JPH05239506A - Production of metal powder sintered compact - Google Patents

Production of metal powder sintered compact

Info

Publication number
JPH05239506A
JPH05239506A JP4134692A JP4134692A JPH05239506A JP H05239506 A JPH05239506 A JP H05239506A JP 4134692 A JP4134692 A JP 4134692A JP 4134692 A JP4134692 A JP 4134692A JP H05239506 A JPH05239506 A JP H05239506A
Authority
JP
Japan
Prior art keywords
powder
flat
metal powder
compact
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4134692A
Other languages
Japanese (ja)
Other versions
JP3006263B2 (en
Inventor
Tetsuya Suganuma
徹哉 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4041346A priority Critical patent/JP3006263B2/en
Publication of JPH05239506A publication Critical patent/JPH05239506A/en
Application granted granted Critical
Publication of JP3006263B2 publication Critical patent/JP3006263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the high-strength sintered compact at a low cost. CONSTITUTION:This metal powder consists of >=50vol.% of the flat powder having 3-200mum average grain diameter and >=5 flattening ratio and the balance globular powder having the average diameter of <=20% of that of the flat powder. The orientation of the flat powder is controlled by vibration, and the metal powder is compacted to obtain a compact having >=90% compact density. The pressing force is reduced to <=1/2 of that of the conventional process by utilizing the vibrational energy, and expensive HIP, etc., need not be used. The compact is then hot or warm-worked in the direction perpendicular to the orientation direction of the compact, hence a shearing force is most strongly applied to the metal powder, and the oxide film on the surface is effectively broken.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末焼結体の製造
方法に関し、詳しくはアルミニウム(Al)粉末、マグ
ネシウム(Mg)粉末、チタン(Ti)粉末若しくはこ
れらの合金粉末又はこれらの混合粉末が主となる金属粉
末により高い成形体密度の成形体を成形し、この成形体
により緻密化が高く図られた焼結体を製造する金属粉末
焼結体の製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal powder sintered body, and more specifically, aluminum (Al) powder, magnesium (Mg) powder, titanium (Ti) powder or alloy powder thereof or mixed powder thereof. The present invention relates to an improvement in a method for producing a metal powder sintered body, in which a formed body having a high formed body density is formed from a metal powder mainly containing, and a sintered body which is highly densified by the formed body is produced.

【0002】[0002]

【従来の技術】従来、粉末冶金法により、Al粉末、M
g粉末、Ti粉末、これらの合金粉末又はこれらの混合
粉末等の各種の軽合金の金属粉末を用いた金属粉末焼結
体の製造方法が知られている(「金属材料と加工技術講
座12・粉末冶金の技術と材料および性能」地人書館発
行)。この粉末冶金法では、例えば金属粉末を押出法等
によりバルク又は成形体とし、加圧、加熱して緻密化さ
れた焼結体を製造する。この焼結体は、均一な品質であ
ること、合金化しない材料も成形可能であること、金属
とセラミックなどの複合材料が得られること、大量生産
に適して材料の歩留りもよいこと、寸法精度がよいこと
等から、種々の部品、工具等に採用されている。
2. Description of the Related Art Conventionally, Al powder and M have been prepared by powder metallurgy.
There is known a method for producing a metal powder sintered body using metal powders of various light alloys such as g powder, Ti powder, alloy powders thereof, or mixed powders thereof (see “Metal Material and Processing Technology Course 12. Powder metallurgy technology and materials and performance "by Jishin Shokan). In this powder metallurgy method, for example, metal powder is made into a bulk or a compact by an extrusion method or the like, and pressurized and heated to produce a densified sintered body. This sintered body has uniform quality, can form non-alloyed materials, can obtain composite materials such as metal and ceramics, is suitable for mass production and has good material yield, and dimensional accuracy Therefore, it is used for various parts, tools, etc.

