmospheric and temperature conditions. , TiO 2 ,
After mixing Ta 2 O 5 , Nb 2 O 5 , WO 3 and carbon powder as starting materials and heating the mixture in vacuum,
Ti, Ta, Nb, W, characterized in that nitrogen supply is started in the atmosphere at a temperature of 1200°C or more and 1500°C or less, and then the reaction is carried out while being maintained at a temperature of 1500°C or more and 2100°C or less in the nitrogen atmosphere. The present invention, which is a method for producing composite carbonitride, has been achieved. The present invention replaces Ti, Ta, Nb, and W with TiO 2 and
Oxides such as Ta 2 O 5 , Ob 2 O 5 , and WO 3 are supplied, and carbon powder is mixed with this, and when this is heat-treated, it is first heated in a vacuum atmosphere on the low temperature side where the reduction reaction proceeds, and then heated. Continue to raise the temperature to 1200℃ or higher to 1500℃
Start supplying nitrogen to the atmosphere in the range below, and continue to heat the temperature to 1500℃ or higher in this nitrogen atmosphere.
This is a method in which a carbonitriding reaction is performed by heating at 2100° C. or lower to obtain a double carbonitride of Ti, Ta, Nb, and W. It is particularly preferable that the nitrogen atmosphere pressure be 30 Torr or more and 10 atmospheres or less. By using oxides as starting materials in this way,
A fine powder is obtained, and since a sufficient vacuum is maintained during the oxide reduction reaction, the oxygen content can be significantly reduced, and oxygen is released as CO gas, which is necessary for carbonization. In addition to the amount of carbon, the carbon mixed in for reduction also plays its role and escapes. As a result, a high-quality composite carbonitride containing significantly less residual oxygen and free carbon can be obtained. Therefore, when a cermet is made using the composite carbonitride of the present invention, a highly reliable alloy with extremely good sinterability and excellent cutting properties such as wear resistance, toughness, and heat cracking resistance can be obtained. You can get it. The general method and reasons for limitations in the present invention will be described below. 1 Vacuum heating conditions The degree of vacuum should be 10 -3 Torr or more and 10 Torr or less.
At less than 10 -3 Torr, there is no difference in effectiveness, and at more than 10 Torr, oxygen and free carbon cannot be removed sufficiently. There is no particular restriction on the time for holding in vacuum. 2 Temperature increase rate: 1 to 100℃/in the entire temperature range from room temperature (start of heat treatment) to the maximum temperature of 1500℃ or higher and 2100℃ or lower.
Minutes are preferred. If it is less than 1°C/min, grains will grow, and if it is more than 100°C/min, oxygen and free carbon cannot be removed sufficiently. 3 Nitrogen supply start temperature Start nitrogen supply at a temperature of 1200°C or higher and 1500°C or lower.
If nitrogen is supplied at a temperature lower than 1200°C, oxygen will remain in the composite carbonitride, and if nitrogen is not supplied even if the temperature exceeds 1500°C, grain growth will occur and the hardness of the alloy will decrease, which is not preferable. 4 Nitrogen atmosphere pressure during heat treatment: 30 Torr or more and 10 atmospheres or less. If it is less than 30Torr, the effect of refinement by nitrogen supply cannot be obtained, and
In addition to the fact that there is no difference in the effect even if the pressure exceeds 10 atmospheres,
This is not preferable because it causes waste in terms of equipment. 5 Reaction temperature The reaction is maintained at 1500°C or higher and 2100°C or lower in a nitrogen atmosphere. If it is less than 1,500°C, solid solution will be insufficient, which is not preferable, while if it exceeds 2,100°C, grain growth will become significant, which is not preferable. 6 Holding time at maximum temperature Preferably 10 minutes or more and 5 hours or less. If the reaction time is less than 10 minutes, the reduction reaction will be insufficient, and if it exceeds 5 hours, grain growth will occur, which is not preferable. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. In each Example and Comparative Example, the degree of vacuum was measured at a position 20 cm into the exhaust pipe from the furnace. Example 1 TiO 2 powder, Ta 2 O 5 powder, Nb 2 O 5 powder, WO 3 powder and C powder were mixed and granulated by water kneading, and heated to 1400°C.
After heating in a vacuum of 0.1 Torr, nitrogen was introduced at P N2 =400 Torr and maintained at 1650° C. for 1 hour to obtain composite carbonitride A of the present invention. Note that 1650 minutes have passed since the start of heat treatment.
The rate of temperature increase to °C was 10 °C/min. For comparison, the similarly granulated product was P N2 =
Comparative product B was obtained by heating to 1650° C. at a heating rate of 10° C./min in a nitrogen atmosphere of 400 Torr and maintaining this condition for 1 hour. The analysis results for each sample A and B are shown in Table 1. 1st
From the table, it is clearly seen that although there is almost no difference in particle size between product A of the present invention and comparative product B, the amount of free carbon and oxygen is significantly reduced in product A of the present invention. Ni and Ni were added to the obtained composite carbonitrides A and B, respectively.
Co was added in 8 weight portions and sintered at 1420° C. for 1 hour to produce a cermet alloy. The obtained alloy had almost no cavities in the alloy made from product A of the present invention, whereas the alloy made from comparative product B had A06 type (Cemented Carbide Tool Association standard CIS).
006B-1983) nests were observed. Example 2 Ti:Ta:Nb:W=0.82:0.06:0.06:0.06,
Mix metals, oxides, carbides, or carbonitrides as shown in Table 1 so that C:N=0.56:0.44, and the ratio of nonmetallic components/metallic components is 1.0.0.2 for each sample up to 1350℃. After vacuum heating at Torr, nitrogen was introduced from 1350°C at P N2 =1 atm, and the temperature was maintained at 1650°C for 2 hours under this nitrogen atmosphere. From the start of heat treatment
The temperature was increased to 1650°C at a rate of 12°C/min. Table 2 shows the analysis results for the composite carbonitrides of product C of the present invention and comparative products D and E. As a result, the product C of the present invention has a much smaller particle size than the comparative product D, which uses metal powder without using an oxide raw material, and has a reduced free carbon and oxygen content. It can be seen that compared to Comparative Product E, both the amount of oxygen and free carbon is lower, and the particle size is much smaller. In other words, the product of the present invention was found to be the finest.

