JPH052419B2 - - Google Patents

Info

Publication number
JPH052419B2
JPH052419B2 JP9602685A JP9602685A JPH052419B2 JP H052419 B2 JPH052419 B2 JP H052419B2 JP 9602685 A JP9602685 A JP 9602685A JP 9602685 A JP9602685 A JP 9602685A JP H052419 B2 JPH052419 B2 JP H052419B2
Authority
JP
Japan
Prior art keywords
molten steel
tundish
flow
magnetic field
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9602685A
Other languages
Japanese (ja)
Other versions
JPS61255750A (en
Inventor
Masayuki Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9602685A priority Critical patent/JPS61255750A/en
Publication of JPS61255750A publication Critical patent/JPS61255750A/en
Publication of JPH052419B2 publication Critical patent/JPH052419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 鋼の連続鋳造の分野に適用する。とくにロング
ノズルにより溶鋼がタンデイツシユに供給される
個所における裸湯の露出をさけるために用いられ
るものである。
[Detailed Description of the Invention] <Industrial Application Field> Applicable to the field of continuous casting of steel. In particular, it is used to avoid exposure of bare hot water at the location where molten steel is supplied to the tundish through a long nozzle.

<従来の技術> 第2図に示す如く、タンデイツシユ8内の溶鋼
の空気酸化を防止する為に一般に溶鋼3よりも低
い温度で溶解するタンデイツシユフラツクス5を
溶鋼3の表面を覆うように投入する。一方、取鍋
1よりタンデイツシユ8に溶鋼3を注入すると、
その吐出流速のために溶鋼酸化防止用ノズル2付
近において溶鋼が盛り上がり、図中6のような流
れとなるのでタンデイツシユフラツクスが押しや
られて、溶鋼表面が露出4する。この場所におい
て常時ノズル2からノズル7への溶鋼流動と吐出
流の流動が加算され溶鋼が激しく動く。その結果
4の場所にタンデイツシユフラツクス5を投入し
ても直ぐに左右に押し流され溶鋼が露出した溶鋼
は空気による酸化されまたは空気中の窒素を吸収
し鋼の品質を劣化させている。
<Prior art> As shown in FIG. 2, in order to prevent air oxidation of the molten steel in the tundish 8, a tundish flux 5, which generally melts at a lower temperature than the molten steel 3, is applied to cover the surface of the molten steel 3. throw into. On the other hand, when molten steel 3 is poured from ladle 1 into tundish 8,
Due to the discharge flow rate, the molten steel swells near the molten steel oxidation prevention nozzle 2, resulting in a flow as shown in 6 in the figure, so that the tundish flux is pushed away and the molten steel surface is exposed 4. At this location, the flow of the molten steel from the nozzle 2 to the nozzle 7 and the flow of the discharge flow are constantly added, and the molten steel moves violently. As a result, even if the tundish flux 5 is introduced into the location 4, it is immediately swept away from side to side and the exposed molten steel is oxidized by the air or absorbs nitrogen in the air, deteriorating the quality of the steel.

この溶鋼酸化の軽減をさらに図るものとして、
特開昭55−86662号が開示されている。この技術
は溶鋼の酸化防止用ノズル(ロングノズル)の使
用に加えて、第5,6図に示す如くこの注入部分
を上限せき12、下限せき13で囲つて注入する
もので、注入部表面はスラグ10等で覆われてい
る。第5図例は通常の直孔型のロングノズル1
1、第6図例は、吐出孔が上向きとされたロング
ノズルの使用である。しかしながら図示されてい
ないが、大気酸化防止のためには、せき外部の溶
鋼表面もフラツクスで覆う必要があり、また一
方、せき内部には、厚いフラツクス層が必要であ
り、両面のフラツクス使用とあいまつて、溶鋼と
大気の接触による酸化防止が達成される。
In order to further reduce this molten steel oxidation,
JP-A-55-86662 discloses this. In addition to using a nozzle (long nozzle) to prevent molten steel from oxidizing, this technique involves surrounding the injection area with an upper limit weir 12 and a lower limit weir 13 as shown in Figures 5 and 6, and the surface of the injection part is Covered with slag 10 grade. The example in Figure 5 is a normal straight hole type long nozzle 1.
1. The example in FIG. 6 uses a long nozzle with the discharge hole facing upward. However, although not shown, in order to prevent atmospheric oxidation, it is necessary to cover the surface of the molten steel outside the weir with flux, and on the other hand, a thick layer of flux is required inside the weir, which is combined with the use of flux on both sides. As a result, oxidation prevention due to contact between molten steel and the atmosphere is achieved.