【0003】[0003]

【発明が解決しようとする課題】成形体密度は、成形体
抜き出し時に割れない条件下では、高い程後加工の焼結
緻密化の進行が容易になり、高強度の焼結体が得られ
る。しかし、従来の粉末冶金法では、一般に球状粉や不
規則形状粉からなる金属粉末を採用していたため、成形
体中の気孔率を充分低下させにくく、高価な冷間静水圧
焼結法(CIP)等によらなければ成形体ひいては焼結
体が高い強度を確保しにくかった。また、高い強度の焼
結体を得るために、超急冷粉末を金属粉末として採用す
ることも考えられるが、超急冷粉末は極めて硬質である
ため、成形が非常に困難である。さらに、熱間押出法に
代表される焼結・バルク化過程では、高強度の焼結体を
得べく効果的な焼結を行なうためには、金属粉末の表面
の酸化膜を破壊する必要があるが、一般的な球状粉等を
金属粉末として採用すれば、大きな押出比を要し、やは
り製造コストの高騰を生じてしまう。
The higher the density of the molded body, the more easily the sintering and densification in the post-processing will proceed, and the higher strength the sintered body can be obtained under the condition that the molded body is not cracked when the molded body is taken out. However, in the conventional powder metallurgical method, since the metal powder composed of spherical powder or irregularly shaped powder is generally adopted, it is difficult to sufficiently reduce the porosity in the molded body, and the expensive cold isostatic pressing (CIP) method is used. ), Etc., it was difficult to secure high strength for the molded body and thus the sintered body. Further, in order to obtain a high-strength sintered body, it is possible to adopt ultra-quenched powder as the metal powder, but since ultra-quenched powder is extremely hard, it is very difficult to mold it. Further, in the sintering / bulking process represented by the hot extrusion method, it is necessary to destroy the oxide film on the surface of the metal powder in order to perform effective sintering to obtain a high-strength sintered body. However, if a general spherical powder or the like is used as the metal powder, a large extrusion ratio is required, and the manufacturing cost also rises.

【0004】本発明は、上記従来の事情に鑑みてなされ
たものであって、低い製造コストで高い強度の焼結体を
製造可能な金属粉末焼結体の製造方法を提供することを
目的とする。
The present invention has been made in view of the above conventional circumstances, and an object of the present invention is to provide a method for producing a metal powder sintered body capable of producing a high-strength sintered body at a low production cost. To do.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本第1発明の金属粉末焼結体の製造方法は、Al
粉末、Mg粉末、Ti粉末若しくはこれらの合金粉末又
はこれらの混合粉末が主となる金属粉末を加圧成形し、
緻密化する金属粉末焼結体の製造方法であって、前記金
属粉末として、平均粒径3〜200μmであるとともに
厚さに対する粒径からなる偏平比5以上の偏平粉を50
体積%以上用意するとともに、平均粒径が該偏平粉の平
均粒径の20%以下の球状粉を残部用意し、振動エネル
ギーを加えて成形する振動成形法によって、該金属粉末
中の該偏平粉を配向制御するとともに、成形体密度90
%以上の成形体を成形する成形工程と、前記成形体の配
向方向と垂直方向に熱間又は温間加工を施し、焼結緻密
化する焼結工程と、を備えてなることを特徴とする。
(1) The method for producing a metal powder sintered body according to the first aspect of the present invention is
Powder, Mg powder, Ti powder, alloy powder thereof, or metal powder whose main component is a powder mixture,
A method for producing a densified metal powder sintered body, wherein as the metal powder, 50 flat particles having an average particle size of 3 to 200 µm and a flatness ratio of 5 or more having a particle size with respect to a thickness are used.
The flat powder in the metal powder is prepared by a vibration molding method in which a spherical powder having an average particle diameter of 20% or less of the average particle diameter of the flat powder is prepared and the molding is performed by adding vibration energy. The orientation of the molded body and the density of the molded body of 90
% Or more of a molded body, and a sintering step of performing hot or warm working in a direction perpendicular to the orientation direction of the molded body to sinter and densify the molded body. ..

