JPH05248387A - Method and device for exhausting using turbo molecular pump - Google Patents

Method and device for exhausting using turbo molecular pump

Info

Publication number
JPH05248387A
JPH05248387A JP5034592A JP5034592A JPH05248387A JP H05248387 A JPH05248387 A JP H05248387A JP 5034592 A JP5034592 A JP 5034592A JP 5034592 A JP5034592 A JP 5034592A JP H05248387 A JPH05248387 A JP H05248387A
Authority
JP
Japan
Prior art keywords
chamber
exhaust
molecular pump
turbo molecular
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5034592A
Other languages
Japanese (ja)
Other versions
JP3424940B2 (en
Inventor
Yasunari Mukai
康成 向
Shogo Tateyama
省吾 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP05034592A priority Critical patent/JP3424940B2/en
Publication of JPH05248387A publication Critical patent/JPH05248387A/en
Application granted granted Critical
Publication of JP3424940B2 publication Critical patent/JP3424940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To shorten the time required for exhausting by maintaining the exhausting performance of a turbo molecular pump from initial exhausting to normal exhausting. CONSTITUTION:The intake piping 3 of a turbo molecular pump 4 connected to a chamber 1 from which to expel exhaust has an expandable retreat chamber 8 provided thereto via a partition means 7, the chamber 8 having an indoor heat exchange means 9 which can be cooled. During the initial stage of exhausting performed by the turbo molecular pump 4, the partition means 7 is opened and steam is collected through icing on the heat exchange means 9 which has been inserted into the intake piping 3 by an advance/retreat means 11 and cooled. During normal exhausting after the initial exhausting, the heat exchange means 9 is retreated into the retreat chamber 8 by the advance/retreat means 11 and then the partition means 7 is closed so that the means 9 is sealed therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造装置等の被排
気室内をターボ分子ポンプにより排気する排気方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust method and apparatus for exhausting an exhaust chamber such as a semiconductor manufacturing apparatus by a turbo molecular pump.

【0002】[0002]

【従来の技術】図2は従来方法及び装置の第1例の構成
を示す説明図である。図2において、ターボ分子ポンプ
4の吸気口はゲートバルブ2を介して被排気室1に接続
されており、該ターボ分子ポンプ4の排気口にはバルブ
5を介して油回転ポンプ6が接続されている。
2. Description of the Related Art FIG. 2 is an explanatory diagram showing a configuration of a first example of a conventional method and apparatus. In FIG. 2, an intake port of the turbo molecular pump 4 is connected to the exhaust chamber 1 via a gate valve 2, and an oil rotary pump 6 is connected to the exhaust port of the turbo molecular pump 4 via a valve 5. ing.

【0003】上記の構成において、被排気室1をターボ
分子ポンプ4により排気する場合、ゲートバルブ2及び
バルブ5を開放し、ターボ分子ポンプ4が起動可能とな
る圧力以下に被排気室1内を油回転ポンプ6により排気
する。その後、油回転ポンプ6は運転状態のまま、ター
ボ分子ポンプ4を起動し、被排気室1をターボ分子ポン
プ4により排気する。
In the above structure, when the exhausted chamber 1 is exhausted by the turbo molecular pump 4, the gate valve 2 and the valve 5 are opened so that the exhausted chamber 1 is kept below the pressure at which the turbo molecular pump 4 can be activated. The oil rotary pump 6 exhausts. After that, the oil rotary pump 6 is activated, the turbo molecular pump 4 is started, and the exhaust chamber 1 is exhausted by the turbo molecular pump 4.

【0004】図3は従来方法及び装置の第2例(特開平
2−5792号)の構成を示す説明図である。この第2
例は図2の第1例においてターボ分子ポンプ4の吸気口
22内に熱交換器9が設けられ、該熱交換器9は冷媒配
管23を介して冷凍機20に接続されている。
FIG. 3 is an explanatory diagram showing the configuration of a second example of a conventional method and apparatus (Japanese Patent Laid-Open No. 25792). This second
As an example, in the first example of FIG. 2, a heat exchanger 9 is provided in the intake port 22 of the turbo molecular pump 4, and the heat exchanger 9 is connected to the refrigerator 20 via the refrigerant pipe 23.

【0005】被排気室1をターボ分子ポンプ4により排
気する操作手順は図2に示す第1例とほとんど同一であ
るが、ターボ分子ポンプ4の運転中に熱交換器9と冷凍
機20との間を冷媒配管23を通って冷媒が循環し、該
冷媒が熱交換機9を冷却する点が異なる。
The operation procedure for exhausting the exhaust chamber 1 by the turbo molecular pump 4 is almost the same as that of the first example shown in FIG. 2, but the heat exchanger 9 and the refrigerator 20 are operated while the turbo molecular pump 4 is in operation. The difference lies in that the refrigerant circulates through the refrigerant pipe 23 and the refrigerant cools the heat exchanger 9.

【0006】冷却された熱交換器9は被排気室1からの
排気ガス中に含まれる水蒸気を氷結捕集する。一方、熱
交換器9に氷結捕集された水蒸気の量がある一定値を越
えると、熱交換器9に氷結捕集された水蒸気を蒸発させ
る再生工程が必要となる。
The cooled heat exchanger 9 freezes and collects the water vapor contained in the exhaust gas from the exhaust chamber 1. On the other hand, when the amount of water vapor collected in the heat exchanger 9 exceeds a certain value, a regeneration process for evaporating the water vapor collected in the heat exchanger 9 is required.

【0007】この再生工程は、ターボ分子ポンプ4を運
転したままでゲートバルブ2を閉鎖し、熱交換器9を適
当な手段で加熱することにより行われている。
This regeneration step is performed by closing the gate valve 2 and heating the heat exchanger 9 by an appropriate means while the turbo molecular pump 4 is operating.

