JPH0524324B2 - - Google Patents

Info

Publication number
JPH0524324B2
JPH0524324B2 JP4625187A JP4625187A JPH0524324B2 JP H0524324 B2 JPH0524324 B2 JP H0524324B2 JP 4625187 A JP4625187 A JP 4625187A JP 4625187 A JP4625187 A JP 4625187A JP H0524324 B2 JPH0524324 B2 JP H0524324B2
Authority
JP
Japan
Prior art keywords
intake valve
heat insulating
heat
layer
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4625187A
Other languages
Japanese (ja)
Other versions
JPS63212710A (en
Inventor
Hideo Kawamura
Hiroshi Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP4625187A priority Critical patent/JPS63212710A/en
Publication of JPS63212710A publication Critical patent/JPS63212710A/en
Publication of JPH0524324B2 publication Critical patent/JPH0524324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は内熱機関の吸気弁に係り、特に内熱
機関の運転に伴つて加熱される吸気弁の昇温を極
力抑え、吸入空気の加熱による膨張を抑えること
によつて気筒への吸入空気の吸入効率を向上させ
た内熱機関の吸気弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an intake valve for an internal heat engine, and in particular, it suppresses as much as possible the temperature rise of the intake valve, which is heated with the operation of the internal heat engine, and improves the flow of intake air. The present invention relates to an intake valve for an internal heat engine that improves the efficiency of sucking air into a cylinder by suppressing expansion caused by heating.

[従来の技術] 近年シリンダ壁面、ピストン頂面及びシリンダ
ヘツド下面をセラミツク等の断熱材料で覆つて断
熱し、エンジンの熱効率を向上させようとした断
熱エンジンが開発されている。
[Prior Art] In recent years, an adiabatic engine has been developed in which the cylinder wall surface, the top surface of the piston, and the bottom surface of the cylinder head are covered with a heat insulating material such as ceramic to insulate the engine, thereby improving the thermal efficiency of the engine.

第3図には本出願人が先に提案した「断熱エン
ジン構造」(特開昭60−90955号公報)を示してあ
る。
FIG. 3 shows the "insulated engine structure" (Japanese Patent Application Laid-Open No. 60-90955) that was previously proposed by the present applicant.

同図に示されるようにシリンダヘツドaの下半
分には、シリンダの対面する部分に、シリンダに
対して同軸上の円筒部bが形成されており、この
円筒部bにはセラミツクスから成る逆カツプ状の
ヘツドライナcが嵌合されている。この逆カツプ
状のヘツドライナcの外面と円筒部bの壁面b1
の間には半径方向に所定の間隔の空間部dが形成
されている。
As shown in the figure, in the lower half of the cylinder head a, a cylindrical part b coaxial with the cylinder is formed at the part facing the cylinder, and this cylindrical part b has an inverted cup made of ceramics. A shaped head liner c is fitted. A space d is formed at a predetermined distance in the radial direction between the outer surface of the inverted cup-shaped head liner c and the wall surface b1 of the cylindrical portion b.

これらの構成により「断熱エンジン構造」が構
成される。
These configurations constitute an "insulated engine structure."

[発明が解決しようとする問題点] 上述の「断熱エンジン構造」は、空間部dを形
成することにより、ヘツドライナcからシリンダ
ヘツドaへの熱伝導を抑え、その結果として断熱
効率を高めるものであり、またその断熱効率をさ
らに向上させるために、円筒部bの壁面b1を熱反
射面としている。
[Problems to be Solved by the Invention] The above-mentioned "insulated engine structure" suppresses heat conduction from the head liner c to the cylinder head a by forming the space d, thereby increasing the heat insulation efficiency. In addition, in order to further improve the heat insulation efficiency, the wall surface b1 of the cylindrical portion b is made into a heat reflecting surface.

しかしながら、このようにして断面性能を高め
た「断熱エンジン構造」にあつても次の問題点が
ある。
However, even with the "insulated engine structure" which improves cross-sectional performance in this way, there are the following problems.

上記提案にあつても気筒で発生する熱で吸気弁
の気筒側露出面が加熱されるために、吸気弁eの
弁傘部e1の高熱によつて吸気が体積膨張を起し、
気筒への吸気の吸入効率が低下し、エンジンの諸
性能が低下する問題が生じていた。これは早急に
解決すべき問題点として指摘されている。
Even in the above proposal, since the exposed surface of the intake valve on the cylinder side is heated by the heat generated in the cylinder, the volumetric expansion of the intake air occurs due to the high heat of the valve head part e1 of the intake valve e.
A problem has arisen in which the efficiency of intake air into the cylinders decreases, resulting in a decrease in engine performance. This has been pointed out as a problem that needs to be resolved immediately.