【0006】第1発明の製造方法では、偏平粉は平均粒
径3〜200μmであるものを採用する。平均粒径3μ
m未満では、球状粉に近似して本発明の効果が得られに
くくなるとともに、取扱いが困難になる。平均粒径20
0μmを超えると、金属粉末の絡み合いが少なく、成形
性が低下する。また、この偏平粉は偏平比(粒径/厚
さ)5以上のものを採用する。偏平比5未満では、緻密
化効果が得られにくい。
In the manufacturing method of the first invention, the flat powder has an average particle diameter of 3 to 200 μm. Average particle size 3μ
If it is less than m, it becomes difficult to obtain the effects of the present invention in a manner similar to spherical powder, and handling becomes difficult. Average particle size 20
When it exceeds 0 μm, the entanglement of the metal powder is small and the formability is deteriorated. Further, this flat powder has a flatness ratio (particle diameter / thickness) of 5 or more. If the aspect ratio is less than 5, it is difficult to obtain the densification effect.

【0007】球状粉は平均粒径が偏平粉の平均粒径の2
0%以下のものを採用する。偏平粉を50体積%以上用
意するとともに、球状粉を残部用意する。偏平粉が50
体積%未満では本発明の効果が得られにくい。 (2)本第2発明の金属粉末焼結体の製造方法は、Al
粉末、Mg粉末、Ti粉末若しくはこれらの合金粉末又
はこれらの混合粉末が主となる金属粉末を加圧成形し、
緻密化する金属粉末焼結体の製造方法であって、前記金
属粉末として、平均粒径3〜200μmであるとともに
厚さに対する粒径からなる偏平比5以上の偏平粉を95
体積%以上用意し、振動エネルギーを加えて成形する振
動成形法によって、該金属粉末中の該偏平粉を配向制御
するとともに、成形体密度90%以上の成形体を成形す
る成形工程と、前記成形体の配向方向と垂直方向に熱間
又は温間加工を施し、焼結緻密化する焼結工程と、を備
えてなることを特徴とする。
The average particle size of spherical powder is 2 of the average particle size of flat powder.
Use 0% or less. Prepare 50% by volume or more of flat powder and the rest of spherical powder. 50 flat powders
If it is less than volume%, the effect of the present invention is difficult to be obtained. (2) The method for producing a metal powder sintered body according to the second aspect of the present invention is
Powder, Mg powder, Ti powder, alloy powder of these, or metal powder mainly consisting of mixed powder thereof, is pressure-molded,
A method for producing a densified metal powder sintered body, which comprises, as the metal powder, a flat powder having an average particle size of 3 to 200 μm and a flatness ratio of 5 or more having a particle size with respect to thickness.
A molding step of controlling the orientation of the flat powder in the metal powder and molding a molded body having a molded body density of 90% or more by a vibration molding method of preparing at least volume% and molding by adding vibration energy, And a sintering step of performing hot or warm working in a direction perpendicular to the orientation direction of the body to sinter and densify the body.

【0008】第2発明の製造方法では、偏平粉を95体
積%以上用意する。偏平粉が95体積%以上であると、
より本発明の効果が得られる。
In the manufacturing method of the second invention, the flat powder is prepared in an amount of 95% by volume or more. If the flat powder is 95% by volume or more,
The effect of the present invention is further obtained.

【0009】[0009]

【作用】本発明者は、金属粉末として偏平粉を採用して
高い成形体密度の成形体を得、これにより焼結体の強度
を向上させることを検討した。この場合、偏平粉を主と
する成形体は、無配向状態では一般的な球状粉や不規則
形状粉を主とする成形体と比較して成形体密度が低くな
るが、本発明のように振動エネルギを利用して強制的に
配向制御できる振動成形法を活用すれば、成形体密度を
90%以上に高くすることができる。しかも、その際、
成形加圧力は振動エネルギの活用により通常の1/2以
下であり、高価なCIP等の成形法を採用する必要がな
い。また、偏平粉を主とする高い成形体密度の成形体
は、配向方向と垂直方向に熱間又は温間加工を施すこと
により、金属粉末にせん断力を最も強く働かせることが
可能となり、金属粉末における表面の酸化膜を効果的に
破壊して焼結緻密化を進行させうる。
The present inventor has studied the use of flat powder as the metal powder to obtain a compact having a high compact density, thereby improving the strength of the sintered compact. In this case, the compact mainly composed of flat powder has a lower compact density as compared with the compact mainly composed of general spherical powder or irregularly shaped powder in the non-oriented state, but as in the present invention. By utilizing a vibration molding method in which the orientation can be forcibly controlled by utilizing the vibration energy, the density of the molded body can be increased to 90% or more. Moreover, at that time,
The molding pressure is 1/2 or less of the normal pressure by utilizing the vibration energy, and there is no need to adopt an expensive molding method such as CIP. Further, a compact having a high compact density, which is mainly composed of flat powder, can be subjected to hot or warm working in the direction perpendicular to the orientation direction so that the shearing force can be exerted most strongly on the metal powder. It is possible to effectively destroy the oxide film on the surface to promote sintering and densification.