【0008】[0008]

【発明が解決しようとする課題】半導体製造装置等の被
排気室1が大気開放され、大気が導入された後の被排気
室1内を真空ポンプにより排気する場合、被排気室1内
の圧力が10-7Pa 程度までは排気される残留ガスの大
部分は水蒸気である。
When the exhaust chamber 1 of a semiconductor manufacturing apparatus or the like is opened to the atmosphere and the exhaust chamber 1 after the atmosphere is introduced is exhausted by a vacuum pump, the pressure in the exhaust chamber 1 is reduced. Up to 10 -7 Pa, most of the residual gas exhausted is water vapor.

【0009】図2に示す従来の排気方法及び装置では、
ターボ分子ポンプ4の特性上、水蒸気に対する排気性能
が十分でないため、被排気室1を所定の圧力に下げる初
期排気に時間がかかるという課題がある。
In the conventional exhaust method and apparatus shown in FIG. 2,
Due to the characteristics of the turbo molecular pump 4, the exhaust performance for water vapor is not sufficient, so that there is a problem that it takes time for initial exhaust to lower the exhaust chamber 1 to a predetermined pressure.

【0010】一方、図3に示す従来の排気方法及び装置
では、ターボ分子ポンプ4の吸気口22内に設けられた
熱交換器9に水蒸気が氷結捕集されるため、初期排気に
要する時間は短縮される。しかし、初期排気後に半導体
製造装置等において使用される半導体製造用ガス( SiH
4 ,HF,H2 ,N2 ,Ar 等)を排気する通常排気時
にはこのような半導体製造用ガスは熱交換器9にはほと
んど氷結捕集されず、またターボ分子ポンプ4の吸気口
22内に設けられている。熱交換器9のためにターボ分
子ポンプ4の動翼ロータ部と静翼ステータ部に流入する
ガス分子の通過確率が小さくなり、即ちターボ分子ポン
プ4の吸気口22部のコンダクタンスが小さくなり、半
導体製造用ガスに対する排気性能が低下する。
On the other hand, in the conventional exhaust method and apparatus shown in FIG. 3, the steam is frozen and collected in the heat exchanger 9 provided in the intake port 22 of the turbo-molecular pump 4, so that the time required for the initial exhaust is reduced. Shortened. However, after the initial exhaust, the semiconductor manufacturing gas (SiH
(4 , HF, H 2 , N 2 , Ar, etc.) is exhausted during normal exhaust such that semiconductor manufacturing gas is hardly collected by the heat exchanger 9 in the intake port 22 of the turbo molecular pump 4. It is provided in. Due to the heat exchanger 9, the probability of passage of gas molecules flowing into the rotor blade portion and the stator blade portion of the turbo molecular pump 4 is reduced, that is, the conductance of the intake port 22 of the turbo molecular pump 4 is reduced, and the semiconductor Exhaust performance for manufacturing gas is reduced.

【0011】また、初期排気後に半導体製造用ガスを排
気しない場合でも、排気される残留ガス中の水蒸気が減
少し、水蒸気以外の他のガス成分の残留ガス中の比率が
高くなってくると、前述と同様な理由により水蒸気以外
の他のガス成分に対するターボ分子ポンプ4の排気性能
は低下するため、全体としてのターボ分子ポンプ4の排
気性能は低下する。
Even if the semiconductor manufacturing gas is not exhausted after the initial exhaust, if the water vapor in the exhausted residual gas decreases and the ratio of other gas components other than water vapor in the residual gas increases, For the same reason as described above, the exhaust performance of the turbo molecular pump 4 for gas components other than water vapor deteriorates, so the exhaust performance of the turbo molecular pump 4 as a whole deteriorates.

【0012】また、熱交換器9に氷結捕集された水蒸気
を蒸発させる再生工程においては、被排気室1とターボ
分子ポンプ4との間でターボ分子ポンプ吸気口22の上
流側に設けられているゲートバルブ2を閉鎖する必要が
あるため、再生工程中は被排気室1を排気できなくなる
等の課題がある。
Further, in the regenerating step of evaporating the water vapor collected in the heat exchanger 9 due to freezing, it is provided between the exhaust chamber 1 and the turbo molecular pump 4 on the upstream side of the turbo molecular pump intake port 22. Since it is necessary to close the existing gate valve 2, there is a problem that the exhaust chamber 1 cannot be exhausted during the regeneration process.

【0013】[0013]

【課題を解決するための手段】本発明方法は上記の課題
を解決するため、図1に示すように被排気室1に連結さ
れたターボ分子ポンプ4の吸気配管3に、仕切り手段7
を介して室内に冷却可能な熱交換手段9を有する伸縮可
能な退避室8を設け、ターボ分子ポンプ4による初期排
気時に仕切り手段7を開き吸気配管3内に熱交換手段9
を進退手段11により挿入して冷却された熱交換手段9
に水蒸気を氷結捕集し、初期排気後の通常排気時には退
避室8内に熱交換手段9を進退手段11により退け、仕
切り手段7を閉じて封じ込めることを特徴とする。
In order to solve the above-mentioned problems, the method of the present invention is provided with a partition means 7 in the intake pipe 3 of the turbo-molecular pump 4 connected to the exhaust chamber 1 as shown in FIG.
A retractable retreat chamber 8 having a heat exchange means 9 capable of cooling is provided inside the chamber, and the partition means 7 is opened at the time of initial exhaustion by the turbo molecular pump 4 to open the heat exchange means 9 in the intake pipe 3.
And the heat exchange means 9 cooled by inserting the
It is characterized in that water vapor is collected by ice, and during normal exhaust after the initial exhaust, the heat exchanging means 9 is retracted into the evacuation chamber 8 by the advancing / retreating means 11, and the partitioning means 7 is closed and contained.

