JPH05238718A - Method and device for producing fullerene - Google Patents

Method and device for producing fullerene

Info

Publication number
JPH05238718A
JPH05238718A JP4041256A JP4125692A JPH05238718A JP H05238718 A JPH05238718 A JP H05238718A JP 4041256 A JP4041256 A JP 4041256A JP 4125692 A JP4125692 A JP 4125692A JP H05238718 A JPH05238718 A JP H05238718A
Authority
JP
Japan
Prior art keywords
graphite
discharge
fullerene
microwave
cavity resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4041256A
Other languages
Japanese (ja)
Inventor
Tetsuya Ikeda
哲哉 池田
Tsugitoshi Ogura
次利 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4041256A priority Critical patent/JPH05238718A/en
Publication of JPH05238718A publication Critical patent/JPH05238718A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials

Abstract

PURPOSE:To improve the production efficiency by sublimating a solid graphite arranged in a microwave discharge field by discharge plasma and subjecting the sublimate to a reaction. CONSTITUTION:The microwave outputted from a microwave oscillator 5 is introduced into a cylindrical cavity resonator 1 through a waveguide 6. A graphite rod 3 is arranged in a quartz discharge tube 2, and gaseous He introduced from an He feed part 4 is discharged. The surface temp. of the graphite rod 3 is increased by a high-temp. and spatially uniform discharge plasma produced in the electric field generated in the resonator, and the graphite is vaporized at a temp. higher than the sublimation temp. of graphite. The deviation of the resonance frequency due to the evapolation of graphite is adjusted by a tuner 7, and a uniform electric discharge is obtained at all times. The vaporized graphite is subjected to a reaction in the plasma, and fullerene and soot are finally obtained. The product depositing on the wall of the discharge tube 2 and a filter 8 is recovered and extracted by a solvent such as toluene, and fullerene is obtained with a high recovery rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は触媒担体や電子材料とし
て使用するフラーレン(C60、C70等からなる球状炭素
クラスター)の製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing fullerenes (spherical carbon clusters composed of C60, C70 etc.) used as catalyst carriers and electronic materials.

【0002】[0002]

【従来の技術】従来のフラーレン製造装置を図4を参照
して説明する。図4は従来装置の正面図である。真空容
器10中の約100Torrのヘリウムガス9の雰囲気
中で、グラファイト電極11の間で直流電源12により
50V,100Aのアーク放電を起こさせることによ
り、グラファイトを蒸発させる。種々のヘリウム圧力で
約1時間の放電後、真空容器内壁及び水冷銅パイプ13
に付着したフラーレンを含有するすすを回収する。従来
技術によるフラーレンの収率の一例を図3に示す。
2. Description of the Related Art A conventional fullerene manufacturing apparatus will be described with reference to FIG. FIG. 4 is a front view of a conventional device. In the atmosphere of the helium gas 9 of about 100 Torr in the vacuum vessel 10, the DC power supply 12 causes an arc discharge of 50 V, 100 A between the graphite electrodes 11 to evaporate the graphite. After discharging for about 1 hour at various helium pressures, the inner wall of the vacuum vessel and the water-cooled copper pipe 13
The soot containing the fullerenes attached to is collected. An example of the yield of fullerene according to the prior art is shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】従来技術では、アーク
放電で生成したフラーレンが真空容器内全体に飛散する
ため回収率が低下し、不純物が混入しやすいこと、アー
ク放電による加熱法であるため放電電流がグラファイト
表面の一部分で局在化するためグラファイトの表面温度
が一部領域で高いだけで、グラファイトの昇華量が少量
で一定しないため反応効率が低下すること等の欠点があ
る。さらに、原料であるグラファイト棒がアーク放電の
電極を兼ねているため、グラファイトの蒸発によって電
極形状の時間的変動が大きく、安定した反応条件が得ら
れない欠点がある。
In the prior art, fullerene generated by arc discharge scatters in the entire vacuum vessel, so the recovery rate is lowered, impurities are easily mixed, and the heating method by arc discharge causes discharge. Since the electric current is localized at a part of the graphite surface, the surface temperature of the graphite is high only in a partial area, and the sublimation amount of the graphite is not constant in a small amount, so that the reaction efficiency is lowered. Further, since the graphite rod as a raw material also serves as an electrode for arc discharge, there is a drawback that the shape of the electrode changes greatly with time due to evaporation of graphite and stable reaction conditions cannot be obtained.