【0010】[0010]

【実施例】以下、本発明を具体化した実施例1〜4を比
較例1〜4とともに図面を参照しつつ説明する。 (実施例1) 成形工程:金属粉末として、平均粒径30μm、厚さ3
μm(偏平比10)の偏平Al合金粉(JIS2024
(Hv220))を100体積(Vf)%用意する。な
お、偏平Al合金粉の平面図及び立面図を図2(A)に
例示する。アサヒエンジニアリング(株)製のクロトン
振動成形プレス機により、図3に示すように、この偏平
Al合金粉を加圧面圧2ton/cm2 で加圧方向Pに
垂直に配向させて成形し、偏平Al合金粉のみからなる
成形体密度96%(気孔率4%)の成形体を得る(な
お、図において黒塗りは気孔を示す。以下同様。)。
EXAMPLES Examples 1 to 4 embodying the present invention will be described below together with Comparative Examples 1 to 4 with reference to the drawings. (Example 1) Molding process: As a metal powder, an average particle diameter of 30 μm and a thickness of 3
Flat Al alloy powder (JIS 2024)
(Hv220)) is prepared by 100 volume (Vf)%. A plan view and an elevation view of the flat Al alloy powder are illustrated in FIG. As shown in FIG. 3, this flat Al alloy powder was formed by orienting it perpendicularly to the pressing direction P at a pressing surface pressure of 2 ton / cm 2 using a croton vibration molding press manufactured by Asahi Engineering Co., Ltd. A compact having a compact density of 96% (porosity 4%) made of only alloy powder is obtained (the black coating in the figure indicates pores, and so on).

【0011】焼結工程:図4に示すように、上記成形体
6をCu製カプセル7に入れ、真空加熱脱気処理後、封
缶し、500ton熱間押出機を用いて400℃で偏平
Al合金粉の配向と垂直方向にダイ8間を押出比「2」
で矢印方向に押出し、偏平粉の配向と垂直方向に後加工
して金属粉末にせん断力を最も強く働かせる。こうし
て、金属粉末における表面の酸化膜を効果的に破壊して
焼結緻密化を進行させ、焼結体密度100%の焼結体9
を得る。 (実施例2) 成形工程:金属粉末として、実施例1と同種の偏平Al
合金粉75体積%と、平均粒径5μm(偏平Al合金粉
に対して16.7%)の微細球状Al合金粉(JIS2
024)25体積%とを用意し、他は実施例1と同一の
条件の下、図5に示すように、偏平Al合金粉と微細球
状Al合金粉とからなる成形体密度93%(気孔率7
%)の成形体を得る。なお、微細球状Al合金粉の立面
図を図2(B)に例示する。
Sintering step: As shown in FIG. 4, the molded body 6 was placed in a Cu capsule 7, degassed by vacuum heating, sealed in a can, and heated to 400 ° C. using a 500 ton hot extruder to flatten Al. Extrusion ratio “2” between the dies 8 in the direction perpendicular to the alloy powder orientation
The metal powder is extruded in the direction of arrow and is post-processed in the direction perpendicular to the orientation of the flat powder to exert the strongest shearing force on the metal powder. In this way, the oxide film on the surface of the metal powder is effectively destroyed to advance the sintering and densification, and the sintered body 9 having a sintered body density of 100% is obtained.
To get (Example 2) Forming process: Flat metal of the same kind as in Example 1 as metal powder
Fine spherical aluminum alloy powder (JIS2) having 75% by volume of alloy powder and an average particle diameter of 5 μm (16.7% with respect to flattened aluminum alloy powder).
024) 25% by volume, and under the same conditions as in Example 1 except for that, as shown in FIG. 5, a compact density 93% (porosity) composed of flat Al alloy powder and fine spherical Al alloy powder 7
%) To obtain a molded product. An elevation view of the fine spherical Al alloy powder is illustrated in FIG. 2 (B).