【0014】又、本発明装置は、同じ課題を解決するた
め図1に示すように被排気室1に連結されたターボ分子
ポンプ4の吸気配管3に、室内に冷却可能な熱交換手段
9を有する伸縮可能な退避室8を設け、退避室8と吸気
配管3間に、ターボ分子ポンプ4による初期排気時及び
初期排気後の通常排気時にそれぞれ開,閉される仕切り
手段7を設け、退避室8には吸気配管3内と退避室8内
にそれぞれ熱交換手段9を挿入,退避する進退手段11
を設けてなる。
In order to solve the same problem, the apparatus of the present invention is provided with a heat exchange means 9 capable of cooling the room in the intake pipe 3 of the turbo molecular pump 4 connected to the exhausted room 1 as shown in FIG. A retractable evacuation chamber 8 is provided, and partition means 7 is provided between the evacuation chamber 8 and the intake pipe 3 for opening and closing during initial exhaust by the turbo molecular pump 4 and during normal exhaust after initial exhaust. At 8 is an advancing / retreating means 11 for inserting and retracting heat exchange means 9 in the intake pipe 3 and in the evacuation chamber 8, respectively.
Is provided.

【0015】[0015]

【作用】ターボ分子ポンプ4による初期排気時に仕切り
手段7を開き、吸気配管3内に熱交換手段9を進退手段
11により挿入すると、初期排気時の残留ガス中に高い
比率で含まれている水蒸気は冷却された熱交換手段9に
選択時に氷結捕集される。
When the partition means 7 is opened during the initial evacuation by the turbo molecular pump 4 and the heat exchange means 9 is inserted into the intake pipe 3 by the advancing / retreating means 11, the water vapor contained in the residual gas during the initial evacuation at a high ratio. Is collected by freezing in the cooled heat exchange means 9 at the time of selection.

【0016】初期排気後の通常排気時には熱交換手段9
は進退手段11により退避室8内に退避され、仕切り手
段7を閉じることにより熱交換手段9は退避室8内に封
じ込まれる。そして熱交換手段9の冷却を中止すること
により熱交換手段9に氷結された水蒸気は蒸発されるこ
とになる。
During the normal exhaust after the initial exhaust, the heat exchange means 9
Is retracted into the evacuation chamber 8 by the advancing / retreating means 11, and the heat exchanging means 9 is enclosed in the evacuation chamber 8 by closing the partitioning means 7. Then, by stopping the cooling of the heat exchange means 9, the water vapor frozen in the heat exchange means 9 is evaporated.

【0017】かくしてターボ分子ポンプ4による初期排
気時には残留ガス中に含まれている水蒸気を、吸気配管
3内に挿入した熱交換手段9に氷結捕集し、通常排気時
には水蒸気を氷結捕集した熱交換手段9を退避室8内に
退けて封じ込めるため、熱交換手段9によるターボ分子
ポンプ4の吸気配管3のコンダクタンスの低下はなくな
る結果、初期排気時から通常排気時に至るまで、ターボ
分子ポンプ4の全運転期間中の排気性能を低下させるこ
となく維持できることになる。
Thus, during the initial evacuation by the turbo molecular pump 4, the water vapor contained in the residual gas is iced and collected by the heat exchange means 9 inserted into the intake pipe 3, and during the normal evacuation, the water vapor is collected by the ice. Since the exchanging means 9 is retracted and contained in the evacuation chamber 8, the heat exchanging means 9 does not lower the conductance of the intake pipe 3 of the turbo molecular pump 4. As a result, the turbo molecular pump 4 can be operated from the initial exhaust to the normal exhaust. The exhaust performance during the entire operation period can be maintained without deterioration.

【0018】また、熱交換手段9を退避室8に封じ込め
た状態で熱交換手段9を再生できるため、被排気室1の
排気が再生中に中断することなく連続して行なえること
になり、排気に要する時間を短縮できることになる。
Further, since the heat exchanging means 9 can be regenerated with the heat exchanging means 9 being contained in the evacuation chamber 8, the exhaust of the exhausted chamber 1 can be continuously performed without interruption during regeneration, The time required for exhaust can be shortened.

【0019】さらに、被排気室1の水蒸気の量あるいは
水蒸気以外のガスと水蒸気との相対関係により、熱交換
手段9のターボ分子ポンプ4の吸気配管3内への挿入お
よび熱交換手段9の退避室8への退避、封じ込めの制御
が自動可能となるため、被排気室1内の水蒸気の量に応
じてターボ分子ポンプ4の排気性能を十分に発揮させる
ことが可能となる。
Further, depending on the amount of water vapor in the exhaust chamber 1 or the relative relationship between water vapor and a gas other than water vapor, the heat exchange means 9 is inserted into the intake pipe 3 of the turbo molecular pump 4 and the heat exchange means 9 is retracted. Since it is possible to automatically control the evacuation and the containment in the chamber 8, the exhaust performance of the turbo molecular pump 4 can be sufficiently exerted according to the amount of water vapor in the exhausted chamber 1.

【0020】[0020]

【実施例】図1は本発明方法及び装置の1実施例の構成
を示す説明図である。図1において、半導体製造装置等
の被排気室1の排気口にはゲートバルブ2が配置され、
ゲートバルブ2の下流側にはターボ分子ポンプ4の吸気
配管3とターボ分子ポンプ4が配置されている。ターボ
分子ポンプ4の排気口にはバルブ5を介して油回転ポン
プ6が配管により接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing the construction of one embodiment of the method and apparatus of the present invention. In FIG. 1, a gate valve 2 is arranged at an exhaust port of an exhausted chamber 1 of a semiconductor manufacturing apparatus or the like,
An intake pipe 3 of the turbo molecular pump 4 and the turbo molecular pump 4 are arranged on the downstream side of the gate valve 2. An oil rotary pump 6 is connected to the exhaust port of the turbo molecular pump 4 through a valve 5 by a pipe.

【0021】一方、T字状の吸気配管3の側枝配管には
ゲートバルブ7が配置され、ゲートバルブ7にはベロー
ズ部14と直管部15とから成る退避室8が接続されて
いる。退避室8内には熱交換器9が直管部15の底面2
1を貫通して設けられている。さらに、底面21を貫通
した熱交換器9の大気側の端末は可撓性配管19により
冷凍機20に接続されている。
On the other hand, a gate valve 7 is arranged in a side branch pipe of the T-shaped intake pipe 3, and a retreat chamber 8 composed of a bellows portion 14 and a straight pipe portion 15 is connected to the gate valve 7. Inside the evacuation chamber 8, the heat exchanger 9 is provided on the bottom surface 2 of the straight pipe portion 15.
1 is provided so as to penetrate therethrough. Further, the terminal on the atmosphere side of the heat exchanger 9 which penetrates the bottom surface 21 is connected to the refrigerator 20 by the flexible pipe 19.