[問題点を解決するための手段] この発明は上記問題点を解決することを目的と
しており、この発明は吸気ポートを開閉する吸気
弁の気筒露出面にこれを覆うように空気を取り込
んだ繊維質の断熱ガススケツト層を設け、その断
熱ガスケツト層の外側にこれを覆つて気密に封止
する硬質の断熱層を設けて内熱機関の吸気弁を構
成したものである。
[Means for Solving the Problems] This invention aims to solve the above-mentioned problems, and this invention uses fibers that incorporate air to cover the exposed cylinder surface of the intake valve that opens and closes the intake port. The intake valve of an internal heat engine is constructed by providing a high quality heat insulating gasket layer, and a hard heat insulating layer covering and airtightly sealing the heat insulating gasket layer.

[作用] 吸気弁の気筒側露出面を被つて積層された断熱
ガスケツト層、この断熱ガスケツト層に取り込ま
れている空気及び断熱層は、気筒から吸気弁への
入熱を遮断するから、吸気弁の弁傘部の昇温が極
力阻止される。この結果、吸気弁の開時に気筒内
に吸入される吸気が加熱されなくなり、加熱によ
る体積膨張が抑えられる。したがつて気筒には必
要量の吸気が吸入されることになり、実質的に吸
入効率が向上しエンジンの諸性能が向上される。
[Function] The insulating gasket layer laminated to cover the exposed surface of the intake valve on the cylinder side, the air taken into this insulating gasket layer, and the insulating layer block heat input from the cylinder to the intake valve, so the intake valve Temperature rise of the valve head portion is prevented as much as possible. As a result, the intake air drawn into the cylinder when the intake valve is opened is not heated, and volumetric expansion due to heating is suppressed. Therefore, the necessary amount of intake air is taken into the cylinder, which substantially improves the intake efficiency and improves various performances of the engine.

[実施例] 以下にこの発明の内熱機関の吸気弁の好適一実
施例を添付図面に基づいて説明する。
[Embodiment] A preferred embodiment of the intake valve for an internal heat engine according to the present invention will be described below with reference to the accompanying drawings.

第1図に示されるようにシリンダヘツド1内に
は、シリンダボデイ2内に形成された気筒3内に
連通するように吸気通路4が形成される。
As shown in FIG. 1, an intake passage 4 is formed in the cylinder head 1 so as to communicate with a cylinder 3 formed in the cylinder body 2. As shown in FIG.

シリンダヘツド1内には、上記吸気通路4の吸
気ポート5を開閉する鉄製の吸気弁6が昇降自在
に設けられている。
Inside the cylinder head 1, an iron intake valve 6 for opening and closing the intake port 5 of the intake passage 4 is provided so as to be movable up and down.