【0004】本発明は上記技術水準に鑑み、フラーレン
生成の反応効率及びフラーレンの回収率を従来技術より
も向上させることのできるフラーレンの製造方法及び装
置を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is to provide a method and apparatus for producing fullerenes capable of improving the reaction efficiency of fullerene production and the recovery rate of fullerenes as compared with the prior art.

【0005】[0005]

【課題を解決するための手段】本発明は (1)マイクロ波放電場中に配置した固形グラファイト
を、放電プラズマによって昇華および反応させることを
特徴とするフラーレンの合成方法。
The present invention provides (1) a method for synthesizing fullerenes, which comprises subliming and reacting solid graphite placed in a microwave discharge field with discharge plasma.

【0006】(2)マイクロ波発振器と、同発振器で発
振されたマイクロ波を伝播させる導波管と、同導波管に
接続された空洞共振器と、同空洞共振器に挿入された放
電管と、同放電管に放電用媒体を導入流過させるガス供
給手段と、上記放電管内に配置された固形グラファイト
とを有することを特徴とするフラーレン合成装置。
(2) Microwave oscillator, waveguide for propagating microwave oscillated by the oscillator, cavity resonator connected to the waveguide, and discharge tube inserted in the cavity resonator A fullerene synthesizing apparatus comprising: a gas supply unit for introducing and flowing a discharge medium into the discharge tube; and solid graphite arranged in the discharge tube.

【0007】(3)上記空洞共振器が上記放電管のガス
供給源側に近い上流側部と下流側部に区画され、容積の
小さい上流側部に固形グラファイトが配置されているこ
とを特徴とする上記(2)記載のフラーレン合成装置。
である。
(3) The cavity resonator is divided into an upstream side portion and a downstream side portion near the gas supply source side of the discharge tube, and solid graphite is arranged in the upstream side portion having a small volume. The fullerene synthesizer according to (2) above.
Is.

【0008】[0008]

【作用】本発明方法によれば、マイクロ放電によって発
生した高温プラズマを固形グラファイト(棒、板)表面
に広範囲に接触させることによって、固形グラファイト
表面温度を均一にし、グラファイトの昇華量を増加させ
ることができ、さらにヘリウムガスを生成するフラーレ
ンのキャリヤとして回収部まで誘導できることから、フ
ラーレンの反応効率及び回収率を向上させることができ
る。
According to the method of the present invention, the high temperature plasma generated by the micro discharge is brought into contact with the surface of the solid graphite (rod, plate) over a wide range to make the surface temperature of the solid graphite uniform and increase the amount of sublimation of graphite. In addition, since it can be introduced to the recovery section as a carrier of fullerene that produces helium gas, the reaction efficiency and recovery rate of fullerene can be improved.

【0009】また、本発明の装置によれば、マイクロ波
発振器から出力されたマイクロ波を導波管を介して空洞
共振器(例えば円筒型空洞共振器)に導入し、その電界
によってヘリウムガスの放電を発生させる放電管内に固
形グラファイトを設置し、当該空洞共振器内部で形成す
るマイクロ波電磁界モードをTM( Transvers Magneti
c ) モードの遮断周波数に選ぶことによって形成する電
界で発生した高温で空間的に均一な放電プラズマにより
固形グラファイト表面の温度が上昇し、グラファイトの
昇華温度3500℃以上で蒸発する。蒸発したグラファ
イトはプラズマ中で種々の反応を行うことにより最終的
にはフラーレンとすすが生成する。
Further, according to the device of the present invention, the microwave output from the microwave oscillator is introduced into the cavity resonator (for example, the cylindrical cavity resonator) through the waveguide, and the electric field thereof causes the helium gas to be emitted. A solid graphite is installed in a discharge tube for generating a discharge, and the microwave electromagnetic field mode formed inside the cavity resonator is TM (Transvers Magneti).
c) The temperature of the solid graphite surface rises due to the high temperature and spatially uniform discharge plasma generated by the electric field formed by selecting the cutoff frequency of the mode, and the graphite is evaporated at a sublimation temperature of 3500 ° C. or higher. The vaporized graphite finally undergoes various reactions in plasma to form fullerenes and soot.