【0022】また、直管部15の排気口には可撓性配管
16,バルブ17を介して油回転ポンプ18が接続され
ており、退避室8の外周にはヒータ10が設けられてい
る。また、直管部15の底面21にはエアシリンダ11
が接続されている。一方、被排気室1には残留ガス分析
計12が設けられ、該残留ガス分析計12はゲートバル
ブ7及びエアシリンダ11の動作を制御するためのコン
トローラ13と電気的に結線されている。
An oil rotary pump 18 is connected to the exhaust port of the straight pipe portion 15 via a flexible pipe 16 and a valve 17, and a heater 10 is provided on the outer periphery of the retreat chamber 8. Further, the air cylinder 11 is provided on the bottom surface 21 of the straight pipe portion 15.
Are connected. On the other hand, a residual gas analyzer 12 is provided in the exhausted chamber 1, and the residual gas analyzer 12 is electrically connected to a controller 13 for controlling the operation of the gate valve 7 and the air cylinder 11.

【0023】上記構成の本実施例において、大気開放後
の被排気室1を初期排気する場合、まずゲートバルブ2
及びバルブ5を開放し、油回転ポンプ6を起動すること
により、被排気室1内の圧力がターボ分子ポンプ4の起
動可能な値に低下するまで被排気室1を排気する。この
時、コントローラ13より開信号So を出力してゲート
バルブ7も開放し、退避室8内も油回転ポンプ6により
排気する。
In the present embodiment having the above-mentioned structure, when the exhausted chamber 1 after being exposed to the atmosphere is initially exhausted, first the gate valve 2
By opening the valve 5 and activating the oil rotary pump 6, the exhaust chamber 1 is exhausted until the pressure in the exhaust chamber 1 drops to a value at which the turbo molecular pump 4 can be activated. At this time, the controller 13 outputs an open signal So to open the gate valve 7 and exhaust the interior of the evacuation chamber 8 by the oil rotary pump 6.

【0024】系全体の圧力がターボ分子ポンプ4の起動
可能な値に低下すると、ターボ分子ポンプ4を起動し、
ターボ分子ポンプ4による排気を開始する。と同時に、
コントローラ13より前進信号Sa を出力してエアシリ
ンダ11を前進させて直管部15の底面21をA方向に
押し、ベローズ部14を縮めることにより、退避室8に
退避し予め冷凍機20から供給される冷媒により冷却さ
れている熱交換器9を、ゲートバルブ7の開口部を通し
て吸気配管3内のターボ分子ポンプ4の吸気口上方に位
置するまで挿入する。この時、可撓性配管16,19も
A方向に移動する。
When the pressure of the entire system drops to a value at which the turbo molecular pump 4 can be started, the turbo molecular pump 4 is started,
Exhaust by the turbo molecular pump 4 is started. At the same time
A forward signal Sa is output from the controller 13 to move the air cylinder 11 forward to push the bottom surface 21 of the straight pipe portion 15 in the direction A, and the bellows portion 14 is contracted so that the bellows portion 14 is retracted to the retreat chamber 8 and supplied from the refrigerator 20 in advance. The heat exchanger 9 cooled by the refrigerant is inserted through the opening of the gate valve 7 until it is located above the intake port of the turbo molecular pump 4 in the intake pipe 3. At this time, the flexible pipes 16 and 19 also move in the A direction.

【0025】このように、ターボ分子ポンプ4の吸気口
上方に位置するように吸気配管3内に挿入された熱交換
器9により、排気されるガス中に含まれる水蒸気は氷結
捕集される。その後、被排気室1内の圧力が残留ガス分
析計12の作動可能な値に低下すると、残留ガス分析計
12を作動させ被排気室1内の水蒸気分圧を測定し、そ
の出力信号をコントローラ13に伝送し、測定された水
蒸気分圧と設定値との比較を行う。
As described above, the heat exchanger 9 inserted into the intake pipe 3 so as to be located above the intake port of the turbo-molecular pump 4 collects the water vapor contained in the exhaust gas by icing. After that, when the pressure in the exhaust chamber 1 drops to a value at which the residual gas analyzer 12 can operate, the residual gas analyzer 12 is activated to measure the water vapor partial pressure in the exhaust chamber 1, and the output signal thereof is controlled by the controller. It transmits to 13 and compares the measured water vapor partial pressure with a set value.

【0026】比較の結果、測定された水蒸気分圧が設定
値以上の値であれば、熱交換器9をターボ分子ポンプ4
の吸気口上方に位置するように吸気配管3内に挿入した
状態を保持する。一方、測定された水蒸気分圧が設定値
より小さければ、コントローラ13より後退信号Sb を
出力してエアシリンダ11を後退させて直管部15の底
面21をB方向に移動させベローズ部14を伸ばすこと
により、熱交換器9を退避室8内に退避させる。その
後、コントローラ13より閉信号Sc を出力してゲート
バルブ7を閉鎖することにより熱交換器9を退避室8内
に封じ込める。
As a result of the comparison, if the measured water vapor partial pressure is a value equal to or higher than the set value, the heat exchanger 9 is connected to the turbo molecular pump 4
The state of being inserted into the intake pipe 3 so as to be located above the intake port is maintained. On the other hand, if the measured water vapor partial pressure is smaller than the set value, the controller 13 outputs the retreat signal Sb to retract the air cylinder 11, move the bottom surface 21 of the straight pipe portion 15 in the B direction, and extend the bellows portion 14. As a result, the heat exchanger 9 is retracted into the retreat chamber 8. After that, the controller 13 outputs the closing signal Sc to close the gate valve 7 to close the heat exchanger 9 in the evacuation chamber 8.