さて吸気弁6は第1図及び第2図に示すように
構成される。この吸気弁6の気筒側露出面6eに
は、その軸芯位置に、気筒3側へ延びたボス部7
が一体に形成されている。このボス部7には後述
する断熱層8が嵌合されて固定される。断熱層8
は、この実施例では窒化珪素等のセラミツクを焼
成させて所定形状に形成されるもので、その形状
は断面コ字形で、中央部に上記ボス部7の基端面
外周を包囲する係合部9を有している。したがつ
て、断熱層8の係合部9の半径方向外方には環状
の凹部10が形成されることになる。この凹部1
0は、後述する断熱ガスケツト層11を収容する
もので、この実施例にあつて断熱ガスケツト層1
1はまずチタン酸カリウムの繊維材を形成し、こ
のチタン酸カリウムの繊維材を上記凹部10に係
合して収容される形状に積層させて形成される。
ここで繊維材を積層させて断熱ガスケツト層11
を形成することは当然、積層中に空気が含まれる
ことになるからこの空気によつて断熱性能を向上
させることができる。また繊維材を積層すること
は、当然断熱ガスケツト層11が軸方向に圧縮可
能であるから繊維長さ、積層高さを調節すること
によつて、ガスケツトとして充分な圧縮代を得る
ことができる。この場合必要な圧縮代を考慮した
上で、積層中に充分な空気を取り込んであるよう
に配慮されることは当然である。また、このよう
に形成された断熱ガスケツト層11を収容する凹
部10の深さ(断熱ガスケツト層11の厚さ方向
を指す)は、断熱層8の外周部で、上記吸気弁6
の気筒側露出面6eに着座する基端面12、及び
この基端面12に対して略同一平面上にある上記
係合部9の基端面13がその気筒側露出面6eに
着座したときに、充分な圧縮代を得るように定め
られる。
Now, the intake valve 6 is constructed as shown in FIGS. 1 and 2. A boss portion 7 extending toward the cylinder 3 side is provided on the cylinder side exposed surface 6e of the intake valve 6 at its axial position.
are integrally formed. A heat insulating layer 8, which will be described later, is fitted and fixed to this boss portion 7. Heat insulation layer 8
In this embodiment, it is formed into a predetermined shape by firing ceramic such as silicon nitride, and has a U-shaped cross section, and has an engaging portion 9 surrounding the outer periphery of the proximal end surface of the boss portion 7 in the center. have. Therefore, an annular recess 10 is formed radially outward of the engaging portion 9 of the heat insulating layer 8. This recess 1
0 houses a heat insulating gasket layer 11 which will be described later, and in this embodiment, the heat insulating gasket layer 1
1 is formed by first forming a fibrous material of potassium titanate, and stacking the fibrous material of potassium titanate in a shape that is engaged with and accommodated in the recess 10.
Here, fiber materials are laminated to form the insulation gasket layer 11.
Naturally, forming a layer will include air in the lamination, and this air can improve the heat insulation performance. Furthermore, by laminating the fiber materials, the insulating gasket layer 11 is naturally compressible in the axial direction, so by adjusting the fiber length and the lamination height, a sufficient compression allowance for the gasket can be obtained. In this case, it is natural to take into consideration the necessary compression allowance and to ensure that sufficient air is taken in during the lamination. Further, the depth of the recess 10 (pointing in the thickness direction of the heat insulating gasket layer 11) that accommodates the heat insulating gasket layer 11 formed in this manner is such that the depth of the recess 10 (pointing in the thickness direction of the heat insulating gasket layer 11) is such that the depth of the recess 10 (pointing in the thickness direction of the heat insulating gasket layer 11) is such that the intake valve 6
When the base end surface 12 of the engaging portion 9, which is seated on the cylinder side exposed surface 6e, and the base end surface 13 of the engaging portion 9, which is substantially on the same plane as the base end surface 12, are seated on the cylinder side exposed surface 6e, It is determined to obtain a compression margin.

さて、上記凹部10に断熱ガスケツト層11を
収容した状態で、断熱層8の係合部9に、吸気弁
6のボス部7を係合させ固定する方法としては、
上記ボス部7を気筒3側へ適当量貫通させ、その
ボス部7の貫通部分をカシメ処理する方法と、そ
の貫通部分をろう付け或は貫通部分を溶融させて
固定する方法とがあるが、いずれかの方法で固定
を行う。溶融にあつては吸気弁6が鉄製で、断熱
層8及び断熱ガスケツト層11が耐熱材料である
から問題はない。固定後、ボス部7の気筒側端面
14及び固定処理部にはジルコニア等のセラミツ
クにてコーテイングが施され断熱膜15が形成さ
れる。
Now, with the heat insulating gasket layer 11 housed in the recess 10, the boss part 7 of the intake valve 6 is engaged with the engaging part 9 of the heat insulating layer 8 to be fixed.
There are two methods: one method is to make the boss part 7 pass through an appropriate amount toward the cylinder 3 side, and then caulk the penetrating part of the boss part 7, and the other is to fix the penetrating part by brazing or melting the penetrating part. Fix using one of the methods. There is no problem with melting because the intake valve 6 is made of iron and the heat insulating layer 8 and the heat insulating gasket layer 11 are made of heat resistant materials. After fixing, the cylinder-side end surface 14 of the boss portion 7 and the fixed portion are coated with ceramic such as zirconia to form a heat insulating film 15.

ところで、断熱層8の外径は吸気弁6の外径と
同一とし、また断熱層8及び断熱ガスケツト層1
1の高さもできるだけ小さく抑えて、吸気弁6の
慣性質量を小さくすることにも、充分な配慮が施
される。
By the way, the outer diameter of the heat insulating layer 8 is the same as the outer diameter of the intake valve 6, and the outer diameter of the heat insulating layer 8 and the heat insulating gasket layer 1 are the same.
Sufficient consideration is also given to reducing the inertial mass of the intake valve 6 by keeping the height of the intake valve 6 as small as possible.