この技術においては、第1図例に比べ、注入部
分の溶鋼の乱れをせき内に留めることから酸化は
減少できることになるが、第5図においてはロン
グノズルからの注入流は、タンデイツシユ底部に
衝突し、反転流動となつて図中Aに示すように溶
鋼表面に向く上昇流が生じる。上昇流の到達液面
は、従来の経験から良く知られるように、フラツ
クスが流れにより排除され、溶鋼裸面を生じやす
くこの時、酸化はさけられないことになる。また
一方、第6図においても同様でありせき側に向く
上昇流Aによりせき面からフラツクスが中央に押
しやられ、この面に裸面を生じやすい欠点があり
これら欠点を軽減するためには、せき内には厚い
フラツクス層が必須とされる。また、この技術
は、せきを必要とすることから、コスト上昇をま
ねき、さらに、せきに用いる耐火物の溶損等によ
り、二次汚染の問題も残る。
With this technology, compared to the example in Figure 1, oxidation can be reduced by keeping the turbulence of the molten steel in the injection part within the weir, but in Figure 5, the injection flow from the long nozzle collides with the bottom of the tundish. However, the flow is reversed and an upward flow toward the surface of the molten steel is generated as shown at A in the figure. As is well known from conventional experience, the liquid level reached by the upward flow tends to cause flux to be removed by the flow, resulting in a bare surface of the molten steel, and at this time, oxidation is unavoidable. On the other hand, the same is true in Fig. 6, where flux is pushed from the weir surface to the center by the upward flow A toward the weir side, and this surface tends to have a bare surface. A thick flux layer is required inside. Furthermore, this technique requires a weir, which increases costs, and furthermore, there remains the problem of secondary contamination due to melting and damage of the refractories used in the weir.

<発明が解決しようとする問題点> この空気酸化を防止するために、溶鋼酸化防止
ノズル2付近の裸湯の露出を防止することであ
る。
<Problems to be Solved by the Invention> In order to prevent this air oxidation, it is necessary to prevent the bare hot water near the molten steel oxidation prevention nozzle 2 from being exposed.

上記目的において、本発明では、注入流中、溶
鋼表面側に向けて上昇する上昇流動の減速を図る
ことで裸湯の露出を防止する。
To achieve the above object, the present invention prevents bare hot water from being exposed by slowing down the upward flow that rises toward the surface of the molten steel during the injection flow.

本発明者は、上記問題の解決に際し、連鋳々型
内の溶鋼侵入深さを減じ、鋳片品質を良好にする
特開昭57−17356号に開示される技術に着目して、
本発明を成したもので、上記技術の連鋳々型内の
溶鋼の吐出流動の減速を図つて侵入深さを減じる
に使用される静磁界を利用し、本発明では溶鋼表
面側に向けて上昇する上昇流動の減速を図つて目
的を達成する。
In order to solve the above problem, the present inventor focused on the technique disclosed in Japanese Patent Application Laid-Open No. 17356/1983, which reduces the penetration depth of molten steel in the continuous casting mold and improves the quality of the slab.
This invention utilizes the static magnetic field that is used to reduce the penetration depth by slowing down the discharge flow of molten steel in the continuous casting mold of the above technology. Achieve the objective by slowing down the rising upward flow.

<問題点を解決するための手段> 第1図に示す如く溶鋼酸化防止用ノズル2付近
に(静磁場発生装置の一種である)静磁場電磁ブ
レーキ(以下electro magnetie brake;EMBR
と略す)9を設置し、溶鋼の吐出流速を抑え、裸
湯の発生を防止する。
<Means for solving the problem> As shown in Figure 1, a static magnetic field electromagnetic brake (hereinafter referred to as electro magnetie brake; EMBR
) 9 is installed to suppress the discharge flow rate of molten steel and prevent the generation of bare hot water.

上記静磁場電磁ブレーキ(以下静磁場発生装置
という)9は本発明の場合ロングノズル2からの
吐出流動に減速を与えるのではなく、タンデイツ
シユ8の底部に衝突して生起する溶鋼表面に向か
う反転流動に対して減速を与えるもので、図中、
反転流動を6で、また、この流動が減速されて生
じた流動を6′で示す。上記反転流動6が静磁場
発生装置9の対向せる極間に生じている静磁界を
横切ることにより、フレミングの法則によりブレ
ーキ作用を受け、減速拡散が図示の如くなされ
る。従つて溶鋼表面に到達する上昇流は、もは
や、湯面上のフラツクス5を乱すものでない。上
昇流の強弱は、静磁場発生装置9に付与する直流
励磁電流によつて調整可能である。また湯面に向
う反転流動6に対し減速作用を生じさせる結果、
ロングノズル2から吐出される溶鋼中に混在せる
非金属介在物の分離も、減速した流動6′からそ
の比重差に従つて湯面上に浮上するこによりすみ
やかに成され、フラツクス5側に捕捉される。
In the case of the present invention, the static magnetic field electromagnetic brake (hereinafter referred to as static magnetic field generator) 9 does not slow down the flow discharged from the long nozzle 2, but reverse flow toward the molten steel surface generated by colliding with the bottom of the tundish 8. In the figure, it gives deceleration to
The reverse flow is indicated by 6, and the flow resulting from deceleration of this flow is indicated by 6'. When the reversal flow 6 crosses the static magnetic field generated between the opposing poles of the static magnetic field generator 9, it is subjected to a braking action according to Fleming's law, and deceleration and diffusion occur as shown in the figure. Therefore, the upward flow reaching the molten steel surface no longer disturbs the flux 5 on the molten metal surface. The strength of the upward flow can be adjusted by the DC excitation current applied to the static magnetic field generator 9. In addition, as a result of creating a deceleration effect on the reverse flow 6 toward the hot water surface,
Non-metallic inclusions mixed in the molten steel discharged from the long nozzle 2 are quickly separated by floating to the molten metal surface from the decelerated flow 6' according to the difference in specific gravity, and are captured on the flux 5 side. be done.