【0027】又、残留ガス分析計12から被排気室1内
の全圧と水蒸気分圧を出力させ、この出力信号をコント
ローラ13に伝送し、測定された全圧に対する水蒸気分
圧の比率R1 あるいは水蒸気以外のガスの分圧の総和に
対する水蒸気分圧の比率R2と設定値Rs と比較し、そ
の結果R1 又はR2 >Rs であれば熱交換手段9をター
ボ分子ポンプ4の吸気配管3内に挿入し、R1 又はR2
<Rs であれば熱交換手段9を退避室8に退避させ封じ
込めることも可能である。熱交換器9の退避室8への移
動時には、可撓性配管16,19もB方向に移動する。
その後、被排気室1内の圧力が所定の値に低下するまで
初期排気を続行する。
Further, the residual gas analyzer 12 outputs the total pressure and the water vapor partial pressure in the exhaust chamber 1, and the output signal is transmitted to the controller 13, and the ratio of the water vapor partial pressure to the measured total pressure R 1 Alternatively, the ratio R 2 of the partial pressure of water vapor to the total of partial pressures of gases other than water vapor is compared with the set value Rs, and if R 1 or R 2 > Rs as a result, the heat exchange means 9 is connected to the intake pipe of the turbo molecular pump 4. Insert into 3 and insert R 1 or R 2
If Rs, the heat exchanging means 9 can be retracted and contained in the retreat chamber 8. When the heat exchanger 9 moves to the evacuation chamber 8, the flexible pipes 16 and 19 also move in the B direction.
After that, initial exhaust is continued until the pressure in the exhaust chamber 1 drops to a predetermined value.

【0028】このように初期排気時に多量の水蒸気を熱
交換器9に氷結捕集させ、該熱交換器9を退避室8内に
退避させ封じ込め被排気室1内の圧力が所定の値に低下
した後に、図示しないガス導入系により被排気室1内に
半導体製造用ガスを導入し通常排気を開始する。
In this way, during the initial exhaustion, a large amount of water vapor is frozen and collected in the heat exchanger 9, and the heat exchanger 9 is retracted into the evacuation chamber 8 and contained, and the pressure in the exhausted chamber 1 drops to a predetermined value. After that, a semiconductor manufacturing gas is introduced into the exhaust chamber 1 by a gas introduction system (not shown), and normal exhaust is started.

【0029】また、熱交換器9を退避室8内に封じ込め
た後には、冷凍機20の運転を中止し、ヒータ10に通
電し、退避室8内に封じ込まれた熱交換器9をヒータ1
0により加熱し、熱交換器9に氷結捕集された水蒸気を
蒸発させるとともに、バルブ17を開放し油回転ポンプ
18により蒸発した水蒸気を退避室8内より排気し、熱
交換器9の水蒸気の氷結捕集能力を再生する。
After the heat exchanger 9 is enclosed in the evacuation chamber 8, the operation of the refrigerator 20 is stopped, the heater 10 is energized, and the heat exchanger 9 enclosed in the evacuation chamber 8 is heated. 1
The steam that has been ice-collected in the heat exchanger 9 is heated by 0, and the steam that has evaporated by the oil rotary pump 18 is exhausted from the evacuation chamber 8 by opening the valve 17 and evaporating the steam in the heat exchanger 9. Regenerate the ability to collect ice.

【0030】かくして、ターボ分子ポンプ4による初期
排気時にはターボ分子ポンプ4の吸気口上流側の吸気配
管3内に冷却された熱交換器9が挿入されるため、初期
排気時の残留ガス中に高い比率で含まれている水蒸気は
熱交換器9に選択的に氷結捕集される。一方、初期排気
後に半導体製造装置等において使用される半導体製造用
ガスを排気する通常排気時あるいは排気される残留ガス
中の水蒸気が減少し水蒸気以外の他のガス成分の残留ガ
ス中の比率が高くなった時には、熱交換器9はエアシリ
ンダ11により退避室8に退けられ、ゲートバルブ7に
より退避室8に封じ込められるため、熱交換器9による
ターボ分子ポンプ吸気配管3のコンダクタンスの低下は
なくなる。その結果、初期排気時から通常排気時に至る
まで、ターボ分子ポンプ4の全運転期間中の排気性能を
低下させることなく維持できることになる。
Thus, during the initial exhaust by the turbo molecular pump 4, since the cooled heat exchanger 9 is inserted into the intake pipe 3 on the upstream side of the intake port of the turbo molecular pump 4, the residual gas at the initial exhaust is high. The water vapor contained in the ratio is selectively collected in the heat exchanger 9 by freezing. On the other hand, when the gas for semiconductor manufacturing used in semiconductor manufacturing equipment etc. is exhausted after the initial exhaust, the water vapor in normal exhaust or exhausted residual gas is reduced and the ratio of other gas components other than water vapor in the residual gas is high. When this happens, the heat exchanger 9 is retracted into the evacuation chamber 8 by the air cylinder 11 and is contained in the evacuation chamber 8 by the gate valve 7, so that the conductance of the turbo molecular pump intake pipe 3 by the heat exchanger 9 does not decrease. As a result, it is possible to maintain the exhaust performance during the entire operation period of the turbo molecular pump 4 without decreasing from the initial exhaust to the normal exhaust.

【0031】又、熱交換器9を退避室8に封じ込めた状
態で熱交換器9を再生できるため、被排気室1の排気が
再生中に中断することなく連続して行なえることにな
り、排気に要する時間を短縮できることになる。
Further, since the heat exchanger 9 can be regenerated in a state where the heat exchanger 9 is enclosed in the evacuation chamber 8, the exhaust of the exhausted chamber 1 can be continuously performed without interruption during regeneration, The time required for exhaust can be shortened.