【0012】焼結工程:実施例1と同一の条件の下、焼
結体密度100%の焼結体を得る。 (実施例3) 成形工程:金属粉末として、実施例1と同種の偏平Al
合金粉50体積%と、実施例2と同種の微細球状Al合
金粉50体積%とを用意し、他は実施例1と同一の条件
の下、成形体密度90%(気孔率10%)の成形体を得
る。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 100% is obtained. (Example 3) Molding process: Flat metal of the same kind as in Example 1 as metal powder
Under the same conditions as in Example 1, 50% by volume of the alloy powder and 50% by volume of the fine spherical Al alloy powder of the same kind as in Example 2 were prepared, and the compact density 90% (porosity 10%) was obtained. Obtain a molded body.

【0013】焼結工程:実施例1と同一の条件の下、焼
結体密度100%の焼結体を得る。 (実施例4) 成形工程:金属粉末として、平均粒径20μm、厚さ2
μm(偏平比10)の超急冷偏平Al合金粉(JIS2
024(Hv350))を100体積%用意し、他は実
施例1と同一の条件の下、成形体密度95%(気孔率5
%)の成形体を得る。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 100% is obtained. (Example 4) Molding step: As metal powder, average particle diameter 20 μm, thickness 2
Ultra-quick flattened Al alloy powder (JIS2
024 (Hv350)) was prepared in an amount of 100% by volume, and under the same conditions as in Example 1 except for that, a compact density 95% (porosity 5
%) To obtain a molded product.

【0014】焼結工程:350℃の押出比「10」で押
出し、他は実施例1と同一の条件の下、焼結体密度10
0%の焼結体を得る。 (比較例1) 成形工程:金属粉末として、実施例2と同種の微細球状
Al合金粉100体積%を用意し、他は実施例1と同一
の条件の下、成形体を得たところ、成形体密度92%
(気孔率8%)の成形体を得る。
Sintering step: Extruded at an extrusion ratio of "10" at 350 ° C., under the same conditions as in Example 1 except that the density of the sintered body was 10
A 0% sintered body is obtained. (Comparative Example 1) Molding step: 100% by volume of a fine spherical Al alloy powder of the same type as in Example 2 was prepared as the metal powder, and a molded body was obtained under the same conditions as in Example 1 except that the molding was carried out. Body density 92%
A molded product having a porosity of 8% is obtained.

【0015】焼結工程:実施例1と同一の条件の下、焼
結体密度100%の焼結体を得る。 (比較例2) 成形工程:金属粉末として、平均粒径20μm(偏平A
l合金粉に対して6.7%)の粗大球状Al合金粉(J
IS2024)100体積%を用意し、他は実施例1と
同一の条件の下、成形体を得たところ、図6に示すよう
に、粗大球状Al合金粉からなる成形体密度87%(気
孔率13%)の成形体を得る。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 100% is obtained. (Comparative Example 2) Molding process: Metal powder having an average particle size of 20 μm (flat A
Coalescent spherical Al alloy powder (J% to 6.7%) (J
IS2024) 100% by volume was prepared, and a compact was obtained under the same conditions as in Example 1 except that, as shown in FIG. 6, the compact density of the coarse spherical Al alloy powder was 87% (porosity). 13%) molded body is obtained.

【0016】焼結工程:実施例1と同一の条件の下、焼
結体密度98%の焼結体を得る。(比較例3) 成形工程:金属粉末として、実施例1と同種の偏平Al
合金粉75体積%と、比較例2と同種の粗大球状Al合
金粉25体積%とを用意し、他は実施例1と同一の条件
の下、成形体を得たところ、図7に示すように、偏平A
l合金粉と粗大球状Al合金粉とからなる成形体密度7
5%(気孔率25%)の成形体を得る。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 98% is obtained. (Comparative Example 3) Molding process: Flat metal of the same kind as in Example 1 as a metal powder.
An alloy powder was prepared under the same conditions as in Example 1 except that 75% by volume of alloy powder and 25% by volume of coarse spherical Al alloy powder of the same type as in Comparative Example 2 were prepared, and as shown in FIG. And flat A
Compacted body density of 1 alloy powder and coarse spherical Al alloy powder 7
A 5% (porosity 25%) compact is obtained.