【0010】上記したTMモードの遮断周波数で誘起す
るマイクロ波放電を用いる装置では直流アーク放電の場
合と比較して、グラファイト板全体を包み込むように放
電プラズマが発生するため蒸発面積が大きくなる。しか
も、固形グラファイト表面の温度分布が一定する。した
がって、グラファイト表面から蒸発する物質の分子量が
ほぼ均等化するため、生成物にばらつきがなくなる。し
たがって、フラーレンの収率が向上する。
In the apparatus using the microwave discharge induced by the cutoff frequency of the TM mode, discharge plasma is generated so as to wrap around the entire graphite plate, as compared with the case of DC arc discharge, so that the evaporation area becomes large. Moreover, the temperature distribution on the solid graphite surface is constant. Therefore, the molecular weights of the substances evaporated from the graphite surface are almost equalized, and the products are uniform. Therefore, the yield of fullerene is improved.

【0011】さらに、上記した装置において、放電管を
ガス供給部に近い上流側部と下流側部に区画し、容積の
小さい上流側部に固形グラファイトを配置することによ
り、上流側部で蒸発したグラファイトは該上流側部より
容積が大きく、マイクロ波電界の弱められた下流側部に
導かれることにより低温プラズマ中で解離及び重合反応
を行いフラーレンが合成される。このように、フラーレ
ンの合成をマイクロ波電界の調整によりプラズマの温度
を微妙に調整することができるため、フラーレンの反応
効率をあげることができる。
Further, in the above-mentioned apparatus, the discharge tube is divided into an upstream side portion and a downstream side portion close to the gas supply portion, and solid graphite is arranged in the upstream side portion having a small volume, whereby the upstream side portion is vaporized. The graphite has a larger volume than the upstream side portion, and is guided to the downstream side portion where the microwave electric field is weakened to dissociate and polymerize in low temperature plasma to synthesize fullerene. In this way, since the temperature of plasma can be finely adjusted by synthesizing fullerene by adjusting the microwave electric field, the reaction efficiency of fullerene can be increased.

【0012】[0012]

【実施例】【Example】

(実施例1)本発明のマイクロ波放電によるフラーレン
製造についての一実施例を図1を参照して説明する。こ
こでは空洞共振器として円筒型空洞共振器を用いる場合
を例示しており、図1はその正面断面図を示す。
(Example 1) An example of fullerene production by microwave discharge according to the present invention will be described with reference to FIG. Here, a case where a cylindrical cavity resonator is used as the cavity resonator is illustrated, and FIG. 1 shows a front sectional view thereof.

【0013】円筒型空洞共振器1を内径86mm、長さ
100mmとし、内径25mmの放電管2の内部に直径
10mmのグラファイト棒3を設置後、圧力20Tor
r、流量500ml/minのヘリウムガスをガス供給
部4から導入し、放電管2内で放電させた。マイクロ波
は2.45GHzの発振器5で発生させ、導波管6を用
いて空洞共振器1に導いた。放電中のグラファイトの蒸
発による共振周波数のずれは空洞共振器端板にとりつけ
たチューナ7で常時均一な放電が得られるようにした。
30分間の放電後、放電管壁及びフィルタ8に付着した
黒色の生成物(すす)を回収し、トルエンを溶媒とした
ソックスレー抽出によりフラーレンを回収した。圧力を
変化させて得られたフラーレンの収率を求めた結果を図
3に示す。
The cylindrical cavity resonator 1 has an inner diameter of 86 mm and a length of 100 mm, and a graphite rod 3 having a diameter of 10 mm is installed inside a discharge tube 2 having an inner diameter of 25 mm.
Helium gas having a flow rate of 500 ml / min was introduced from the gas supply unit 4 and discharged in the discharge tube 2. Microwaves were generated by the 2.45 GHz oscillator 5 and guided to the cavity resonator 1 using the waveguide 6. The deviation of the resonance frequency due to the evaporation of graphite during discharge was set so that the tuner 7 attached to the end plate of the cavity resonator could always obtain a uniform discharge.
After discharging for 30 minutes, the black product (soot) attached to the wall of the discharge tube and the filter 8 was recovered, and the fullerene was recovered by Soxhlet extraction using toluene as a solvent. The result of obtaining the yield of fullerene obtained by changing the pressure is shown in FIG.