【0032】更に被排気室1の水蒸気の量或いは水蒸気
以外のガスと水蒸気との相対関係により熱交換器9のタ
ーボ分子ポンプ吸気配管3内への挿入及び熱交換器9の
退避室8への退避、封じ込めの制御をコントローラ13
により自動でできるため、被排気室1内の水蒸気の量に
応じてターボ分子ポンプ4の排気性能を十分に発揮でき
ることになる。
Further, depending on the amount of water vapor in the exhausted chamber 1 or the relative relationship between the gas other than water vapor and water vapor, the heat exchanger 9 is inserted into the turbo molecular pump intake pipe 3 and the heat exchanger 9 is moved to the evacuation chamber 8. The controller 13 controls evacuation and containment.
By doing so, the exhaust performance of the turbo molecular pump 4 can be sufficiently exhibited according to the amount of water vapor in the exhaust chamber 1.

【0033】このように、本実施例によれば、水蒸気を
多く含むガスを排気する初期排気時には、熱交換器9に
水蒸気を選択的に氷結捕集させることができ、水蒸気の
比率が減少したガスを排気する通常排気時および熱交換
器9に氷結捕集されない半導体製造用ガスを排気する通
常排気時には、熱交換器9を退避室8内に退避させ封じ
込めることができるため、熱交換器9により吸気配管3
のコンダクタンスが低下せず、初期排気時から通常排気
時に至るまでこれらのガスに対してのターボ分子ポンプ
4の全運転期間中の排気性能を低下させることなく維持
することができる。したがって、初期排気時と通常排気
時を通してのターボ分子ポンプ4の排気性能を従来例よ
りも向上することができ、排気に要する時間を短縮する
ことができる。
As described above, according to this embodiment, the steam can be selectively collected by the heat exchanger 9 during the initial exhaust of exhausting a gas containing a large amount of steam, and the ratio of steam is reduced. The heat exchanger 9 can be retracted and contained in the evacuation chamber 8 at the time of normal evacuation of gas and at the time of normal evacuation of gas for semiconductor production that is not collected in the heat exchanger 9 by freezing. Intake pipe 3
Conductance does not decrease, and the exhaust performance of the turbo molecular pump 4 for these gases during the entire operation period can be maintained without deterioration from the initial exhaust to the normal exhaust. Therefore, the exhaust performance of the turbo molecular pump 4 during the initial exhaust and the normal exhaust can be improved as compared with the conventional example, and the time required for exhaust can be shortened.

【0034】[0034]

【発明の効果】上述のように本発明によれば、水蒸気を
多く含むガスを排気する初期排気時には、熱交換手段9
により水蒸気を氷結捕集でき、水蒸気をほとんど含まな
いガスを排気する初期排気後の通常排気時には、熱交換
手段9によるターボ分子ポンプ4の排気性能が低下せ
ず、維持できるため、所定の圧力の良質な真空を短時間
で得ることができる。
As described above, according to the present invention, the heat exchange means 9 is used during the initial exhaust of exhausting a gas containing a large amount of water vapor.
Thus, the water vapor can be collected by freezing, and the exhaust performance of the turbo molecular pump 4 by the heat exchange means 9 does not deteriorate and can be maintained during normal exhaust after the initial exhaust in which a gas containing almost no steam is exhausted. A good vacuum can be obtained in a short time.

【0035】また、半導体製造用ガスを排気する場合に
は、ターボ分子ポンプ4の排気性能を十分に利用できる
ため、ターボ分子ポンプ4の口径が同一であれば、従来
例に比べて多量の半導体製造用ガスを処理することがで
きる。さらに、腐食性の半導体製造用ガスを排気する場
合、熱交換手段9が腐食性雰囲気に常にさらされていな
いため、熱交換手段9の耐久性を向上することができ
る。
Further, when the semiconductor manufacturing gas is exhausted, the exhaust performance of the turbo molecular pump 4 can be fully utilized. Therefore, if the bore diameter of the turbo molecular pump 4 is the same, a larger amount of semiconductor will be produced than in the conventional example. The production gas can be treated. Further, when exhausting the corrosive semiconductor manufacturing gas, the heat exchange means 9 is not always exposed to the corrosive atmosphere, so that the durability of the heat exchange means 9 can be improved.

【0036】また、熱交換手段9を退避させ封じ込めた
状態で再生が行なえるため、ターボ分子ポンプ4による
被排気室1の排気を連続して行え、ターボ分子ポンプ4
の運転効率を極めて向上させることができる。
Further, since the heat exchanging means 9 can be regenerated with the heat retracting means 9 retracted and contained, the exhaust of the exhausted chamber 1 by the turbo molecular pump 4 can be continuously performed, and the turbo molecular pump 4 can be carried out.
The operating efficiency of can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法及び装置の1実施例の構成を示す説
明図である。
FIG. 1 is an explanatory diagram showing a configuration of an embodiment of a method and an apparatus of the present invention.

【図2】従来方法及び装置の第1例の構成を示す説明図
である。
FIG. 2 is an explanatory diagram showing a configuration of a first example of a conventional method and apparatus.

【図3】従来方法及び装置の第2例(特開平2−579
2号)の構成を示す説明図である。
FIG. 3 is a second example of a conventional method and apparatus (Japanese Patent Laid-Open No. 2-579).
It is an explanatory view showing the composition of No. 2).

【符号の説明】[Explanation of symbols]