【0017】焼結工程:実施例1と同一の条件の下、焼
結体密度75%の焼結体を得る。(比較例4) 成形工程:金属粉末として、平均粒径10μm(偏平A
l合金粉に対して3.3%)の球状Al合金粉(JIS
2024)50体積%と、実施例1と同種の偏平Al合
金粉50体積%とを用意し、他は実施例1と同一の条件
の下、成形体を得たところ、成形体密度80%(気孔率
20%)の成形体を得る。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 75% is obtained. (Comparative Example 4) Molding process: Metal powder having an average particle diameter of 10 μm (flat A
3.3% spherical aluminum alloy powder (JIS)
2024) 50% by volume and 50% by volume of flat Al alloy powder of the same kind as in Example 1 were prepared, and a compact was obtained under the same conditions as in Example 1, except that the compact density was 80% ( A molded product having a porosity of 20% is obtained.

【0018】焼結工程:実施例1と同一の条件の下、焼
結体密度96%の焼結体を得る。(評価) 実施例1〜3、比較例3、4の成形体の気孔率を図1に
示す。図1より、偏平Al合金粉が50体積%以上、平
均粒径が偏平Al合金粉の平均粒径の20%以下の球状
Al合金粉が残部であることにより、振動エネルギを利
用して強制的に配向制御できる振動成形法の活用によ
り、成形体密度を90%以上にできることがわかる。 (試験)成形体中の偏平粉混合比率と成形体中の気孔率
との関係を図8に示す。図8において、A曲線は実施例
1と同種の偏平Al合金粉と実施例2と同種の微細球状
Al合金粉との混合粉末からなる金属粉末を振動成形し
た場合、B曲線は同偏平Al合金粉と比較例2と同種の
粗大球状Al合金粉との混合粉末からなる金属粉末を振
動成形した場合、C曲線は同偏平Al合金粉と同微細球
状Al合金粉との混合粉末からなる金属粉末を一般成形
(振動させない成形)した場合、D曲線は同偏平Al合
金粉と同粗大球状Al合金粉との混合粉末からなる金属
粉末を一般成形した場合を示す。図8により、本発明の
範囲に一部が該当するA曲線では、成形体中の偏平粉の
混合比率が50体積%以上であれば、成形体密度90%
以上の成形体が得られることがわかる。よって、本発明
の製造方法では、後加工の焼結緻密化の進行が容易な成
形体密度90%以上にすることができるため、高強度の
焼結体が得られることがわかる。
Sintering step: Under the same conditions as in Example 1, a sintered body having a sintered body density of 96% is obtained. (Evaluation) The porosities of the molded bodies of Examples 1 to 3 and Comparative Examples 3 and 4 are shown in FIG. From FIG. 1, since the spherical Al alloy powder having 50% by volume or more of the flat Al alloy powder and 20% or less of the average particle size of the flat Al alloy powder is the rest, the vibration energy is used forcibly. It can be seen that the density of the molded body can be increased to 90% or more by utilizing the vibration molding method capable of controlling the orientation. (Test) The relationship between the flat powder mixing ratio in the compact and the porosity in the compact is shown in FIG. In FIG. 8, the curve A is the same flat aluminum alloy powder as in Example 1 and the fine spherical aluminum alloy powder of the same kind as in Example 2 is subjected to vibration molding, and the curve B is the same flat Al alloy powder. When a metal powder made of a mixed powder of the powder and a coarse spherical Al alloy powder of the same type as that of Comparative Example 2 is vibration-molded, the C curve shows a metal powder made of a mixed powder of the same flat Al alloy powder and the same fine spherical Al alloy powder. In the case of general molding (molding without vibration), the D curve shows the case of general molding of a metal powder made of a mixed powder of the same flat Al alloy powder and the coarse spherical Al alloy powder. According to FIG. 8, in the A curve, a part of which falls within the range of the present invention, if the mixing ratio of the flat powder in the compact is 50% by volume or more, the compact density 90%
It can be seen that the above molded body can be obtained. Therefore, according to the manufacturing method of the present invention, it is possible to obtain a high-strength sintered body because the density of the formed body can be set to 90% or more, which facilitates the progress of sintering and densification in post-processing.