次に作用を説明する。 Next, the action will be explained.

気筒で発生した熱は吸気弁6の断熱層8でまず
断熱される。しかし、断熱層8はこの断熱層8を
通過する熱の全てを断熱することができるもので
はないから、多少の入熱は生じる。断熱層8を通
過した熱は空気を含む断熱ガスケツト層11によ
り、そのほとんどが断熱されるから、吸気通路4
内に露出された部分の吸気弁6の表面温度の上昇
は阻止されることになる。また、ボス部7の断熱
膜15によつて熱伝導を妨げられる。
The heat generated in the cylinder is first insulated by the heat insulating layer 8 of the intake valve 6. However, since the heat insulating layer 8 cannot insulate all of the heat that passes through the heat insulating layer 8, some heat input occurs. Most of the heat passing through the heat insulating layer 8 is insulated by the heat insulating gasket layer 11 containing air.
This will prevent the surface temperature of the exposed portion of the intake valve 6 from increasing. Further, heat conduction is hindered by the heat insulating film 15 of the boss portion 7.

このように、吸気弁6の吸気通路4内露出部分
の表面温度の上昇が阻止されるから、吸気弁6の
開時に気筒3内に吸入される空気の体積膨張がな
くなり、気筒への吸入効率が実質的に向上する。
In this way, an increase in the surface temperature of the exposed portion of the intake passage 4 of the intake valve 6 is prevented, so there is no volumetric expansion of the air sucked into the cylinder 3 when the intake valve 6 is opened, and the efficiency of intake into the cylinder is improved. is substantially improved.

[発明の効果] 以上説明したことから明らかなようにこの発明
の内撚機関の吸気弁によれば次の如き優れた効果
を発揮できる。
[Effects of the Invention] As is clear from the above explanation, the intake valve for an internally twisted engine according to the present invention can exhibit the following excellent effects.

(1) 吸気ポートを開閉する吸気弁の気筒露出面に
これを覆うように空気を取り込んだ繊維質の断
熱ガスケツト層を設け、その断熱ガスケツト層
の外側にこれを覆つて気密に封止する硬質の断
熱層を設けて吸気弁の気筒露出側面からの入熱
及び熱伝導を妨げることがきるようにしたの
で、吸入空気の加熱による体積膨張を抑えるこ
とができ、気筒への吸気の吸入効率を大巾に向
上できる。
(1) A fibrous insulating gasket layer that takes in air is provided to cover the cylinder exposed surface of the intake valve that opens and closes the intake port, and a hard material that covers and airtightly seals the insulating gasket layer on the outside of the insulating gasket layer. By providing a heat insulating layer to prevent heat input and heat conduction from the exposed side of the cylinder of the intake valve, volumetric expansion due to heating of the intake air can be suppressed, increasing the efficiency of intake air into the cylinder. You can improve greatly.

(2) 熱焼性能,出力性能等のエンジンの諸性能を
向上できる。
(2) Various engine performances such as thermal firing performance and output performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好適一実施例を示す縦断面
図、第2図は第1図の要部詳細断面図、第3図は
関連技術としての断熱エンジン構造を示す縦断面
図である。 図中、1はシリンダヘツド、2はシリンダボデ
イ、3は気筒、4は吸気通路、5は吸気ポート、
6は吸気弁、6eは気筒側露出面、7はボス部、
8は断熱層、9は係合部、10は凹部、11は断
熱ガスケツト層、15は断熱膜である。
FIG. 1 is a longitudinal sectional view showing a preferred embodiment of the present invention, FIG. 2 is a detailed sectional view of the main part of FIG. 1, and FIG. 3 is a longitudinal sectional view showing an adiabatic engine structure as a related technology. In the figure, 1 is the cylinder head, 2 is the cylinder body, 3 is the cylinder, 4 is the intake passage, 5 is the intake port,
6 is an intake valve, 6e is an exposed surface on the cylinder side, 7 is a boss part,
8 is a heat insulating layer, 9 is an engaging portion, 10 is a recess, 11 is a heat insulating gasket layer, and 15 is a heat insulating film.