1 被排気室 3 吸気配管 4 ターボ分子ポンプ 7 仕切り手段(ゲートバルブ) 8 退避室 9 熱交換手段(器) 10 加熱手段(ヒータ) 11 進退手段(エアシリンダ) 12 残留ガス分析計 13 コントローラ 14 ベローズ部 15 直管部 16 可撓性配管 18 排気手段(油回転ポンプ) 19 可撓性配管 20 冷凍機 21 底面 DESCRIPTION OF SYMBOLS 1 Exhaust chamber 3 Intake pipe 4 Turbo molecular pump 7 Partition means (gate valve) 8 Evacuation chamber 9 Heat exchange means (container) 10 Heating means (heater) 11 Advancement / retraction means (air cylinder) 12 Residual gas analyzer 13 Controller 14 Bellows Part 15 Straight pipe part 16 Flexible pipe 18 Exhaust means (oil rotary pump) 19 Flexible pipe 20 Refrigerator 21 Bottom surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被排気室(1)に連結されたターボ分子
ポンプ(4)の吸気配管(3)に、仕切り手段(7)を
介して室内に冷却可能な熱交換手段(9)を有する伸縮
可能な退避室(8)を設け、ターボ分子ポンプ(4)に
よる初期排気時に仕切り手段(7)を開き吸気配管
(3)内に熱交換手段(9)を進退手段(11)により
挿入して冷却された熱交換手段(9)に水蒸気を氷結捕
集し、初期排気後の通常排気時には退避室(8)内に熱
交換手段(9)を進退手段(11)により退け、仕切り
手段(7)を閉じて封じ込めることを特徴とするターボ
分子ポンプによる排気方法。
1. An intake pipe (3) of a turbo molecular pump (4) connected to an exhausted chamber (1) has a heat exchange means (9) capable of cooling the inside of a room via a partition means (7). A retractable evacuation chamber (8) is provided, the partition means (7) is opened at the time of initial exhaustion by the turbo molecular pump (4), and the heat exchange means (9) is inserted into the intake pipe (3) by the advancing and retracting means (11). The steam is frozen and collected in the cooled heat exchange means (9), and during normal exhaust after the initial exhaust, the heat exchange means (9) is retracted into the retreat chamber (8) by the advancing / retreating means (11), and the partition means ( A method of exhausting with a turbo molecular pump, characterized in that 7) is closed and contained.
【請求項2】 退避室(8)に加熱手段(10)と排気
手段(18)を設け、退避室(8)内に封じ込められた
熱交換手段(9)を加熱手段(10)により加熱して熱
交換手段(9)に氷結捕集された水蒸気を蒸発させると
共に排気手段(18)により退避室(8)内から蒸発し
た水蒸気を排気することを特徴とする請求項1のターボ
分子ポンプによる排気方法。
2. The evacuation chamber (8) is provided with a heating means (10) and an exhaust means (18), and the heat exchange means (9) enclosed in the evacuation chamber (8) is heated by the heating means (10). 2. The turbo molecular pump according to claim 1, wherein the vaporized water vapor collected in the heat exchange means (9) is evaporated and the vaporized water vapor is exhausted from the evacuation chamber (8) by the exhaust means (18). Exhaust method.
【請求項3】 被排気室(1)に残留ガス分析計(1
2)を設け、残留ガス分析計(12)により被排気室
(1)内の水蒸気分圧を出力し、水蒸気分圧値が設定値
より大きければ、熱交換手段(9)を吸気配管(3)内
に挿入し、水蒸気分圧値が設定値より小さければ熱交換
手段(9)を退避室(8)内に退避して封じ込めること
を特徴とする請求項1のターボ分子ポンプによる排気方
法。
3. A residual gas analyzer (1) is provided in the exhaust chamber (1).
2) is provided and the residual gas analyzer (12) outputs the water vapor partial pressure in the exhausted chamber (1). If the water vapor partial pressure value is larger than the set value, the heat exchange means (9) is connected to the intake pipe (3). ), And if the partial pressure of water vapor is smaller than the set value, the heat exchanging means (9) is retracted and contained in the retreat chamber (8).
【請求項4】 被排気室(1)に残留ガス分析計(1
2)を設け、残留ガス分析計(12)より被排気室
(1)内の全圧と水蒸気分圧を出力し、全圧に対する水
蒸気分圧の比率又は水蒸気以外のガス分圧の総和に対す
る水蒸気分圧の比率が設定値より大きければ、熱交換手
段(9)を吸気配管(3)内に挿入し、設定値より小さ
ければ熱交換手段(9)を退避室(8)内に退避して封
じ込めることを特徴とする請求項1のターボ分子ポンプ
による排気方法。
4. A residual gas analyzer (1) is provided in the exhaust chamber (1).
2) is provided, and the total pressure in the exhaust chamber (1) and the partial pressure of water vapor are output from the residual gas analyzer (12), and the ratio of the partial pressure of water vapor to the total pressure or the total amount of partial pressure of gas other than water vapor If the ratio of partial pressure is larger than the set value, the heat exchange means (9) is inserted into the intake pipe (3), and if it is smaller than the set value, the heat exchange means (9) is evacuated into the evacuation chamber (8). The method for evacuating with a turbo molecular pump according to claim 1, wherein the method is exhausted.
【請求項5】 被排気室(1)に連結されたターボ分子
ポンプ(4)の吸気配管(3)に、室内に冷却可能な熱
交換手段(9)を有する伸縮可能な退避室(8)を設
け、退避室(8)と吸気配管(3)間に、ターボ分子ポ
ンプ(4)による初期排気時及び初期排気後の通常排気
時にそれぞれ開,閉される仕切り手段(7)を設け、退
避室(8)には吸気配管(3)内と退避室(8)内にそ
れぞれ熱交換手段(9)を挿入,退避する進退手段(1
1)を設けてなるターボ分子ポンプによる排気装置。
5. A retractable evacuation chamber (8) having a heat exchange means (9) capable of cooling the interior of an intake pipe (3) of a turbo molecular pump (4) connected to the exhausted chamber (1). And a partition means (7) that is opened and closed between the evacuation chamber (8) and the intake pipe (3) at the time of initial evacuation by the turbo molecular pump (4) and during normal evacuation after the initial evacuation, respectively. An advancing / retreating means (1) for inserting and withdrawing heat exchange means (9) in the intake pipe (3) and the evacuation chamber (8) in the chamber (8), respectively.
An exhaust device using a turbo molecular pump provided with 1).
【請求項6】 退避室(8)に、該室(8)内に封じ込
まれた熱交換手段(9)を加熱して熱交換手段(9)に
氷結捕集された水蒸気を蒸発させる加熱手段(10)及
び退避室(8)内から蒸発した水蒸気を排気する排気手
段(18)を設けてなる請求項5のターボ分子ポンプに
よる排気装置。
6. Heating for heating a heat exchanging means (9) enclosed in the retreat chamber (8) to evaporate water vapor trapped in the heat exchanging means (9). The turbo molecular pump exhaust system according to claim 5, further comprising exhaust means (18) for exhausting water vapor evaporated from the means (10) and the evacuation chamber (8).
【請求項7】 被排気室(1)に残留ガス分析計(1
2)を設け、この分析計(12)より出力する被排気室
(1)内の水蒸気分圧値(A)を入力して設定値(B)
と比較し、A>B,B<Aの時それぞれ仕切り手段
(7)を開,閉する開,閉信号(S0 ,SC )を出力す
ると共に熱交換手段(9)を吸気配管(3)内及び退避
室(8)内にそれぞれ挿入,退避する前進,後退信号
(Sa ,Sb )を出力するコントローラ(13)を設置
してなる請求項5のターボ分子ポンプによる排気装置。
7. A residual gas analyzer (1) is provided in the exhaust chamber (1).
2) is provided, and the partial pressure value (A) of water vapor in the exhaust chamber (1) output from the analyzer (12) is input to set the value (B).
In comparison with A> B and B <A, the opening and closing signals (S 0 , S C ) for opening and closing the partitioning means (7) are output, and the heat exchange means (9) is connected to the intake pipe (3). 6. The exhaust system according to claim 5, further comprising a controller (13) for outputting forward and backward signals (Sa, Sb) for inserting and retracting in the inside of the) and the retracting chamber (8), respectively.
【請求項8】 被排気室(1)に残留ガス分析計(1
2)を設け、この分析計(12)より出力する被排気室
(1)内の全圧と水蒸気分圧を入力して全圧に対する水
蒸気分圧の比率(R1 )又は水蒸気以外のガス分圧の総
和に対する水蒸気分圧の比率(R2 )を設定値(Rs )
と比較し、R1 又はR2 >Rs ,R1 又はR2 <Rs の
時それぞれ仕切り手段(7)を開,閉する開,閉信号
(So ,Sc )を出力すると共に熱交換手段(9)を吸
気配管(3)内及び退避室(8)内にそれぞれ挿入,退
避する前進,後退信号(Sa ,Sb )を出力するコント
ローラ(13)を設置してなる請求項5のターボ分子ポ
ンプによる排気装置。
8. A residual gas analyzer (1) is provided in the exhaust chamber (1).
2) is provided, and the total pressure in the exhaust chamber (1) and the steam partial pressure output from the analyzer (12) are input to input the ratio of the steam partial pressure to the total pressure (R 1 ) or the gas content other than steam. Set the ratio (R 2 ) of the partial pressure of water vapor to the total pressure (Rs)
In comparison with R 1 or R 2 > Rs, R 1 or R 2 <Rs, an opening / closing signal (So, Sc) for opening / closing the partitioning means (7) is output and the heat exchanging means (9) is output. 6. The turbo molecular pump according to claim 5, further comprising a controller (13) for outputting forward and backward signals (Sa, Sb) for inserting and retracting the above) into the intake pipe (3) and the retract chamber (8), respectively. Exhaust system.
JP05034592A 1992-03-09 1992-03-09 Evacuation method and apparatus using turbo molecular pump Expired - Fee Related JP3424940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05034592A JP3424940B2 (en) 1992-03-09 1992-03-09 Evacuation method and apparatus using turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05034592A JP3424940B2 (en) 1992-03-09 1992-03-09 Evacuation method and apparatus using turbo molecular pump