【0014】さらに、グラファイトの形状に合わせてマ
イクロ波電磁界モードをTMの高次モードあるいはTE
( Transvers Electric ) モードに選んで空洞共振器内
部で形成させることによっても同様の結果が得られる。
また、グラファイト形状によっては、空洞共振器内に定
在波を形成させる必要はなく、通常の進行波型の導波管
内でグラファイトを放電させてもよい。
Further, the microwave electromagnetic field mode is set to the higher order mode of TM or TE according to the shape of graphite.
The same result can be obtained by selecting the (Transvers Electric) mode and forming it inside the cavity resonator.
Further, depending on the shape of graphite, it is not necessary to form a standing wave in the cavity resonator, and graphite may be discharged in a normal traveling wave type waveguide.

【0015】(実施例2)本発明のマイクロ波放電によ
るフラーレン装置についての他の実施例を図2を参照し
て説明する。ここでは空洞共振器として円筒型空洞共振
器を用いる場合を例示しており、図1はその正面断面図
を示す。
(Embodiment 2) Another embodiment of the fullerene device by microwave discharge of the present invention will be described with reference to FIG. Here, a case where a cylindrical cavity resonator is used as the cavity resonator is illustrated, and FIG. 1 shows a front sectional view thereof.

【0016】円筒型空洞共振器1を内径86mm、長さ
20mmの小共振器1′と長さ100mmの小共振器
1″を直列に連結した構造(仕切り板厚み5mm、内径
40mm)とし、マイクロ波は2.45GHzの発振器
5で発生させ、導波管6を用いて伝送され、2つに分岐
後、2個の小共振器1′,1″に別々に導いた。マイク
ロ波電界強度の強い長さ20mmの小共振器1′内に内
径25mmの放電管2の内部にグラファイト棒3を設置
し、ヘリウムガス供給部4から圧力20Torr、流量
500ml/minのヘリウムガスを放電管2内で放電
させた。放電中のグラファイトの蒸発による共振周波数
のずれは空洞共振器端板にとりつけたチューナ7で調節
し、常時均一な放電を得た。この放電(小共振器1′)
からは電子温度が約10eV高温プラズマの発生を示唆
する強い白色光を発生する放電プラズマの生成が確認さ
れた。ここで蒸発及び解離したグラファイトを含むプラ
ズマは次のマイクロ波電界の弱い長さ100mmの小共
振器1″に導かれ、電子温度が約数eVの低温プラズマ
となる。この小共振器内1″ではチューナ8により電界
強度を調節しプラズマが安定化するように制御した。3
0分間の放電後、フィルタ8に集められた黒色生成物を
回収し、トルエンを溶媒としたソックスレー抽出により
フラーレンを回収した。圧力を変化させて得られたフラ
ーレンの収率を求めた結果を図3に示す。この結果から
本発明によると従来技術よりも高い収率が得られること
がわかる。
The cylindrical cavity resonator 1 has a structure in which a small resonator 1'having an inner diameter of 86 mm and a length of 20 mm and a small resonator 1 "having a length of 100 mm are connected in series (partition plate thickness 5 mm, inner diameter 40 mm). A wave was generated by a 2.45 GHz oscillator 5, transmitted using a waveguide 6, branched into two, and led to two small resonators 1'and 1 "separately. A graphite rod 3 is installed inside a discharge tube 2 having an inner diameter of 25 mm inside a small resonator 1'having a strong microwave electric field strength of 20 mm, and a helium gas having a pressure of 20 Torr and a flow rate of 500 ml / min is supplied from a helium gas supply unit 4. Discharged in the discharge tube 2. The deviation of the resonance frequency due to the evaporation of graphite during the discharge was adjusted by the tuner 7 attached to the end plate of the cavity resonator, and a uniform discharge was always obtained. This discharge (small resonator 1 ')
From the above, it was confirmed that the discharge plasma generating intense white light suggesting the generation of high temperature plasma with an electron temperature of about 10 eV. Here, the plasma containing the evaporated and dissociated graphite is guided to the next small resonator 1 ″ having a weak microwave electric field and a length of 100 mm, and becomes a low-temperature plasma having an electron temperature of about several eV. Then, the tuner 8 was used to adjust the electric field strength and control so that the plasma was stabilized. Three
After discharging for 0 minutes, the black product collected in the filter 8 was collected, and the fullerene was collected by Soxhlet extraction using toluene as a solvent. The result of obtaining the yield of fullerene obtained by changing the pressure is shown in FIG. From this result, it can be seen that the present invention provides a higher yield than the prior art.