なお、第2図例では溶鋼の酸化防止ノズルとし
てのロングノズル2は、直孔型のノズルを使用し
ているが、この理由は、側方に開孔を持つ有底の
ノズルに比べ安価であり、かつ鋳造初期のノズル
詰りが少ないという理由であり、かつ、反転流動
6も一定位置に生ずることから、静磁場発生装置
9を固定配置できる利点がある。一方、有底の上
述ノズルを使用する場合は、側孔が徐々に溶損さ
れ、上向き流動が注入経過時間に伴つて変化する
ことが多く、この場合、静磁場発生装置9の対向
せる静磁界極面積を流動の変化する範囲を覆うべ
く、大型化するかもしくは変化に対し図中、左右
方向の極間距離を移動可能にした可動型の静磁場
発生装置とする必要がある。
In the example in Figure 2, a straight hole type nozzle is used as the long nozzle 2 as a molten steel oxidation prevention nozzle, but the reason for this is that it is cheaper than a bottomed nozzle with side holes. This is because there is less nozzle clogging in the initial stage of casting, and because the reverse flow 6 also occurs at a fixed position, there is an advantage that the static magnetic field generator 9 can be fixedly arranged. On the other hand, when using the above-mentioned nozzle with a bottom, the side hole is gradually eroded and the upward flow often changes with the elapsed injection time. In order to cover the range in which the flow changes in the pole area, it is necessary to increase the size or to use a movable static magnetic field generator that can move the distance between the poles in the left and right directions in the figure in response to changes.

<作用> 第3図に示すごとく、タンデイツシユに
EMBR9を設置する。ノズル2のまわりにN、
S極が交互になるようにタンデイツシユ8の側壁
にそれぞれコイル10をヨーク11で継いでなる
ものである。
<Function> As shown in Figure 3, in the tundish
Install EMBR9. N around nozzle 2,
Coils 10 are connected to the side walls of the tundish 8 by yokes 11 so that the S poles alternate.

この状態においては、このコイル間において溶
鋼が移動すれば逆方向のブレーキ力が働くことに
なる。
In this state, if molten steel moves between the coils, a braking force in the opposite direction will be applied.

<実施例> 容量30t、長さ8m、巾0.5mのタンデイツシユ
に第3図のごとく5000ガウスの磁場をつた
EMBRをノズル2より1m以内に設置したとこ
ろ裸湯の露出は一さい観察されず従つて空気によ
る吸窒ならびに酸化の現象は一さいみられなかつ
た。
<Example> A magnetic field of 5000 Gauss was applied to a tundish with a capacity of 30 tons, a length of 8 m, and a width of 0.5 m as shown in Figure 3.
When the EMBR was installed within 1 m from the nozzle 2, no bare hot water was observed to be exposed at all, and therefore no phenomena of nitrogen absorption or oxidation due to air were observed.