【表】【table】

【表】 実施例 3 TiO2,Ta2O5,Nb2O5,WO3,Cの各粉末を
第3表の如く配合し、加熱、還元、炭窒化処理を
施した。このときの昇温速度は12℃/分、真空度
は0.1〜0.5Torr、PN2は全て1気圧とした。得ら
れた本発明品F〜I及び比較品J〜Kの複合炭窒
化物の分析結果も合せて第3表に示す。
[Table] Example 3 Powders of TiO 2 , Ta 2 O 5 , Nb 2 O 5 , WO 3 , and C were blended as shown in Table 3, and subjected to heating, reduction, and carbonitriding treatments. At this time, the temperature increase rate was 12° C./min, the degree of vacuum was 0.1 to 0.5 Torr, and the pressure of P N2 was all 1 atm. Table 3 also shows the analysis results of the composite carbonitrides of the products F to I of the present invention and comparative products J to K.

【表】 実施例 4 実施例1〜3で得た複合炭窒化物A,B,E,
H,M,Nを原料として用い、これ等にNi,Co
を10重量%ずつ添加し、混合してプレス後、1450
℃、PN2=5Torrの窒素雰囲気下で1時間焼結し
てサーメツト合金を作製した。得られた合金をそ
れぞれP,Q,R,S,T,Uとする。各合金の
硬度、抗折力を第4表に示す。
[Table] Example 4 Composite carbonitrides A, B, E, obtained in Examples 1 to 3,
H, M, and N are used as raw materials, and Ni and Co are added to these.
Added 10% by weight, mixed and pressed, 1450
A cermet alloy was produced by sintering for 1 hour in a nitrogen atmosphere at ℃ and P N2 =5 Torr. The obtained alloys are designated as P, Q, R, S, T, and U, respectively. Table 4 shows the hardness and transverse rupture strength of each alloy.

【表】【table】

【表】 さらに原料E,Nを用いて、硬度を向上させる
べく、Ni,Coの添加量を7重量%ずつにして、
1450℃、PN2=10Torrで1時間焼結し、合金V,
Wを得た。これ等の合金の硬度、抗折力を第5表
に示すが、抗折力が著しく低下した。
[Table] Furthermore, using raw materials E and N, in order to improve the hardness, the amounts of Ni and Co added were changed to 7% by weight each.
Alloy V,
I got a W. The hardness and transverse rupture strength of these alloys are shown in Table 5, and the transverse rupture strength was significantly reduced.

【表】 次に上記P〜Wの合金について下記の条件で切
削試験を行つた。試験結果を第6表に示すが、本
発明の複合炭窒化物を原料とした合金がフランク
摩耗量、断続切削での欠損数、フライス断続切削
での熱亀裂発生本数のいずれの項目においても優
れていることが判る。 条件1 連続切削 被削材 SCM440(HB=280) 切削速度 200m/min 送 り 0.30mm/rev 切り込み 1.5mm チツプ形状 SNGN120408 ホルダー FN11R−44A 切削時間 7分間 条件2 断続切削 被削材 SCM435(HB=250)4溝材 切削速度 100m/min 送 り 0.28mm/rev 切り込み 2.0mm チツプ形状 SNGN120408 ホルダー FN11R−44A 切削時間 欠損まで。最大2分間。 条件3 フライス断続切削 被削材 SCM435(HB250) 70mm×20mmの角材 切削速度 150m/min 送 り 0.15mm/刃 切り込み 3.0mm チツプ形状 SNGN120408 ホルダー DNF4160R 切削時間 10分間
[Table] Next, cutting tests were conducted on the alloys P to W above under the following conditions. The test results are shown in Table 6, and the alloy made from the composite carbonitride of the present invention was superior in all items: flank wear amount, number of chips in interrupted cuts, and number of thermal cracks in interrupted milling cuts. It can be seen that Condition 1 Continuous cutting Work material SCM440 (H B = 280) Cutting speed 200 m/min Feed 0.30 mm/rev Depth of cut 1.5 mm Chip shape SNGN120408 Holder FN11R-44A Cutting time 7 minutes Condition 2 Intermittent cutting Work material SCM435 (H B =250) 4-groove material Cutting speed 100m/min Feed 0.28mm/rev Depth of cut 2.0mm Chip shape SNGN120408 Holder FN11R-44A Cutting time Until chipping. Maximum of 2 minutes. Condition 3 Intermittent milling Workpiece material SCM435 (H B 250) 70mm x 20mm square material Cutting speed 150m/min Feed 0.15mm/blade Depth of cut 3.0mm Chip shape SNGN120408 Holder DNF4160R Cutting time 10 minutes

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の複合炭窒化物の
製造法は、微細な粉末で、かつ酸素や遊離炭素の
著しく少ない良質なTi,Ta,Nb,Wの複合炭窒
化物が得られるという効果がある。さらに本発明
によるTi,Ta,Nb,Wの複合炭窒化物の粉末を
用いてサーメツトを作製すると非常に焼結性が良
く、切削工具特性においても耐摩耗性、靭性、耐
熱亀裂性に極めて優れた合金になるという効果が
ある。
As explained above, the method for producing a composite carbonitride of the present invention has the advantage that it is possible to obtain a fine powder composite carbonitride of Ti, Ta, Nb, and W of high quality with significantly less oxygen and free carbon. There is. Furthermore, when a cermet is made using the composite carbonitride powder of Ti, Ta, Nb, and W according to the present invention, it has very good sinterability, and has excellent cutting tool properties such as wear resistance, toughness, and heat cracking resistance. This has the effect of forming a solid alloy.

Claims (1)

【特許請求の範囲】 1 TiO2,Ta2O5,Nb2O5,WO3及び炭素粉末
を出発原料として混合し、該混合物を真空中で加
熱した後、1200℃以上1500℃以下の温度で雰囲気
中に窒素供給を開始し、引き続き該窒素雰囲気中
で1500℃以上2100℃以下の温度に保持して反応せ
しめることを特徴とするTi,Ta,Nb,Wの複合
炭窒化物の製造法。 2 加熱処理中の窒素雰囲気圧力を30Torr以上
10気圧以下とする特許請求の範囲第1項に記載さ
れるTi,Ta,Nb,Wの複合炭窒化物の製造法。
[Claims] 1. Mix TiO 2 , Ta 2 O 5 , Nb 2 O 5 , WO 3 and carbon powder as starting materials, heat the mixture in vacuum, and then heat the mixture to a temperature of 1200°C to 1500°C. A method for producing a composite carbonitride of Ti, Ta, Nb, and W, characterized in that nitrogen supply is started in the atmosphere, and the reaction is continued by maintaining the temperature in the nitrogen atmosphere at a temperature of 1500°C or higher and 2100°C or lower. . 2.Nitrogen atmosphere pressure during heat treatment is 30Torr or more.
A method for producing a composite carbonitride of Ti, Ta, Nb, and W as set forth in claim 1, wherein the pressure is 10 atmospheres or less.
JP20305087A 1987-08-17 1987-08-17 Production of composite carbon nitride Granted JPS6445703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20305087A JPS6445703A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20305087A JPS6445703A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Publications (2)

Publication Number Publication Date
JPS6445703A JPS6445703A (en) 1989-02-20
JPH0524853B2 true JPH0524853B2 (en) 1993-04-09

Family

ID=16467512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20305087A Granted JPS6445703A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Country Status (1)

Country Link
JP (1) JPS6445703A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349736B (en) * 2015-11-02 2022-06-03 住友电气工业株式会社 Composite carbonitride powder and method for producing same

Also Published As

Publication number Publication date
JPS6445703A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
EP0438916B2 (en) Coated cemented carbides and processes for the production of same
US4911989A (en) Surface-coated cemented carbide and a process for the production of the same
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
EP2177639A1 (en) Titanium-base cermet, coated cermet, and cutting tool
JPH08281503A (en) Cutting insert and production thereof
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH07100603B2 (en) Composite carbonitride manufacturing method
JPH0524851B2 (en)
JPH0475847B2 (en)
JPH0524853B2 (en)
JPH0524855B2 (en)
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
JPH0513084B2 (en)
JPH0524852B2 (en)
JPH0524854B2 (en)
JPS644988B2 (en)
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JPH07108768B2 (en) Composite carbonitride manufacturing method
JPS644989B2 (en)
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPH0215622B2 (en)
JPH068009A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JPS6312135B2 (en)
JPS62288169A (en) Manufacture of titanium-containing composite carbonitride