【0017】さらに、それぞれの空洞に対してグラファ
イトの形状に合わせてマイクロ波電磁界モードをTMの
高次モードあるいはTE( Transvers Electric ) モー
ドに選んで空洞共振器内部で形成させることによっても
同様の結果が得られる。グラファイト形状によっては、
空洞共振器内に定在波を形成させる必要はなく、通常の
進行波型の導波管内でグラファイトを放電させてもよ
い。また、本実施例に示したように、小共振器へのマイ
クロ波の導入に際して、個別に導入する必要はなく、小
共振器間の仕切り板の内径と厚みをうまく選ぶことによ
り、長さ20mmの小共振器からの導入のみによっても
同じ結果が得られる。
Further, the microwave electromagnetic field mode is selected as the higher order mode of TM or the TE (Transvers Electric) mode in accordance with the shape of graphite for each cavity and is formed inside the cavity resonator. The result is obtained. Depending on the graphite shape,
It is not necessary to form a standing wave in the cavity resonator, and graphite may be discharged in a normal traveling wave type waveguide. Further, as shown in the present embodiment, it is not necessary to individually introduce the microwaves to the small resonators, and the length of 20 mm can be obtained by properly selecting the inner diameter and the thickness of the partition plate between the small resonators. The same result can be obtained only by introducing from the small resonator of.

【0018】なお、本発明で製造したフラーレンはK,
Rb,Csなどと共にHeガスの減圧封管中で加熱する
ことにより多数のフラーレン分子からなる結晶中に、こ
れら金属がドーピングされた超伝導材料を得ることがで
きる。例えばRbCs2 60の場合は臨界温度が35K
となる。
The fullerenes produced in the present invention are K,
It is possible to obtain a superconducting material in which crystals of a large number of fullerene molecules are doped with these metals by heating together with Rb, Cs and the like in a reduced pressure sealed tube of He gas. For example, in the case of RbCs 2 C 60 , the critical temperature is 35K
Becomes

【0019】また、Arガス下の還元トルエン中でフラ
ーレンとPd,Pt(ポリフェニルフォスフィン)2
OsO4 (4−t−ブチルピリジン)2 のいずれかを攪
拌することによりフラーレンの結晶中にこれらがドーピ
ングされた酸化触媒や還元触媒が得られる。それらの例
としてはC60Pdn ,C60〔Pt(ポリフェニルフォス
フィン)2 〕,C60〔OsO4 (4−t−ブチルピリジ
ン)〕などがある。
Further, fullerene, Pd, Pt (polyphenylphosphine) 2 , in reduced toluene under Ar gas,
By stirring any of OsO 4 (4-t-butylpyridine) 2 , an oxidation catalyst or a reduction catalyst having fullerene crystals doped with them can be obtained. C 60 Pd n as examples thereof, C 60 [Pt (poly triphenylphosphine) 2], C 60 [OsO 4 (4-t- butylpyridine)] and the like.

【0020】さらに、フラーレン生成過程中の放電プラ
ズマ中に、Laを添加すると、フラーレン分子中(すな
わち、球状体中)にLaがドーピングされて電気伝導性
のある機能材が得られる。この機能材は寸法制御が可能
で、反応性も大きく、電極、電線、センサ(温度、光、
ガス、イオンなど)、分子素子、超電導体などの用途と
して用いられうる。
Further, when La is added to the discharge plasma during the fullerene generation process, La is doped in the fullerene molecule (ie, in the spherical body) to obtain a functional material having electrical conductivity. This functional material is dimensionally controllable and highly reactive, and can be used for electrodes, wires, sensors (temperature, light,
Gas, ions, etc.), molecular devices, superconductors, etc.

【0021】[0021]

【発明の効果】本発明によれば、フラーレンの製造に際
し、TMモードによるグラファイト放電により固形グラ
ファイト表面の温度を均一にあげることができ、ヘリウ
ムガスの流量を適正化することによって、グラファイト
の蒸発量及びフラーレンの生成効率を向上させることが
できる。また、本発明によれば、空洞共振器容積を小さ
くしてTMモードの電界強度をたかめることによって高
温プラズマを発生させ、固形グラファイト表面の温度を
瞬時に上げることができ、次に、空洞共振器容積を大き
くして電界強度を弱くすることによって、グラファイト
の解離及び重合を低温プラズマ中で行う生成するフラー
レンの分解を抑制することができる。さらに、ヘリウム
ガスの流量を適正化することによって、グラファイトの
蒸発量及びフラーレンの生成効率を向上させることがで
き、フィルタのメッシュサイズ等の回収機構を適宜選ぶ
ことにより、従来技術の欠点であるフラーレンを含有す
るすすの回収率の低下が抑えられる。
According to the present invention, in the production of fullerene, the temperature of the solid graphite surface can be raised uniformly by the graphite discharge in the TM mode, and the evaporation amount of graphite can be increased by optimizing the flow rate of helium gas. And the production efficiency of fullerene can be improved. Further, according to the present invention, high-temperature plasma can be generated by increasing the electric field strength of the TM mode by reducing the cavity resonator volume, and the temperature of the solid graphite surface can be instantly raised. By increasing the volume and weakening the electric field strength, the dissociation and polymerization of graphite in low temperature plasma can be suppressed, and the decomposition of fullerenes generated can be suppressed. Furthermore, by optimizing the flow rate of helium gas, the evaporation amount of graphite and the efficiency of fullerene generation can be improved. By appropriately selecting the recovery mechanism such as the mesh size of the filter, fullerene A decrease in the recovery rate of soot containing is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のマイクロ波放電によるフラーレン製造
の一実施例の説明図。
FIG. 1 is an explanatory view of an embodiment of fullerene production by microwave discharge according to the present invention.

【図2】本発明のマイクロ波放電によるフラーレン製造
の他の実施例の説明図。
FIG. 2 is an explanatory view of another example of fullerene production by microwave discharge according to the present invention.

【図3】本発明の二つの実施例と従来法における圧力を
変化させた時のフラーレンの収率を示す図表。
FIG. 3 is a graph showing the yields of fullerenes when the pressure is changed in the two examples of the present invention and the conventional method.

【図4】従来のフラーレンの製造装置の説明図。FIG. 4 is an explanatory view of a conventional fullerene manufacturing apparatus.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波放電場中に配置した固形グラ
ファイトを、放電プラズマによって昇華および反応させ
ることを特徴とするフラーレンの合成方法。
1. A method for synthesizing fullerene, characterized in that solid graphite placed in a microwave discharge field is sublimated and reacted by discharge plasma.
【請求項2】 マイクロ波発振器と、同発振器で発振さ
れたマイクロ波を伝播させる導波管と、同導波管に接続
された空洞共振器と、同空洞共振器に挿入された放電管
と、同放電管に放電用媒体を導入流過させるガス供給手
段と、上記放電管内に配置された固形グラファイトとを
有することを特徴とするフラーレン合成装置。
2. A microwave oscillator, a waveguide for propagating microwaves oscillated by the same, a cavity resonator connected to the waveguide, and a discharge tube inserted in the cavity resonator. A fullerene synthesizing apparatus comprising: a gas supply means for introducing and flowing a discharge medium into the discharge tube; and solid graphite arranged in the discharge tube.
【請求項3】 上記空洞共振器が上記放電管のガス供給
源側に近い上流側部と下流側部に区画され、容積の小さ
い上流側部に固形グラファイトが配置されていることを
特徴とする請求項2記載のフラーレン合成装置。
3. The cavity resonator is divided into an upstream side portion and a downstream side portion near the gas supply source side of the discharge tube, and solid graphite is arranged in the upstream side portion having a small volume. The fullerene synthesizer according to claim 2.
JP4041256A 1992-02-27 1992-02-27 Method and device for producing fullerene Withdrawn JPH05238718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041256A JPH05238718A (en) 1992-02-27 1992-02-27 Method and device for producing fullerene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041256A JPH05238718A (en) 1992-02-27 1992-02-27 Method and device for producing fullerene

Publications (1)

Publication Number Publication Date
JPH05238718A true JPH05238718A (en) 1993-09-17

Family

ID=12603360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041256A Withdrawn JPH05238718A (en) 1992-02-27 1992-02-27 Method and device for producing fullerene

Country Status (1)

Country Link
JP (1) JPH05238718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089120A (en) * 1999-09-22 2001-04-03 Hitachi Ltd Microwave-heating device for active carbon
EP1428794A2 (en) * 2002-12-11 2004-06-16 Mauro Schiavon Device and method for production of carbon nanotubes, fullerene and their derivatives
US6967043B2 (en) * 2002-01-08 2005-11-22 Japan Science And Technology Agency Method of manufacturing the densely fitted multi-layer carbon nano-tube
WO2008113892A1 (en) * 2007-03-21 2008-09-25 Beneq Oy Device and method for producing nanotubes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089120A (en) * 1999-09-22 2001-04-03 Hitachi Ltd Microwave-heating device for active carbon
US6967043B2 (en) * 2002-01-08 2005-11-22 Japan Science And Technology Agency Method of manufacturing the densely fitted multi-layer carbon nano-tube
EP1428794A2 (en) * 2002-12-11 2004-06-16 Mauro Schiavon Device and method for production of carbon nanotubes, fullerene and their derivatives
EP1428794A3 (en) * 2002-12-11 2006-01-18 Mauro Schiavon Device and method for production of carbon nanotubes, fullerene and their derivatives
WO2008113892A1 (en) * 2007-03-21 2008-09-25 Beneq Oy Device and method for producing nanotubes
US8475760B2 (en) 2007-03-21 2013-07-02 Beneq Oy Device and method for producing nanotubes

Similar Documents

Publication Publication Date Title
US5424054A (en) Carbon fibers and method for their production
US5876684A (en) Methods and apparati for producing fullerenes
US7056479B2 (en) Process for preparing carbon nanotubes
US8945673B2 (en) Nanoparticles with grafted organic molecules
JPH09188509A (en) Production of monolayer carbon manotube
EP0565275A1 (en) Process for the synthesis of fullerenes
JP2541434B2 (en) Carbon nano tube manufacturing method
JP2006265079A (en) Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
JPH05238718A (en) Method and device for producing fullerene
JPH04337076A (en) High-speed film formation by plasma and radical cvd method under high pressure
KR100582249B1 (en) Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
JPH05327038A (en) Method and apparatus for manufacturing metallofullerene
JPH05238717A (en) Method and device for producing fullerene
JPH06122513A (en) Method and device for producing fullerene
JPH1087310A (en) Production of fullerene and device therefor
JPH05116925A (en) Device for producing fullerenes
JPH0122813B2 (en)
JPH054810A (en) Method for producing c60
JPH05330814A (en) Method for producing metallofullerene and device therefor
US6613198B2 (en) Pulsed arc molecular beam process
US20070110644A1 (en) System for manufacturing a fullerene derivative and method for manufacturing
JPH0693397B2 (en) Thermal plasma generator
JPS62102828A (en) Production of fine grain of compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518