【0019】しかも、その際、成形加圧力が通常の1/
2以下であるため、高価なCIP等の成形法を採用する
必要がなく、低い製造コストで焼結体を製造することが
できる。
In addition, at that time, the molding pressure is 1 / normal.
Since it is 2 or less, it is not necessary to use an expensive molding method such as CIP, and a sintered body can be manufactured at a low manufacturing cost.

【0020】[0020]

【発明の効果】以上詳述したように、本発明の金属粉末
焼結体の製造方法では、所定の偏平粉からなる金属粉末
を採用し、振動エネルギを利用して強制的に配向制御
し、かつ偏平粉の配向と垂直方向に後加工するため、低
い製造コストで高い強度の焼結体を製造することができ
る。
As described above in detail, in the method for producing a metal powder sintered body of the present invention, a metal powder made of a predetermined flat powder is adopted, and the orientation is forcibly controlled by utilizing vibration energy. Moreover, since the post-processing is performed in the direction perpendicular to the orientation of the flat powder, it is possible to manufacture a high-strength sintered body at a low manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜3、比較例3、4の成形体の気孔率
を示すグラフである。
FIG. 1 is a graph showing the porosity of molded bodies of Examples 1 to 3 and Comparative Examples 3 and 4.

【図2】(A)は偏平Al合金粉の平面図及び立面図、
(B)は球状Al合金粉の立面図である。
2A is a plan view and an elevation view of a flat Al alloy powder, FIG.
(B) is an elevation view of spherical Al alloy powder.

【図3】実施例1の成形体の成形状態を示す側面図であ
る。
3 is a side view showing a molded state of the molded body of Example 1. FIG.

【図4】実施例1の成形体を熱間押出加工した状態を示
す断面図である。
FIG. 4 is a cross-sectional view showing a state where the molded body of Example 1 is hot extruded.

【図5】実施例2の成形体の成形状態を示す側面図であ
る。
5 is a side view showing a molded state of the molded body of Example 2. FIG.

【図6】比較例2の成形体の成形状態を示す側面図であ
る。
FIG. 6 is a side view showing a molded state of a molded body of Comparative Example 2.

【図7】比較例3の成形体の成形状態を示す側面図であ
る。
FIG. 7 is a side view showing a molded state of a molded body of Comparative Example 3.

【図8】成形体中の偏平粉混合比率と成形体中の気孔率
との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the flat powder mixing ratio in the compact and the porosity in the compact.

【符号の説明】[Explanation of symbols]

6…成形体 7…Cu製カプセル
8…ダイ 9…焼結体
6 ... Molded body 7 ... Cu capsule
8 ... Die 9 ... Sintered body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム粉末、マグネシウム粉末、チ
タン粉末若しくはこれらの合金粉末又はこれらの混合粉
末が主となる金属粉末を加圧成形し、緻密化する金属粉
末焼結体の製造方法において、 前記金属粉末として、平均粒径3〜200μmであると
ともに厚さに対する粒径からなる偏平比5以上の偏平粉
を50体積%以上用意するとともに、平均粒径が該偏平
粉の平均粒径の20%以下の球状粉を残部用意し、振動
エネルギーを加えて成形する振動成形法によって、該金
属粉末中の該偏平粉を配向制御するとともに、成形体密
度90%以上の成形体を成形する成形工程と、 前記成形体の配向方向と垂直方向に熱間又は温間加工を
施し、焼結緻密化する焼結工程と、を備えてなることを
特徴とする金属粉末焼結体の製造方法。
1. A method for producing a metal powder sintered body, which comprises compacting and densifying a metal powder mainly composed of aluminum powder, magnesium powder, titanium powder, an alloy powder thereof, or a mixed powder thereof, wherein As the powder, 50% by volume or more of flat powder having an average particle size of 3 to 200 μm and a flatness ratio of 5 or more and having a particle size with respect to thickness is prepared, and the average particle size is 20% or less of the average particle size of the flat powder. A spherical powder of the rest, and by a vibration molding method of molding by applying vibration energy, while controlling the orientation of the flat powder in the metal powder, and molding a molded body having a molded body density of 90% or more, And a sintering step of performing hot or warm working in a direction perpendicular to the orientation direction of the molded body to sinter and densify it.
【請求項2】アルミニウム粉末、マグネシウム粉末、チ
タン粉末若しくはこれらの合金粉末又はこれらの混合粉
末が主となる金属粉末を加圧成形し、緻密化する金属粉
末焼結体の製造方法において、 前記金属粉末として、平均粒径3〜200μmであると
ともに厚さに対する粒径からなる偏平比5以上の偏平粉
を95体積%以上用意し、振動エネルギーを加えて成形
する振動成形法によって、該金属粉末中の該偏平粉を配
向制御するとともに、成形体密度90%以上の成形体を
成形する成形工程と、 前記成形体の配向方向と垂直方向に熱間又は温間加工を
施し、焼結緻密化する焼結工程と、を備えてなることを
特徴とする金属粉末焼結体の製造方法。
2. A method for producing a metal powder sintered body, which comprises compacting and densifying a metal powder mainly composed of aluminum powder, magnesium powder, titanium powder, an alloy powder thereof, or a mixed powder thereof, wherein 95% by volume or more of flat powder having an average particle size of 3 to 200 μm and a flatness ratio of 5 or more having a particle size with respect to the thickness is prepared, and vibration powder is added to the metal powder by a vibration molding method. Of controlling the orientation of the flat powder, and forming a compact having a compact density of 90% or more, and performing hot or warm working in a direction perpendicular to the orientation direction of the compact to sinter and densify. A method of manufacturing a metal powder sintered body, comprising: a sintering step.
JP4041346A 1992-02-27 1992-02-27 Method for producing metal powder sintered body Expired - Lifetime JP3006263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041346A JP3006263B2 (en) 1992-02-27 1992-02-27 Method for producing metal powder sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041346A JP3006263B2 (en) 1992-02-27 1992-02-27 Method for producing metal powder sintered body

Publications (2)

Publication Number Publication Date
JPH05239506A true JPH05239506A (en) 1993-09-17
JP3006263B2 JP3006263B2 (en) 2000-02-07

Family

ID=12605958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041346A Expired - Lifetime JP3006263B2 (en) 1992-02-27 1992-02-27 Method for producing metal powder sintered body

Country Status (1)

Country Link
JP (1) JP3006263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429393B2 (en) * 2010-09-30 2014-02-26 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429393B2 (en) * 2010-09-30 2014-02-26 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP3006263B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US7097807B1 (en) Nanocrystalline aluminum alloy metal matrix composites, and production methods
US4613370A (en) Hollow charge, or plate charge, lining and method of forming a lining
JPH0130882B2 (en)
JP2002129204A (en) Method for manufacturing porous metal
JPH0130898B2 (en)
EP1694875B1 (en) Processes for sintering aluminum and aluminum alloy components
JPH0692603B2 (en) METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH05239506A (en) Production of metal powder sintered compact
US5968428A (en) Molding method for powder particles
JPH02259029A (en) Manufacture of aluminide
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH08176615A (en) Closed powder forging
RU2746657C1 (en) Method for producing high-density press workpieces with dispersed grains in powder metallurgy of metal-ceramic, mineral-ceramic and refractory alloys
JPS58104102A (en) Production of fiber reinforced porous composite material
JPS63277728A (en) Manufacture of aluminum-base composite material
JPH05287302A (en) Production of high-density powder sintered titanium alloy
WO2005053882A2 (en) Process for complex transient liquid phase sintering of powder metal
JP6939579B2 (en) Microcapsules, composite ceramic granules and ceramic manufacturing methods using them
JPH01272730A (en) Manufacture of whisker reinforced metallic sintered member
JPS5873735A (en) Production of diamond sintered body
JPH1179845A (en) Production of silicon carbide having high toughness
JP2806133B2 (en) Manufacturing method of high density powder sintered titanium alloy
JP2576320B2 (en) Manufacturing method of high density powder sintered titanium alloy