Claims (1)

【特許請求の範囲】 1 吸気ポートを開閉する吸気弁の気筒露出面に
これを覆うように空気を取り込んだ繊維質の断熱
ガスケツト層を設け、その断熱ガスケツト層の外
側にこれを覆つて気密に封止する硬質の断熱層を
設けたことを特徴とする内熱機関の吸気弁。 2 上記断熱層が窒化珪素等のセラミツク材料か
ら構成されてその断熱層の軸芯に係合穴を有する
と共に、該係合穴を包囲する内側面を環状に窪ま
せて上記断熱ガスケツト層を係合し収容する凹部
を有し、上記吸気弁が、上記係合穴に嵌合されて
それら断熱ガスケツト層及び断熱層を吸気弁の気
筒露出面に固定するボス部を有して構成された上
記特許請求の範囲第1項記載の内熱機関の吸気
弁。 3 上記断熱ガスケツト層がチタン酸カリウムの
繊維材から構成された上記特許請求の範囲第1項
記載の内熱機関の吸気弁。 4 上記ボス部が、そのボス部の先端面にジルコ
ニア等のセラミツクを被覆された上記特許請求の
範囲第2項記載の内熱機関の吸気弁。
[Claims] 1. A fibrous insulating gasket layer that takes in air is provided to cover the cylinder exposed surface of an intake valve that opens and closes the intake port, and this is covered on the outside of the insulating gasket layer to make it airtight. An intake valve for an internal heat engine characterized by having a hard heat-insulating layer for sealing. 2. The heat insulating layer is made of a ceramic material such as silicon nitride, has an engaging hole in the axis of the heat insulating layer, and has an annular depression on the inner surface surrounding the engaging hole to engage the insulating gasket layer. The intake valve has a boss portion that fits into the engagement hole and fixes the heat insulating gasket layer and the heat insulating layer to the cylinder exposed surface of the intake valve. An intake valve for an internal heat engine according to claim 1. 3. The intake valve for an internal heat engine according to claim 1, wherein the heat insulating gasket layer is made of a potassium titanate fibrous material. 4. The intake valve for an internal heat engine according to claim 2, wherein the boss portion has a distal end surface coated with ceramic such as zirconia.
JP4625187A 1987-02-28 1987-02-28 Intake valve of internal combustion engine Granted JPS63212710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4625187A JPS63212710A (en) 1987-02-28 1987-02-28 Intake valve of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4625187A JPS63212710A (en) 1987-02-28 1987-02-28 Intake valve of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63212710A JPS63212710A (en) 1988-09-05
JPH0524324B2 true JPH0524324B2 (en) 1993-04-07

Family

ID=12741948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4625187A Granted JPS63212710A (en) 1987-02-28 1987-02-28 Intake valve of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63212710A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625690B2 (en) * 2010-09-30 2014-11-19 マツダ株式会社 Valve for engine
JP7064250B2 (en) * 2018-03-02 2022-05-10 株式会社Nittan Valve for internal combustion engine

Also Published As

Publication number Publication date
JPS63212710A (en) 1988-09-05

Similar Documents

Publication Publication Date Title
JPH0524324B2 (en)
US5522371A (en) Thermal insulation engine
JP7064250B2 (en) Valve for internal combustion engine
JPS63212709A (en) Intake valve of internal combustion engine
JP3025611B2 (en) Heat shield structure
JPH03179153A (en) Structure of insulated engine
JP2923584B2 (en) Heat shield engine
JP2598885Y2 (en) Heat shield structure in heat shield engine
JP3091049B2 (en) Heat shielding gasket and combustion chamber structure of engine using the same
JPS5941622A (en) Three-chamber heat engine
JPS61175255A (en) Heat insulating piston for internal-combustion engine
JPS59188025A (en) Method of assemblying auxiliary combustion chamber in diesel-engine
JPS632577Y2 (en)
JP2785351B2 (en) Insulated engine with auxiliary combustion chamber
JP3018349B2 (en) 2-cycle insulated engine
JPH0240258Y2 (en)
JPH0247250Y2 (en)
JPH0510556B2 (en)
JPS6166845A (en) Cylinder body for heat-insulating engine
JP2559517Y2 (en) 2-cycle insulated engine
JP2671407B2 (en) Insulation engine structure
JPS6032358Y2 (en) Engine exhaust port liner device
JPH0324856Y2 (en)
JPS5928051A (en) Ceramic engine
JPH0343391Y2 (en)