<発明の効果> 従来技術のタンデイツシユにせきを設けるもの
と相違しせき内に厚いフラツクスを必要とせず
に、せきを必要としないことからコストの上昇を
防ぎ、せきに用いる耐火物の溶損等の二次汚染も
なく、空気による吸窒ならびに酸化による溶鋼の
汚染もなくなる効果を奏する。
<Effects of the invention> Unlike the conventional technique in which a weir is provided in a tundish, there is no need for a thick flux in the weir, and since no weir is required, cost increases are prevented, and the refractory material used in the weir is prevented from melting away. There is no secondary contamination, and there is no contamination of molten steel due to nitrogen absorption by air or oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図はタンデイツシユ内の状況を示す断面
図、第1図はタンデイツシユにEMBRを取付け
た状況を示す断面図、第3図はタンデイツシユに
EMBRを取付けた状況を示す平面図、第4図は
タンデイツシユにEMBRを取付けた状況を示す
側面図、第5図、第6図は上限せき、下限せきを
用いた従来例である。 1……取鍋、2……溶鋼酸化防止用ノズル、3
……溶鋼、4……溶鋼の露出する場所、5……タ
ンデイツシユフラツクス、6……溶鋼の流れ、7
……ノズル、8……タンデイツシユ、9……静磁
場電磁ブレーキ(EMBR)。
Figure 2 is a sectional view showing the inside of the tundish, Figure 1 is a sectional view showing the EMBR installed in the tundish, and Figure 3 is the inside of the tundish.
FIG. 4 is a plan view showing the situation in which the EMBR is installed, FIG. 4 is a side view showing the situation in which the EMBR is installed in the tundish, and FIGS. 5 and 6 are conventional examples using an upper limit weir and a lower limit weir. 1...Ladle, 2...Nozzle for preventing oxidation of molten steel, 3
...molten steel, 4... place where molten steel is exposed, 5... tandate flux, 6... flow of molten steel, 7
...Nozzle, 8...Tandate, 9...Static magnetic field electromagnetic brake (EMBR).

Claims (1)

【特許請求の範囲】 1 タンデイツシユ内溶鋼表面をフラツクスで覆
い、取鍋からの注入に際しロングノズルを利用す
る取鍋からタンデイツシユへの無酸化注入方法に
おいて、 取鍋からタンデイツシユへの溶鋼供給位置を中
央にはさんで、その両側に静磁場発生装置を設
け、該静磁場発生装置により誘引される静磁界に
よつて溶鋼表面に向けて上昇する上昇流動を減速
することを特徴とする取鍋からタンデイツシユへ
の無酸化注入方法。
[Scope of Claims] 1. In a non-oxidizing injection method from a ladle to a tundish in which the surface of molten steel in a tundish is covered with flux and a long nozzle is used when injecting from the ladle, the molten steel is supplied from the ladle to the tundish at a central position. A tundish from a ladle, characterized in that a static magnetic field generator is provided on both sides of the ladle, and the upward flow rising toward the surface of the molten steel is slowed down by the static magnetic field induced by the static magnetic field generator. Oxidation-free implantation method.
JP9602685A 1985-05-08 1985-05-08 Method for oxidation-free pouring from ladle to tundish Granted JPS61255750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9602685A JPS61255750A (en) 1985-05-08 1985-05-08 Method for oxidation-free pouring from ladle to tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9602685A JPS61255750A (en) 1985-05-08 1985-05-08 Method for oxidation-free pouring from ladle to tundish

Publications (2)

Publication Number Publication Date
JPS61255750A JPS61255750A (en) 1986-11-13
JPH052419B2 true JPH052419B2 (en) 1993-01-12

Family

ID=14153843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9602685A Granted JPS61255750A (en) 1985-05-08 1985-05-08 Method for oxidation-free pouring from ladle to tundish

Country Status (1)

Country Link
JP (1) JPS61255750A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179054A (en) * 1992-12-11 1994-06-28 Nippon Steel Corp Method for adjusting nitrogen in small lot material of tundish
KR100568333B1 (en) * 2001-03-21 2006-04-05 주식회사 포스코 A method for manufacturing hot dipped galvanizing steel sheet
CN112974783B (en) * 2021-02-07 2022-11-22 佛山科学技术学院 Tundish flow control device based on static magnetic field

Also Published As

Publication number Publication date
JPS61255750A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
JPH0220349B2 (en)
JP5014934B2 (en) Steel continuous casting method
US4715586A (en) Continuous caster tundish having wall dams
JP2726096B2 (en) Continuous casting method of steel using static magnetic field
JPH052419B2 (en)
JPS61193755A (en) Electromagnetic stirring method
JPH0579430B2 (en)
Wolf Slab caster tundish configuration and operation--a review
JPS59101261A (en) Continuous casting method with which flow of molten steel is braked by static magnetic field
JPS63154246A (en) Continuous casting method for steel using static magnetic field
JPS6152969A (en) Electromagnetic stirrer for continuous casting molten steel
JPS6272458A (en) Electromagnetic stirring method
JP5125663B2 (en) Continuous casting method of slab slab
JP4998705B2 (en) Steel continuous casting method
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JPS623857A (en) Continuous casting method using single hole type immersion nozzle
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
CN112974783B (en) Tundish flow control device based on static magnetic field
JP5035115B2 (en) Steel continuous casting method
US3727668A (en) Method and apparatus for pouring liquid metal into a continuous-casting mold
JPS6316855A (en) Gate for molten metal container provided with molten metal outflow port
JP3149821B2 (en) Continuous casting method
JPH01289543A (en) Continuous casting method for steel
JPH03275247A (en) Twin roll type strip continuous casting method