Publications (2)

Publication Number Publication Date
JPH05248387A true JPH05248387A (en) 1993-09-24
JP3424940B2 JP3424940B2 (en) 2003-07-07

Family

ID=12856330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05034592A Expired - Fee Related JP3424940B2 (en) 1992-03-09 1992-03-09 Evacuation method and apparatus using turbo molecular pump

Country Status (1)

Country Link
JP (1) JP3424940B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396348B1 (en) 1999-10-06 2002-05-28 Nec Corporation Circuit for dealing with higher harmonics and circuit for amplifying power efficiency
JP2003049771A (en) * 2001-08-03 2003-02-21 Boc Edwards Technologies Ltd Connection structure for vacuum pump, and vacuum pump
JP2005069066A (en) * 2003-08-21 2005-03-17 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396348B1 (en) 1999-10-06 2002-05-28 Nec Corporation Circuit for dealing with higher harmonics and circuit for amplifying power efficiency
JP2003049771A (en) * 2001-08-03 2003-02-21 Boc Edwards Technologies Ltd Connection structure for vacuum pump, and vacuum pump
JP4672204B2 (en) * 2001-08-03 2011-04-20 エドワーズ株式会社 Vacuum pump connection structure and vacuum pump
JP2005069066A (en) * 2003-08-21 2005-03-17 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump

Also Published As

Publication number Publication date
JP3424940B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
US5259735A (en) Evacuation system and method therefor
KR0124416B1 (en) Turbomolecular pump and method of operating the same
US5513499A (en) Method and apparatus for cryopump regeneration using turbomolecular pump
US20120031113A1 (en) Method and apparatus for regeneration water
US3027651A (en) Process and system for removing condensable vapors
JP2631827B2 (en) Steam cryopump
JPH0673542A (en) Vacuum treating device
JP3424940B2 (en) Evacuation method and apparatus using turbo molecular pump
JP3238099B2 (en) Evacuation system
JP2004071723A (en) Vacuum treatment apparatus and its operating method
JP3022200B2 (en) Cryopump regeneration method
JPH05280466A (en) Exhausting method by turbomolecular pump and device therefor
JP4301532B2 (en) Cryopump regeneration method
RU2239489C2 (en) Method and device for moisture removal from adsorber
JP4304450B2 (en) Vacuum exhaust device
JP2002070737A (en) Regenerating method of cryopump
JPH05332288A (en) Exhausting method and device by turbo-molecular pump
JPH09313920A (en) Vacuum chamber
JPH11294330A (en) Cold trap and vacuum exhaust device
JPH09317688A (en) Turbo-molecular pump
JP2000230483A (en) Evacuation method and evacuation device
JPH025792A (en) Turbo molecular pump and its operating method
JPH05272452A (en) Cryopump regenerating method
JPH03144281A (en) Freezing drier
JPH02294575A (en) Vacuum exhaust device and regeneration method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees