JPH05234156A - Structural body for probe, recorder, information detector, reproducing device and recording and reproducing device - Google Patents

Structural body for probe, recorder, information detector, reproducing device and recording and reproducing device

Info

Publication number
JPH05234156A
JPH05234156A JP6147792A JP6147792A JPH05234156A JP H05234156 A JPH05234156 A JP H05234156A JP 6147792 A JP6147792 A JP 6147792A JP 6147792 A JP6147792 A JP 6147792A JP H05234156 A JPH05234156 A JP H05234156A
Authority
JP
Japan
Prior art keywords
probe
elastic body
recording medium
information recording
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6147792A
Other languages
Japanese (ja)
Other versions
JP3023728B2 (en
Inventor
清 ▲瀧▼本
Kiyoshi Takimoto
Akira Kuroda
亮 黒田
Toshihiko Miyazaki
俊彦 宮▲崎▼
Kunihiro Sakai
邦裕 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4061477A priority Critical patent/JP3023728B2/en
Publication of JPH05234156A publication Critical patent/JPH05234156A/en
Application granted granted Critical
Publication of JP3023728B2 publication Critical patent/JP3023728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a recording density by joining a first elastic body and a second elastic body having the resonance frequency lower than the resonance frequency of the first elastic body and having a driving mechanism for changing the distance between a probe and an object. CONSTITUTION:A piezoelectric actuator of a bimorph structure formed with a probe electrode 1 on a free end side of the very small elastic body 2a and is alternately laminated with metallic electrodes 3a, 3a', 3a'' and piezoelectric thin films 3a, 3b' consisting of AlN on the 2nd elastic body 2b is formed. The 2nd elastic body 2b can be so driven as to deflect at least in the out-of surface direction of the piezoelectric thin films by impressing a voltage between the metallic electrodes 3b and 3b'. The front end of the probe electrode 1 is made to shine as far as possible in order to improve the resolving power of recording, reproducing and erasing. The resolving power of thickness and molecule order is theoretically obtd. by making the electrode to shine up the thickness to molecule level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は情報の記録及び/又は情
報の再生を行う為の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for recording information and / or reproducing information.

【0002】[0002]

【従来の技術】情報記憶素子ないし情報記憶装置、いわ
ゆるメモリーは、コンピュータ及びその関連機器の中核
をなすものであるのみならず、ビデオディスク、ディジ
タルオーディオディスク等に見られるように映像装置、
音響装置の中でも重要な地位を占めている。このメモリ
ーに要求される性能はその用途によって異なるが、一般
的には、 高密度で、記録容量が大きい、 記録再生の応答速度が速い、 消費電力が少ない、 生産性が高く、価格が低い、 等が挙げられ、現在もこうした性能を実現するメモリー
方式やメモリー媒体の開発が極めて活発に進められてい
る。
2. Description of the Related Art Information storage elements or information storage devices, so-called memories, are not only the core of computers and related equipment, but also video devices such as those found in video discs and digital audio discs.
It has an important position in audio equipment. The performance required for this memory depends on its application, but in general, it has high density, large recording capacity, fast recording / playback response speed, low power consumption, high productivity, low price, The development of a memory system and a memory medium that realizes such performance is extremely active even now.

【0003】従来、メモリーの中心は磁性体、半導体を
素材とした磁気メモリー、半導体メモリーであったが、
近年、レーザー技術の進展に伴い、有機色素、フォトポ
リマーなどの有機薄膜を用いた、安価で高密度な光メモ
リーが登場している。
Conventionally, the core of the memory has been a magnetic substance, a magnetic memory made of a semiconductor, and a semiconductor memory.
In recent years, with the progress of laser technology, inexpensive and high-density optical memories using organic thin films such as organic dyes and photopolymers have appeared.

【0004】現在、これらのメモリーをさらに高密度で
大容量にするために単位メモリービットの微細化に向け
ての技術開発が進められているが、これらの従来のメモ
リーとは全く別な原理に基づくメモリーの提案もされて
いる。例えば、個々の有機分子に論理素子やメモリー素
子の機能を持たせた分子電子デバイスの概念もその1つ
である。分子電子デバイスは単位メモリービットの微細
化を極限まで進めたものと見ることができるが、これま
で個々の分子に如何にアクセスするかが問題とされてき
た。
At present, technical development is underway toward miniaturization of unit memory bits in order to make these memories higher in density and larger in capacity, but on a principle completely different from these conventional memories. A memory-based proposal has also been made. For example, the concept of a molecular electronic device in which each organic molecule has a function of a logic element or a memory element is one of them. It can be seen that molecular electronic devices have advanced the miniaturization of unit memory bits to the utmost limit, but until now, how to access individual molecules has been a problem.

【0005】一方、最近、導体の表面原子の電子構造を
直接観察できる走査型トンネル顕微鏡(以下、「ST
M」と記す)が開発され、[G.Binnig et
al.,Helvetica Physica Act
a,55,726(1982)]単結晶、非晶質を問わ
ず実空間像を高い分解能で観察できるようになった。S
TMは試料に電流による損傷を与えずに低電力で観察で
きる利点を有しており、さらに、大気中でも動作させる
ことができ、種々の材料に対して用いることができるた
め広い領域にわたった応用が期待されている。最近で
は、導体表面に吸着した有機分子の分子像観察すら可能
であることが報告されている。
On the other hand, recently, a scanning tunneling microscope (hereinafter referred to as "ST
"M.") was developed and [G. Binnig et
al. , Helvetica Physica Act
a, 55 , 726 (1982)] It has become possible to observe a real space image with high resolution regardless of whether it is a single crystal or an amorphous material. S
TM has the advantage that it can be observed at low power without damaging the sample due to electric current. Furthermore, it can be operated in the atmosphere and can be used for various materials, so it has a wide range of applications. Is expected. Recently, it has been reported that even a molecular image of organic molecules adsorbed on the surface of a conductor can be observed.

【0006】また一方STMの技術を応用した原子間力
顕微鏡(以下「AFM」と記す)が開発され、[G.B
innig et al.,Phys.Rev.Let
t.,56,930(1985)]STMと同様、表面
の凹凸情報を得ることができるようになった。AFM
は、絶縁性の試料に対しても原子オーダーで測定が可能
なため、今後の発展が望まれている。
On the other hand, an atomic force microscope (hereinafter referred to as "AFM"), which is an application of the STM technique, was developed, and [G. B
innig et al. , Phys. Rev. Let
t. , 56 , 930 (1985)] STM, it has become possible to obtain information on surface irregularities. AFM
Since it is possible to measure even an insulating sample in atomic order, future development is desired.

【0007】STMは金属の探針(以下「プローブ電
極」と記す)と導電性物質の間に電圧を加えて、両者の
距離を1nm程度まで近づけるとトンネル電流が流れる
ことを利用している。この電流は両者の距離変化に極め
て敏感であって、このトンネル電流を一定に保つように
両者の距離を制御しながらプローブ電極を導電性物質の
表面上で走査することにより、この導電性物質の実空間
の表面構造を描くことができると同時に表面原子の全電
子雲に関する種々の情報をも読みとることができる。こ
の際、面内方向の分解能は1Å程度である。従って、S
TMの原理を応用すれば、十分に原子オーダー(数Å)
での高密度記録再生を行なうことが可能である。この際
の記録再生方法としては、粒子線(電子線、イオン線)
或いは、X線等の高エネルギー電磁波、及び可視・紫外
光等のエネルギー線を用いて適当な記録層の表面状態を
変化させて記録を行ない、STMで再生する方法や、記
録層として電圧印加によって、電導度の異なる状態へ遷
移するスイッチング特性を有し、且つ、電導度の異なる
各状態が、電圧を印加しない状態でも保持されるメモリ
ー特性を有している媒体、例えば、π電子共役系を豊富
に含む有機化合物やカルコゲン化合物の薄膜層を用いて
記録、再生をSTMで行なう方法等が提案されている
(特開昭63−161552号公報、特開昭63−16
1553号公報)。
The STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (hereinafter referred to as "probe electrode") and a conductive substance so that the distance between them is about 1 nm. This current is extremely sensitive to changes in the distance between the two, and by scanning the probe electrode on the surface of the conductive substance while controlling the distance between the two so as to keep this tunnel current constant, It is possible to draw the surface structure of the real space, and at the same time read various information about the total electron cloud of surface atoms. At this time, the resolution in the in-plane direction is about 1Å. Therefore, S
If the principle of TM is applied, it will be sufficiently atomic order (several Å)
It is possible to perform high-density recording / reproducing in. The recording / reproducing method at this time is as follows: particle beam (electron beam, ion beam)
Alternatively, high energy electromagnetic waves such as X-rays and energy rays such as visible / ultraviolet light are used to change the surface state of an appropriate recording layer for recording, and a method of reproducing by STM or by applying voltage as a recording layer , A medium having a switching characteristic of transitioning to a state of different electrical conductivity and having memory characteristics in which each state of different electrical conductivity is retained even when no voltage is applied, for example, a π-electron conjugated system A method of recording and reproducing by STM using a thin film layer of an abundant organic compound or chalcogen compound has been proposed (JP-A-63-161552, JP-A-63-16).
1553 publication).

【0008】[0008]

【発明が解決しようとする課題】STMを応用した情報
記録及び/又は再生装置における再生方法は、プローブ
電極と記録媒体表面の間を流れる電流を一定に保持しな
がら媒体表面上でプローブ電極を走査すると、電導度の
高い領域上ではプローブ電極が媒体表面から遠ざかるこ
とを利用し、このプローブ電極の動き量を検知して記録
ビットを再生するか、もしくは、プローブ電極と記録媒
体間の距離を一定に保持しながら媒体表面上でプローブ
電極を走査し、電導度の高い領域上で、プローブ電極と
記録媒体表面間を流れる電流が増すことを利用し、この
電流量を検知して記録ビットを再生する。
A reproducing method in an information recording and / or reproducing apparatus applying STM scans a probe electrode on the medium surface while keeping a current flowing between the probe electrode and the recording medium surface constant. Then, by utilizing the fact that the probe electrode moves away from the surface of the medium on the high conductivity area, the amount of movement of the probe electrode is detected to reproduce the recording bit, or the distance between the probe electrode and the recording medium is fixed. By scanning the probe electrode on the surface of the medium while holding it at the high temperature, the current flowing between the probe electrode and the surface of the recording medium increases in the area of high conductivity, and this amount of current is detected to reproduce the recorded bit. To do.

【0009】しかし、前者の再生方法をとった場合、記
録媒体のわずかな凹凸に対しても、プローブ電極が追従
するため、媒体表面の凹凸と記録ビットの区別をプロー
ブ電極の動き量だけからすることは困難であって、読み
込みエラーの問題が生じる。また電流を一定に保持する
ための帰還制御回路の帯域の上限によって、制御可能な
走査周波数が制限されるため、高速走査が困難であっ
た。また、後者の再生方法によった場合も、高速走査が
可能であるものの、媒体表面の凹凸によっても、電流量
が変化してしまい読み込みエラーの問題は前者同様発生
してしまう。さらにプローブ電極と媒体表面間は一定距
離だけ離れており、これが絶縁障壁として働いている
が、この障壁は記録ビット書き込み部とそうでない領域
とに共通であり、実効的にはトンネル抵抗として直列に
挿入されることになる。このため、プローブ電極と媒体
表面の距離によって書き込み部と非書き込み部とで検出
される電流量の比が大きく異なってしまうため、ビット
を正確に読み出す際には問題となる可能性があった。
However, in the case of the former reproducing method, the probe electrode follows even slight irregularities of the recording medium, so that the irregularity of the medium surface and the recording bit are distinguished only by the amount of movement of the probe electrode. Is difficult and causes problems with read errors. Further, since the controllable scanning frequency is limited by the upper limit of the band of the feedback control circuit for keeping the current constant, high-speed scanning is difficult. Also, in the case of the latter reproducing method, although high-speed scanning is possible, the amount of current changes due to the unevenness of the medium surface, and the problem of reading error occurs as in the former case. Furthermore, the probe electrode and the medium surface are separated by a certain distance, and this acts as an insulating barrier, but this barrier is common to the recording bit write section and the area not so, and it is effective as a tunnel resistance in series. Will be inserted. For this reason, the ratio of the amount of current detected in the writing portion and the non-writing portion greatly differs depending on the distance between the probe electrode and the medium surface, which may cause a problem when reading the bit accurately.

【0010】したがって、再生信号は記録媒体の凹凸に
よる成分が分離されたものである必要があり、また、プ
ローブ電極と記録媒体表面間の絶縁障壁によるトンネル
抵抗を可能な限り小さく、一定に保持して、記録ビット
の有無による再生信号比を可能な限り大きくする必要が
ある。又、記録に際しても、記録による印加電圧変化
が、プローブ電極と媒体との間隔制御に影響を与えにく
い事が好ましい。
Therefore, it is necessary that the reproduced signal is such that the component due to the unevenness of the recording medium is separated, and the tunnel resistance due to the insulating barrier between the probe electrode and the surface of the recording medium is kept as small as possible and kept constant. Therefore, it is necessary to increase the reproduction signal ratio depending on the presence / absence of recorded bits as much as possible. Also, during recording, it is preferable that the change in applied voltage due to recording does not easily affect the distance control between the probe electrode and the medium.

【0011】さらに、記録媒体とプローブ電極間の距離
が大きい場合、STMとしての分解能が下がり、即ち記
録密度の点からも記録媒体とプローブ電極は極力接近す
る方が好ましい。
Further, when the distance between the recording medium and the probe electrode is large, it is preferable that the resolution as the STM is lowered, that is, the recording medium and the probe electrode are as close as possible in terms of recording density.

【0012】媒体表面の凹凸による成分を再生信号から
除き、かつ記録時の間隔制御が印加電圧に左右されない
ようにするためには媒体表面とプローブ間の距離を両者
間を流れる電流以外の量によって一定に制御する方法が
考えられ、その1つとして両者間に働く原子間力によっ
て距離を制御する原子間力顕微鏡(AFM)の利用が特
開平1−245445号公報に開示されている。
In order to remove the component due to the unevenness of the medium surface from the reproduced signal and to prevent the interval control during recording from being influenced by the applied voltage, the distance between the medium surface and the probe is determined by an amount other than the current flowing between them. A constant control method is conceivable, and as one of them, use of an atomic force microscope (AFM) that controls a distance by an atomic force acting between the two is disclosed in Japanese Patent Laid-Open No. 1-245445.

【0013】AFMにおいては、プローブ電極を弾性体
で支持し、プローブ電極先端と記録媒体表面間に働く力
を弾性体の変形によるばね力とつりあわせ、この変形量
を一定に保持するように帰還制御が行われる。
In the AFM, the probe electrode is supported by an elastic body, the force acting between the tip of the probe electrode and the surface of the recording medium is balanced with the spring force due to the deformation of the elastic body, and the amount of deformation is returned so as to be kept constant. Control is performed.

【0014】情報記録及び/又は再生を行う装置におい
て、原子間力を用いて、より簡易な形でプローブ・情報
記録媒体の間隔を制御する方法として、プローブを支持
する弾性体をプローブ・情報記録媒体の間隔変動を補正
する方向に変形させる力が、前記プローブ・情報記録媒
体間に作用するように前記プローブ・情報記録媒体を配
置することによって前記プローブ・情報記録媒体間隔を
帰還制御なしに一定に保つ方法が考えられている。
In an apparatus for recording and / or reproducing information, as a method of controlling the distance between the probe and the information recording medium in a simpler manner by using the atomic force, an elastic body supporting the probe is used as the probe and the information recording. By arranging the probe / information recording medium so that the force of deforming the medium in the direction of compensating for the variation in the distance acts on the probe / information recording medium, the probe / information recording medium distance is fixed without feedback control. How to keep it is considered.

【0015】ところで、帰還制御を行なわずに記録媒体
表面の凹凸にプローブを追従させるためにはプローブ電
極の支持体のばね定数を、できるだけ小さくし、支持体
が弾性変形を維持する変形量の範囲を広くとり、且つ弾
性力が小さくなるよう設計しておく必要がある。しかし
ながら、ばね定数を小さくとると、支持体の機械的共振
周波数が低くなってしまい、高速動作させることができ
なくなると共に、走査時に微視的な摩擦力の影響によっ
て支持体が変形してしまうため支持体のばね定数を下げ
ることには限界が生じる。即ち帰還制御を行なわない場
合、プローブの追従しうる媒体表面の凹凸の高低差には
限界がある。
By the way, in order to allow the probe to follow the irregularities on the surface of the recording medium without performing feedback control, the spring constant of the support of the probe electrode is made as small as possible, and the range of the amount of deformation in which the support maintains elastic deformation. Is designed to be wide and the elastic force is small. However, if the spring constant is made small, the mechanical resonance frequency of the support becomes low, it becomes impossible to operate at high speed, and the support is deformed by the influence of microscopic frictional force during scanning. There are limits to lowering the spring constant of the support. That is, if feedback control is not performed, there is a limit to the level difference of the unevenness of the medium surface that the probe can follow.

【0016】一方、媒体表面には、特に再生の際分離す
ることが必要なデータビットと同程度の空間周波数を有
する凹凸の他にこれよりも低い空間周波数を有するうね
り、或いは傾き等があることが多い。これらは前述の凹
凸に比して、さらに大きな高低差を有している場合が多
く、たとえ前述の凹凸の高低差が小さい場合であって
も、かかるうねりや傾きのために帰還制御なしにプロー
ブが追従しうる凹凸の高低差を超えることが多い。また
プローブ電極及びその支持体を複数個集積化した際、プ
ローブ電極先端位置のばらつきを補正することを考える
と、とりうるばね定数の値はさらに制限を受ける可能性
がある。
On the other hand, on the medium surface, in addition to irregularities having a spatial frequency similar to that of the data bit that needs to be separated during reproduction, in particular, there are waviness having a spatial frequency lower than this, or inclination. There are many. These often have a larger height difference compared to the above-mentioned unevenness, and even if the height difference of the above-mentioned unevenness is small, the probe without feedback control due to such undulations and tilts. In many cases, the height difference of the unevenness that can be followed is exceeded. In addition, considering the correction of variations in the probe electrode tip position when a plurality of probe electrodes and their supports are integrated, the possible spring constant value may be further limited.

【0017】[0017]

【課題を解決するための手段及び作用】本発明は情報記
録媒体にプローブ電極を介して情報の記録及び/又は再
生を行う装置で前記プローブ電極を支持する支持体が、
プローブ電極を有する微小弾性体、前記微小弾性体が設
けられ、且つ、プローブ電極と媒体間の距離を変化させ
る駆動機構の一部もしくは全部を有した第2の弾性体の
2段構成であることを特徴とする。
The present invention is an apparatus for recording and / or reproducing information on an information recording medium via a probe electrode, wherein a support for supporting the probe electrode is
A two-stage structure of a micro elastic body having a probe electrode, and a second elastic body provided with the micro elastic body and having a part or all of a driving mechanism for changing the distance between the probe electrode and the medium. Is characterized by.

【0018】さらに前記微小弾性体を前記プローブ・情
報記録媒体の間隔変動を補正する方向に変形させる力
が、前記プローブ・情報記録媒体に作用する様に前記プ
ローブ・情報記録媒体を配置することによって前記プロ
ーブ・情報記録媒体間隔を制御することを特徴とし、ま
た前記第二の弾性体は微小弾性体の機械的共振周波数よ
り十分低い共振周波数を有し、その駆動機構によって、
前記微小弾性体の変形量が所定の値を超えないように変
形し、常に前記微小弾性体の変形量を所定の範囲に抑え
ることを特徴としている。
Further, by arranging the probe / information recording medium such that a force that deforms the micro elastic body in a direction of correcting the interval variation of the probe / information recording medium acts on the probe / information recording medium. The second elastic body has a resonance frequency sufficiently lower than the mechanical resonance frequency of the micro elastic body, and the drive mechanism thereof controls the distance between the probe and the information recording medium.
The micro elastic body is deformed so that the deformation amount does not exceed a predetermined value, and the deformation amount of the micro elastic body is constantly suppressed within a predetermined range.

【0019】以上の手段によって微小弾性体では追従し
きれない、媒体表面の凹凸、媒体表面のうねり、あるい
は傾きは、第2の弾性体によって追従しうる。このた
め、微小弾性体のばね定数は微視的な摩擦力の影響が現
れず、且つ高速動作が可能な値に設定しうる。さらに、
複数のプローブ電極とその支持体を集積した場合も、プ
ローブ先端位置のばらつきを第2の弾性体によって補正
しうる。
The second elastic body can follow the unevenness of the medium surface, the waviness of the medium surface, or the inclination that cannot be followed up by the minute elastic body by the above means. For this reason, the spring constant of the micro elastic body can be set to a value at which high-speed operation is possible without the influence of microscopic frictional force appearing. further,
Even when a plurality of probe electrodes and their supports are integrated, the variation of the probe tip position can be corrected by the second elastic body.

【0020】[0020]

【実施例】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0021】図1は本発明に係るプローブ電極及びプロ
ーブ電極の支持体の詳細な構造を示している。図中1は
プローブ電極、2は支持体、3はプローブ電極駆動機構
である。プローブ電極の支持体2はSiO2 からなる片
持梁構造の第2の弾性体2bの自由端側に同じくSiO
2 からなり第2の弾性体2bと一体構造で形成された片
持梁構造の微小弾性体2aの2段構成となっている。微
小弾性体2aの自由端側にはプローブ電極1が形成され
ており、また第2の弾性体2b上には金属電極3a,3
a’,3a”とAlNからなる圧電性薄膜3b,3b’
を交互に積層したバイモルフ構造の圧電アクチュエータ
を形成する。金属電極3b,3b’の間に電圧を印加す
ることによって、第2の弾性体2bは少なくとも圧電薄
膜の面外方向にたわむように駆動することができる。
FIG. 1 shows a detailed structure of a probe electrode and a support for the probe electrode according to the present invention. In the figure, 1 is a probe electrode, 2 is a support, and 3 is a probe electrode drive mechanism. The support 2 of the probe electrode is also made of SiO 2 on the free end side of the second elastic body 2b having a cantilever structure.
Has a two-stage configuration of the micro elastic body 2a cantilever structure formed in integral with the second elastic member 2b comprises two. The probe electrode 1 is formed on the free end side of the minute elastic body 2a, and the metal electrodes 3a, 3 are formed on the second elastic body 2b.
a ', 3a "and piezoelectric thin films 3b, 3b' made of AlN
To form a bimorph piezoelectric actuator. By applying a voltage between the metal electrodes 3b and 3b ', the second elastic body 2b can be driven so as to bend at least in the out-of-plane direction of the piezoelectric thin film.

【0022】プローブ電極1の先端部は、記録・再生・
消去の分解能を向上させるためには、できるだけ尖らせ
た方が良く、理論的には原子・分子レベルまで尖らせる
ことによって、原子・分子オーダーの分解能を得ること
ができる。該プローブ電極1の作成法として例えば、S
iO2 上にSiをフォーカスト・イオンビームで打ち込
み、Siの上に選択的にSiを結晶させて先端部を形成
し、その上にAuを蒸着して導電コートを施す。これら
はマイクロメカニクスの技術により、シリコンウエハー
上に一体で形成される。尚、プローブ電極の支持体2と
して、弾性体の構造は片持梁には限定されない。また、
アクチュエータもバイモルフ構造に限定されるものでは
なく、プローブ電極先端を記録媒体表面へ接近を可能に
する運動が可能であれば良く、それらの構成材料も上述
の材料に限られるものではなく、また微小弾性体2aと
第2の弾性体2bを一体で形成することに限定されるも
のではない、。さらにプローブ電極1の形状や形成法や
処理も上述に限定されるものではない。
The tip of the probe electrode 1 is for recording / reproducing /
In order to improve the erasing resolution, it is better to make the point as sharp as possible, and theoretically, it is possible to obtain the resolution on the atomic / molecular order by sharpening to the atomic / molecular level. As a method for producing the probe electrode 1, for example, S
Si is implanted on iO 2 by a focused ion beam, Si is selectively crystallized on Si to form a tip, and Au is vapor-deposited on the tip to form a conductive coat. These are integrally formed on a silicon wafer by a micromechanics technique. The structure of the elastic body as the support 2 of the probe electrode is not limited to the cantilever. Also,
The actuator is not limited to the bimorph structure as long as it can move the probe electrode tip to approach the surface of the recording medium, and the constituent materials thereof are not limited to the above-mentioned materials. The elastic body 2a and the second elastic body 2b are not limited to be integrally formed. Furthermore, the shape, forming method, and treatment of the probe electrode 1 are not limited to those described above.

【0023】図2は上記機構を有する記録再生装置の全
体構成図を示す。図中4は記録媒体を示し、電極4b上
に記録層4aが形成されている。5は媒体微動機構、6
は媒体粗動機構でありそれぞれ記録媒体4をプローブ電
極1に対して3次元的に粗動変位、微動変位させる、微
動制御回路8、粗動制御回路9はそれらの駆動制御を行
なう。プローブ電極1及びその支持体2は、プローブ電
極支持機構16に固定され、支持機構16と粗動機構6
はベース7に固定されている。ベース7は図示されてい
ないが除震台に設置されている。12は電圧印加回路で
あり、プローブ電極1と記録媒体4の間に記録、再生、
消去のための電圧印加を行なう。11は電流検出回路で
あり、プローブ電極1と記録媒体4との間に流れる電流
を検出する。プローブ電極駆動機構3はプローブ電極駆
動機構制御回路15によって駆動制御される。
FIG. 2 shows an overall configuration of a recording / reproducing apparatus having the above mechanism. Reference numeral 4 in the drawing denotes a recording medium, and a recording layer 4a is formed on an electrode 4b. 5 is a medium fine movement mechanism, 6
Is a medium coarse movement mechanism, and three-dimensionally performs coarse movement displacement and fine movement displacement of the recording medium 4 with respect to the probe electrode 1. The fine movement control circuit 8 and the coarse movement control circuit 9 perform drive control thereof. The probe electrode 1 and its support 2 are fixed to the probe electrode support mechanism 16, and the support mechanism 16 and the coarse movement mechanism 6 are fixed.
Is fixed to the base 7. Although not shown, the base 7 is installed on the seismic isolation table. Reference numeral 12 denotes a voltage applying circuit, which performs recording, reproduction, and recording between the probe electrode 1 and the recording medium 4.
A voltage is applied for erasing. A current detection circuit 11 detects a current flowing between the probe electrode 1 and the recording medium 4. The probe electrode drive mechanism 3 is driven and controlled by the probe electrode drive mechanism control circuit 15.

【0024】本実施例は、プローブ電極1の先端と記録
媒体4の表面とを、この斥力が働く距離まで近づけ、該
斥力によって微小弾性体2aを弾性変形させた状態でプ
ローブ電極1を記録媒体4表面上で走査させ、同時にプ
ローブ電極1と記録媒体4間に媒体変化電圧を加えて記
録、消去を行い、かつ微小電圧を印加して記録媒体を流
れる電流を検知することによって電導度の異なる領域、
すなわち記録ビットを検出する。
In the present embodiment, the tip of the probe electrode 1 and the surface of the recording medium 4 are brought close to a distance where this repulsive force acts, and the repulsive force elastically deforms the micro elastic body 2a. 4 Conductivity is different by scanning on the surface, recording and erasing by applying a medium change voltage between the probe electrode 1 and the recording medium 4 at the same time, and detecting a current flowing through the recording medium by applying a minute voltage. region,
That is, the recorded bit is detected.

【0025】微小弾性体をプローブ電極先端と記録媒体
表面との間に働く斥力による弾性変形状態で使用するた
め、媒体表面の凹凸によって、プローブ電極先端が媒体
表面に近づき斥力が大きくなれば、微小弾性体の変形は
増して、プローブ電極先端は媒体表面から遠ざかり、ま
た、プローブ電極先端が媒体表面から遠ざかって斥力が
小さくなれば、微小弾性体の変形が減りプローブ電極先
端は媒体表面に近づき、走査中の表面凹凸による微小弾
性体の変形量が弾性変形の範囲にあれば、プローブ電極
1と媒体表面4との距離は、微小弾性体にアクチュエー
タをとりつけ、微小弾性体の変形量によって帰還制御を
なくしても略一定に保たれることになる。
Since the minute elastic body is used in an elastically deformed state due to the repulsive force acting between the probe electrode tip and the recording medium surface, if the probe electrode tip approaches the medium surface due to the unevenness of the medium surface, the repulsive force becomes large. The deformation of the elastic body increases, the probe electrode tip moves away from the medium surface, and when the probe electrode tip moves away from the medium surface and the repulsive force becomes small, the deformation of the microelastic body decreases and the probe electrode tip approaches the medium surface. If the amount of deformation of the microelastic body due to surface irregularities during scanning is within the elastic deformation range, the distance between the probe electrode 1 and the medium surface 4 is feedback-controlled by the actuator attached to the microelastic body and the amount of deformation of the microelastic body. Even if it is eliminated, it will be kept almost constant.

【0026】更に、媒体表面のうねりや傾きのように、
データビットの空間周波数に比して小さな空間周波数の
変化ではあるが、微小弾性体の弾性変形の範囲を超える
ような高低差に対しては第二の弾性体2bをプローブ電
極駆動機構3によって変形させ、常に微小弾性体の変形
が弾性変形の範囲内にあるように制御を行う。この際第
二の弾性体はデータビットと同程度の空間周波数に追従
する必要はないため第二の弾性体の機械的共振周波数は
データビットの空間周波数よりも設定してよく好ましく
は微小弾性体と第二の弾性体の固有振動モード間の結合
が無視しうる値に設定するのが好ましい。
Further, like waviness and inclination of the medium surface,
Although the spatial frequency change is smaller than the spatial frequency of the data bit, the second elastic body 2b is deformed by the probe electrode driving mechanism 3 for a height difference that exceeds the elastic deformation range of the minute elastic body. The control is performed so that the deformation of the micro elastic body is always within the elastic deformation range. At this time, the second elastic body does not have to follow the spatial frequency of the same degree as the data bit, so that the mechanical resonance frequency of the second elastic body may be set to be higher than the spatial frequency of the data bit. It is preferable to set the coupling between the natural vibration modes of the second elastic body and the second elastic body to a negligible value.

【0027】微小弾性体の変形が弾性変形の範囲内にあ
るように第二の弾性体の変形を制御するには、例えばプ
ローブ電極と媒体表面間を流れる電流の変動を用い、そ
の周波数成分のうち第二の弾性体の機械的共振周波数よ
りも低い周波数領域にある一部の成分によって帰還制御
する方法が挙げられる。すなわち、微小弾性体が大きく
変形し、電流がゆるやかに増加(減少)するとこの増加
(減少)部を補償する向きに第二の弾性体が変形するよ
うにプローブ電極駆動機構を帰還制御すればよい。これ
によって媒体表面のうねりや傾きのようなゆるやかであ
るが、微小弾性体の弾性変形範囲を超えた高低差を吸収
することができる。
In order to control the deformation of the second elastic body so that the deformation of the minute elastic body falls within the elastic deformation range, for example, the fluctuation of the current flowing between the probe electrode and the medium surface is used, Among them, there is a method of performing feedback control with a part of components in a frequency region lower than the mechanical resonance frequency of the second elastic body. That is, when the minute elastic body is largely deformed and the current is gradually increased (decreased), the probe electrode driving mechanism may be feedback-controlled so that the second elastic body is deformed in a direction to compensate for this increase (decrease). .. As a result, it is possible to absorb a height difference exceeding the elastic deformation range of the micro elastic body, although it is gentle such as waviness and inclination of the medium surface.

【0028】なお、第二の弾性体を帰還制御するための
信号は、プローブ・記録媒体表面間を流れる電流に限定
されるものではなく、微小弾性体の変形量に換算しうる
信号であればよく、例えば微小弾性体の変形を直接検出
した信号あるいは、変形による応力変化を検出した信号
などでも良い。
The signal for feedback-controlling the second elastic body is not limited to the current flowing between the probe and the surface of the recording medium, but may be any signal that can be converted into the amount of deformation of the minute elastic body. Alternatively, for example, a signal obtained by directly detecting the deformation of the micro elastic body or a signal obtained by detecting a stress change due to the deformation may be used.

【0029】装置全体はマイクロコンピュータ10によ
り中央制御される。
The entire apparatus is centrally controlled by the microcomputer 10.

【0030】尚、プローブ電極1と記録媒体4との間の
相対的位置関係を変化させる機構であれば上記構成には
限定されない。例えば、プローブ電極の支持機構側に粗
動機構、微動機構を設けたり、支持機構側と記録媒体側
の両方に移動機構を設けるようにしても良い。
The structure is not limited to the above as long as it is a mechanism for changing the relative positional relationship between the probe electrode 1 and the recording medium 4. For example, a coarse movement mechanism and a fine movement mechanism may be provided on the support mechanism side of the probe electrode, or a movement mechanism may be provided on both the support mechanism side and the recording medium side.

【0031】本発明に用いる記録媒体は電圧印加によっ
て、その導電状態が変化し且つ、かかる導電状態が電圧
を印加しない状態で保持されるものであれば、いかなる
媒体でも良いが、特に好適な媒体としては、特開昭63
−161552号公報及び特開昭63−161553号
公報に開示されたπ電子準位をもつ群を有する有機材料
から構成された媒体が挙げられ、さらに好ましくはLB
法によって形成された前記有機材料の単分子累積膜が挙
げられる。
The recording medium used in the present invention may be any medium as long as its conductive state is changed by applying a voltage and the conductive state is maintained in the state where no voltage is applied, but a particularly preferable medium. As Japanese Patent Laid-Open No. Sho 63
Examples of the medium include an organic material having a group having a π electron level disclosed in JP-A-161552 and JP-A-63-161553, and more preferably LB.
An example is a monomolecular cumulative film of the organic material formed by the method.

【0032】上記単分子累積膜を金属電極で挟持したM
IM構造素子(図8)は、図9と図10に示すような電
流電圧特性を示す(特開昭63−96956号公報参
照)。2つの状態(ON状態とOFF状態)は閾値以上
の電圧印加によって相互に遷移し、且つそれぞれの状態
は閾値電圧以下で保持される、これらの特性は数Å〜数
1000Åの膜厚のものに発現されているが、本発明に
おける記録媒体としては、特開昭63−161552号
及び特開昭63−161553号公報に開示されたごと
く、数Å〜500Åの範囲の膜厚のものが良く、最も好
ましくは10Å〜200Åの膜厚をもつものが良い。
M in which the above monomolecular accumulated film is sandwiched between metal electrodes
The IM structure element (FIG. 8) exhibits current-voltage characteristics as shown in FIGS. 9 and 10 (see Japanese Patent Laid-Open No. 63-96956). The two states (ON state and OFF state) transit to each other by applying a voltage above the threshold value, and each state is maintained below the threshold voltage. These characteristics are those of several Å to several thousand Å film thickness. Although it has been expressed, as the recording medium in the present invention, as disclosed in JP-A-63-161552 and JP-A-63-161553, those having a film thickness in the range of several Å to 500 Å are preferable, Most preferably, it has a film thickness of 10Å to 200Å.

【0033】また、本発明で用いられる電極材料も高い
電導性を有するものであれば良く、例えば、Au、P
t、Ag、Pd、Al、In、Sn、Pb、Wなどの金
属やこれらの合金、さらにはグラファイトやシリサイ
ド、またさらには、ITOなどの導電性酸化物を始めと
して数多くの材料が挙げられ、これらの本発明への適用
が考えられる。かかる材料を用いた電極形成方法として
も従来公知の薄膜技術で十分である。但し、基板上に直
接形成される電極材料は表面がLB膜形成の際、絶縁性
の酸化膜を作らない導電材料、例えば貴金属やITOな
どの酸化物導電体を用いることが好ましい。
Further, the electrode material used in the present invention may be any one as long as it has a high electric conductivity, such as Au and P.
There are many materials such as metals such as t, Ag, Pd, Al, In, Sn, Pb and W, alloys thereof, graphite and silicide, and conductive oxides such as ITO. Application of these to the present invention is conceivable. As a method of forming an electrode using such a material, a conventionally known thin film technique is sufficient. However, as the electrode material formed directly on the substrate, it is preferable to use a conductive material that does not form an insulating oxide film when forming the LB film on the surface, for example, a noble metal or an oxide conductor such as ITO.

【0034】尚、記録媒体の金属電極は、本発明となる
記録層の絶縁性が高い場合、必要となるが、該記録層が
MΩ以下の半導体的性質を示すものであれば、該金属電
極は不要となる。
The metal electrode of the recording medium is required when the recording layer according to the present invention has a high insulating property. However, if the recording layer has a semiconductor property of MΩ or less, the metal electrode can be used. Is unnecessary.

【0035】以下にプローブ電極を支持体として幅15
0μm、長さ600μmの矩形の第二の弾性体と、幅2
0μm、長さ100μmのV字型微小弾性体からなる2
段片持ち梁を用いた、記録再生消去の実施例について述
べる。
In the following, the probe electrode is used as a support and the width 15
A rectangular second elastic body having a length of 0 μm and a length of 600 μm and a width of 2
0μm, 100μm long V-shaped micro elastic body 2
An example of recording / reproducing and erasing using a stepped cantilever will be described.

【0036】微小弾性体の共振周波数は約27kHz、
第二の弾性体の共振周波数は約2.5kHzであった。
この条件で両者の固有振動間の結合はほぼ無視できる。
The resonance frequency of the microelastic body is about 27 kHz,
The resonance frequency of the second elastic body was about 2.5 kHz.
Under this condition, the coupling between the two natural vibrations can be almost ignored.

【0037】記録媒体4をxyz微動装置5の上に固定
した後、プローブ電極1とAu電極4bの間にバイアス
電圧100mVを印加し、xyz粗動装置6、そしてx
yz微動装置5を駆動し媒体1をプローブ電極2に近づ
ける。プローブ電極2と記録媒体4の間を流れる電流を
モニターしながら両者間の距離を変えてゆくと図3に示
すような電流特性が得られた。
After fixing the recording medium 4 on the xyz fine movement device 5, a bias voltage of 100 mV is applied between the probe electrode 1 and the Au electrode 4b, and the xyz coarse movement device 6 and x are moved.
The yz fine movement device 5 is driven to bring the medium 1 close to the probe electrode 2. When the distance between the probe electrode 2 and the recording medium 4 was monitored while monitoring the current flowing between them, the current characteristics as shown in FIG. 3 were obtained.

【0038】一方、プローブ電極1と記録媒体4が接近
すると両者の間に力が働き、この力によって片持ち梁3
が変形する。この変形量を、レーザービームの片持ち梁
での反射ビームのずれによって検出する光てこ方式を用
いて、前記電流特性と同時に測定した結果も同時に図3
に示してある。
On the other hand, when the probe electrode 1 and the recording medium 4 come close to each other, a force acts between them, and this force causes the cantilever 3 to move.
Is transformed. This deformation amount is detected at the same time as the current characteristics by using the optical lever method which detects the deviation of the reflected beam of the laser beam on the cantilever, and the results are also shown in FIG.
It is shown in.

【0039】プローブ電極1と記録媒体4の間に斥力が
働く図3の領域aでは、両者間に流れる電流は両者間の
距離に対してゆるやかな変化となっている。そこで以
後、電流のモニターによって制御することでプローブ電
極1と記録媒体4とを両者間に斥力が働く距離まで接近
させた。
In the region a in FIG. 3 where a repulsive force is exerted between the probe electrode 1 and the recording medium 4, the current flowing between them has a gradual change with respect to the distance between them. Therefore, after that, the probe electrode 1 and the recording medium 4 were brought close to each other by the control of the current monitor to a distance where a repulsive force worked between them.

【0040】プローブ電極1と記録媒体4との距離を図
3の領域aの状態まで接近させ、xyz微動装置5、x
yz粗動装置6の制御回路8、9の出力を保持し、ON
状態を生じる閾値電圧Vth on 以上の電圧である図4に
示した波形をもつ三角波パルス電圧をプローブ電極2と
Au電極4bとの間に印加した後再び100mVのバイ
アスを印加して電流を測定したところ8μA程度の電流
が流れ、ON状態となったことを示した。
The distance between the probe electrode 1 and the recording medium 4 is brought close to the state of the area a in FIG. 3, and the xyz fine movement devices 5 and x are moved.
Holds the outputs of the control circuits 8 and 9 of the yz coarse movement device 6 and turns it on.
A triangular wave pulse voltage having a waveform shown in FIG. 4, which is a voltage equal to or higher than the threshold voltage V th on that causes the state, is applied between the probe electrode 2 and the Au electrode 4b, and then a bias of 100 mV is applied again to measure the current. When this was done, a current of about 8 μA flowed, indicating that it was in the ON state.

【0041】次にON状態からOFF状態へ変化する閾
値電圧Vth OFF以上の電圧である図5に示した波形をも
つ三角波パルス電圧を印加した後、再び100mVのバ
イアスを印加したところ、電流値1nA程度で、OFF
状態へ戻ることが確認された。
Next, after applying a triangular wave pulse voltage having a waveform shown in FIG. 5 which is a voltage equal to or higher than the threshold voltage V th OFF which changes from the ON state to the OFF state, when a bias of 100 mV is applied again, the current value is changed. OFF at about 1 nA
It was confirmed to return to the state.

【0042】次に前記と同様にプローブ電極2と記録媒
体1との距離を図3の領域aの状態まで接近させた状態
で、xyz微動装置5のy,z軸を固定し、x軸方向の
み駆動して電流をモニターしたところ、電流値はほぼ1
nAの一定値を示した。次に、x軸方向のみを駆動しな
がら、10nm間隔に図4の波形を有する閾値電圧Vth
on 以上の三角波パルス電圧をプローブ電極1とAu電
極4bの間に印加した後、バイアス100mV一定下
で、再びx軸方向のみの駆動をくり返し、プローブ電極
2とAu電極4bの間を流れる電流を測定したところ、
10nm周期で、4桁程度に変化する電流が観測され、
ON状態が周期的に書き込まれたことが確認された。更
にON状態とOFF状態とでの電流の比もほぼ一定値を
保持していた。
Next, in the same manner as described above, with the distance between the probe electrode 2 and the recording medium 1 approached to the state of area a in FIG. 3, the y and z axes of the xyz fine movement device 5 are fixed and the x axis direction is set. The current value was almost 1 when the current was monitored by driving only
It showed a constant value of nA. Next, while driving only in the x-axis direction, the threshold voltage V th having the waveform of FIG.
After applying a triangular wave pulse voltage of on or more between the probe electrode 1 and the Au electrode 4b, the drive in the x-axis direction is repeated again under a constant bias of 100 mV, and the current flowing between the probe electrode 2 and the Au electrode 4b is changed. When I measured
A current that changes about 4 digits in a 10 nm cycle is observed,
It was confirmed that the ON state was written periodically. Further, the ratio of the currents in the ON state and the OFF state also kept a substantially constant value.

【0043】また、上記ON状態が周期的に書き込まれ
た領域を再びx軸駆動のみによって走査し、任意のON
状態領域上でxyz微動装置5を停止させこの位置を保
持した状態で、図5の波形を有する閾値電圧Vth OFF
上の三角波パルス電圧を印加した。x軸方向のみの走査
を繰り返し、電流を測定したところパルスを印加した領
域のON状態が消去され、1nA程度の電流を示すOF
F状態に戻っていることが確認された。この任意のビッ
ト消去同様、プローブ電極2とAu電極4bの間の電圧
を閾値電圧Vth OFF以上に設定して、記録領域上を走査
し、その後電流測定をしたところ、電流値は1nA程度
でほぼ一定値を示し、10nm周期で記録されたON状
態が全て消去され、OFF状態となったことが確認され
た。
Further, the area in which the ON state is periodically written is scanned again by only the x-axis drive, and an arbitrary ON state is obtained.
While the xyz fine movement device 5 was stopped on the state region and this position was held, a triangular wave pulse voltage equal to or higher than the threshold voltage V th OFF having the waveform of FIG. 5 was applied. When the current is measured by repeating the scanning only in the x-axis direction, the ON state of the region to which the pulse is applied is erased, and the OF showing a current of about 1 nA
It was confirmed to have returned to the F state. Similar to this arbitrary bit erasing, when the voltage between the probe electrode 2 and the Au electrode 4b is set to the threshold voltage V th OFF or more, the recording area is scanned, and then the current is measured, the current value is about 1 nA. It was confirmed that the value was almost constant and all the ON states recorded in the 10 nm cycle were erased and turned to the OFF state.

【0044】続いて、xyz微動装置5を制御し1nm
から1μmの間の種々のピッチで長さ1μmのストライ
プを上記の方法で書き込み、分解能を測定したところ、
3nm以上のピッチでは常に4桁程度の電流変化が書き
込みピッチと同じピッチで確認されたが、3nm未満の
ピッチでは電流量の変化が次第に小さくなった。
Subsequently, the xyz fine movement device 5 is controlled to 1 nm.
1 μm long stripes were written by the above method at various pitches from 1 to 1 μm, and the resolution was measured.
At a pitch of 3 nm or more, a current change of about 4 digits was always confirmed at the same pitch as the writing pitch, but at a pitch of less than 3 nm, the change in current amount gradually became smaller.

【0045】更に装置動作条件としてプローブの走査範
囲を1μm□、走査速度を50Hz/ラインとして上述
の記録、再生、消去を行った。この際、電流検出回路の
出力を用い、高域カットオフ周波数を200Hzとして
前記出力の200Hz以下の周波数成分によりプローブ
電極駆動機構3を帰還制御した。この動作条件でデータ
ビットの読み取り等に障害は生じなかった。すなわちこ
の条件でデータビットは約10kHzの空間周波数を有
しているが、これと同程度の凹凸に対して微小弾性体は
充分追従していたと思われる。また、帰還制御に用いた
成分は1μmの領域中で数周期分に相当するうねりに対
応しており、かかるうねりあるいは傾きに対しても充分
追従していたと考えられる。
Further, as the operating conditions of the apparatus, the above-mentioned recording, reproduction and erasing were carried out with the scanning range of the probe being 1 μm □ and the scanning speed being 50 Hz / line. At this time, the output of the current detection circuit was used, the high cutoff frequency was set to 200 Hz, and the probe electrode drive mechanism 3 was feedback-controlled by the frequency component of 200 Hz or less of the output. Under these operating conditions, there was no problem in reading data bits. That is, under this condition, the data bit has a spatial frequency of about 10 kHz, but it is considered that the minute elastic body sufficiently follows unevenness of the same level. Further, it is considered that the component used for the feedback control corresponds to the undulation corresponding to several cycles in the region of 1 μm and sufficiently follows the undulation or the inclination.

【0046】尚、記録媒体は以下の如く作成した。The recording medium was prepared as follows.

【0047】光学研磨したガラス基板(基板4c)を中
性洗剤及びトリクレンを用いて洗浄した後、下引き層と
してCrを真空蒸着法により厚さ50Å堆積させ、更に
Auを同法により、400Å蒸着した下地電極(Au電
極4b)を形成した。
After the optically polished glass substrate (substrate 4c) was washed with a neutral detergent and trichlene, Cr was deposited as a subbing layer to a thickness of 50Å by a vacuum vapor deposition method, and Au was further vapor deposited at a rate of 400Å by the same method. A ground electrode (Au electrode 4b) was formed.

【0048】次にスクアリリウム−ビス−6−オクチル
アズレン(以下「SOAZ」と記す)を濃度0.2mg
/mlで溶かしたクロロホルム溶液を20℃の水相上に
展開し、水面上に単分子膜を形成した。溶媒の蒸発を待
ち係る単分子膜の表面圧を20mN/mまで高め、さら
にこれを一定に保ちながら前記電極基板を水面を横切る
ように速度5mm/分で静かに浸漬し、さらに引き上げ
2層のY型単分子膜の累積を行なった。この操作を4回
繰り返すことでSOAZ8層を累積した記録層4aを有
する記録媒体1が作成される。
Next, squarylium-bis-6-octylazulene (hereinafter referred to as "SOAZ") at a concentration of 0.2 mg.
The chloroform solution dissolved at a concentration of / ml was spread on the water phase at 20 ° C. to form a monomolecular film on the water surface. The surface pressure of the monolayer film waiting for the evaporation of the solvent is increased to 20 mN / m, and while keeping it constant, the electrode substrate is gently immersed at a speed of 5 mm / min so as to cross the water surface, and then the two layers are pulled up. The Y-type monolayer was accumulated. By repeating this operation four times, the recording medium 1 having the recording layer 4a in which the SOAZ8 layers are accumulated is prepared.

【0049】実施例2 前述したプローブ電極1及び支持体2、ならびに駆動機
構3を複数個具備した記録ヘッドを作成し、図6に示す
ように支持機構16に固定した。支持機構16は少なく
とも3個の圧電素子14を介してベース7に取り付けら
れている。
Example 2 A recording head having a plurality of the probe electrodes 1 and the support 2 and the drive mechanism 3 described above was prepared and fixed to the support mechanism 16 as shown in FIG. The support mechanism 16 is attached to the base 7 via at least three piezoelectric elements 14.

【0050】これら圧電素子14はマイクロコンピュー
タ10によって制御された圧電素子制御回路13によっ
て個々に駆動される。また電圧印加及び電流検知回路1
0によって、個々のプローブ電極2に電圧が印加され、
個々のプローブ電極1と記録媒体4の間に流れる電流が
検知される。この他の構成は実施例1で用いられたもの
と同じである。
The piezoelectric elements 14 are individually driven by the piezoelectric element control circuit 13 controlled by the microcomputer 10. In addition, voltage application and current detection circuit 1
0 applies a voltage to each probe electrode 2,
The current flowing between each probe electrode 1 and the recording medium 4 is detected. The other structure is the same as that used in the first embodiment.

【0051】実施例1と同様、Au電極4b上に形成さ
れたSOAZ−LB膜8層からなる記録層4aを有した
記録媒体4をxyz微動装置5の上に固定した。xyz
粗動装置6、そしてxyz微動装置5を駆動し、プロー
ブ電極2とAu電極4bの間にバイアス100mVを印
加した状態で両者を接近させる。この際、圧電素子14
を制御して、全プローブ電極が一様に記録媒体4に接近
するように調節し、全プローブを図3のa領域の状態に
なるまで接近させた。
As in Example 1, the recording medium 4 having the recording layer 4a consisting of eight SOAZ-LB films formed on the Au electrode 4b was fixed on the xyz fine movement device 5. xyz
The coarse movement device 6 and the xyz fine movement device 5 are driven to bring them close to each other while applying a bias of 100 mV between the probe electrode 2 and the Au electrode 4b. At this time, the piezoelectric element 14
Was controlled so that all the probe electrodes uniformly approached the recording medium 4, and all the probes were brought closer to the state of area a in FIG.

【0052】このような状態下で、xyz微動装置を制
御して、記録媒体をxy面内で駆動しながら個々のプロ
ーブ電極2とAu電極4bの間を流れる電流を測定した
ところ、いずれもほぼ1nA程度の電流値を示し、個々
のプローブ電極を流れる電流の走査中の変動は極めて小
さかった。次に上と同様に記録媒体をxy面内で駆動し
ながら、個々のプローブ電極に個別のビット情報(図7
(a))に基づいて図7(b)に示すような書き込みパ
ルス列を生成して、これ加えた。ここで、ビット情報の
最初のビットは個々のビット情報全てについてON状態
に対応するビットとしておいた。パルス印加後、再び書
き込み時と同じ方法で記録媒体をxy平面内で駆動し
て、バイアス100mV印加条件下でプローブ電極1と
Au電極4bの間を流れる電流を測定したところ、4桁
程度の電流変化が各プローブ電極に対して得られ、これ
らの電流測定値を2値化して得たパルス列は、各プロー
ブ電極2に加えた個別のビット情報(図7(a))に一
致した。
Under such a condition, the xyz fine movement device was controlled to measure the current flowing between each probe electrode 2 and Au electrode 4b while driving the recording medium in the xy plane. The current value was about 1 nA, and the fluctuation of the current flowing through each probe electrode during scanning was extremely small. Then, while driving the recording medium in the xy plane as in the above, individual bit information (FIG. 7) is assigned to each probe electrode.
Based on (a)), a write pulse train as shown in FIG. 7 (b) was generated and added. Here, the first bit of the bit information is set as a bit corresponding to the ON state for all individual bit information. After applying the pulse, the recording medium was driven again in the xy plane by the same method as that for writing, and the current flowing between the probe electrode 1 and the Au electrode 4b was measured under the condition that a bias of 100 mV was applied. The change was obtained for each probe electrode, and the pulse train obtained by binarizing these current measurement values matched the individual bit information (FIG. 7A) applied to each probe electrode 2.

【0053】次に上記書き込んだ個々の個別ビット情報
に基づいて図7(c)に示すような消去パルス列を生成
した。ここで全てのビット情報に対して最初のビットは
ONのまま消去しないものとしておく。書き込み時と同
じ方法で記録媒体をxy平面内で駆動して、電流値を測
定し、最初のビット、即ち最初に電流値が4桁程度変化
した位置で媒体の駆動を一時停止した。この時、初めに
定めたビット情報の条件のとおり全てのプローブ電極2
について4桁程度の変化が認められた。続いて、媒体の
駆動を再開し、これに同期させて先に生成した個々のプ
ローブ電極2に対して個別の消去パルス列を印加した。
再び、書き込み時と同じ方法で記録媒体1をxy平面内
で駆動して電流を測定したところ、最初のビット以外は
全てOFF状態即ち1nA程度の電流値を示し、消去が
完了したのが確認された。
Next, an erase pulse train as shown in FIG. 7 (c) was generated based on the individual bit information thus written. Here, for all bit information, the first bit remains ON and is not erased. The recording medium was driven in the xy plane by the same method as the writing, the current value was measured, and the driving of the medium was temporarily stopped at the first bit, that is, the position at which the current value first changed by about 4 digits. At this time, according to the condition of the bit information defined at the beginning, all the probe electrodes 2
About 4 digits was observed. Then, the drive of the medium was restarted, and in synchronization with this, individual erase pulse trains were applied to the individual probe electrodes 2 previously generated.
Again, when the recording medium 1 was driven in the xy plane and the current was measured by the same method as at the time of writing, all except the first bit were in the OFF state, that is, the current value was about 1 nA, and it was confirmed that the erasing was completed. It was

【0054】ここで使用した消去パルスに変えて、書き
込みに用いたビット情報のうち、最初のビットを除く、
任意のビットを選んで消去パルス列(図7(d))を生
成し、前述の手法と同様にして消去実験をしたところ、
選択したビットのみの消去が確認できた。
In place of the erase pulse used here, the first bit of the bit information used for writing is excluded,
When an arbitrary pulse is selected to generate an erase pulse train (FIG. 7 (d)) and an erase experiment is performed in the same manner as the above method,
It was confirmed that only the selected bit was erased.

【0055】更に装置動作条件としてプローブの走査範
囲を1μm□、走査速度50Hz/ラインとして上述の
記録、再生、消去を行った。この際、電流検出回路の出
力を用い、高域カットオフ周波数を200Hzとして前
記出力の200Hz以下の周波数成分によりプローブ電
極駆動機構3を帰還制御した。この動作条件でデータビ
ットの読み取り等に障害は生じなかった。すなわちこの
条件でデータビットは約10kHzの空間周波数を有し
ているが、これと同程度の凹凸に対して微小弾性体はそ
れぞれ充分追従していたと思われる。また、帰還制御に
用いた成分は1μmの領域中で数周期分に相当するうね
りに対応しており、かかるうねりあるいは傾きに対して
もすべてのプローブが充分追従していたと考えられる。
Further, as the operating conditions of the apparatus, the above-mentioned recording, reproduction and erasing were carried out with the scanning range of the probe being 1 μm □ and the scanning speed being 50 Hz / line. At this time, the output of the current detection circuit was used, the high cutoff frequency was set to 200 Hz, and the probe electrode drive mechanism 3 was feedback-controlled by the frequency component of 200 Hz or less of the output. Under these operating conditions, there was no problem in reading data bits. That is, under this condition, the data bit has a spatial frequency of about 10 kHz, but it is considered that the minute elastic bodies sufficiently follow the unevenness of the same degree. Further, the component used for the feedback control corresponds to the undulation corresponding to several cycles in the region of 1 μm, and it is considered that all the probes sufficiently followed the undulation or the inclination.

【0056】また複数個のプローブ先端位置のバラツキ
もプローブ電極駆動機構3のそれぞれの駆動で吸収でき
た。
Further, variations in the tip positions of a plurality of probes can be absorbed by each drive of the probe electrode drive mechanism 3.

【0057】実施例3 記録層4aとしてポリイミド単分子累積膜を用いて、実
施例1、2と同様な記録、再生、消去の実験を行なっ
た。以下にポリイミド単分子累積膜の形成方法を記す。
Example 3 Using a polyimide monomolecular accumulating film as the recording layer 4a, the same recording, reproducing and erasing experiments as in Examples 1 and 2 were conducted. The method for forming the polyimide monomolecular cumulative film will be described below.

【0058】[0058]

【化1】 [Chemical 1]

【0059】[0059]

【化2】 (1)式に示すポリアミック酸(分子量約20万)を
N,N−ジメチルアセトアミド溶媒に溶解させた後(単
量体換算濃度1×10-3M)、別途調整したN,N−ジ
メチルヘキサデシルアミンの同溶媒による1×10-3
溶液とを1:2(V/V)に混合して、(2)式に示す
ポリアミック酸ヘキサデシルアミン塩溶液を調整した。
この溶液を水温20℃の純水からなる水相上に展開し水
面上に単分子膜を形成した。溶媒除去後、表面圧を25
mN/mにまで高め、表面圧を一定に保ちながら、実施
例1で用いたものと同じ電極基板を水面を横切る方向に
速度5mm/minで静かに浸漬した後、続いて5mm
/minで静かに引きあげて2層のY型単分子累積膜を
作成した。この操作を6回くり返して、12層の単分子
膜を累積した。次にこの基板を300℃で10分間の熱
処理を行ない、ポリアミック酸ヘキサデシルアミン塩を
イミド化し式(3)、ポリイミド単分子累積膜を得た。
[Chemical 2] After dissolving the polyamic acid represented by the formula (1) (molecular weight: about 200,000) in an N, N-dimethylacetamide solvent (concentration of monomer: 1 × 10 −3 M), separately adjusted N, N-dimethylhexa 1 × 10 -3 M with the same solvent of decylamine
The solution was mixed with 1: 2 (V / V) to prepare a polyamic acid hexadecylamine salt solution represented by the formula (2).
This solution was spread on a water phase made of pure water having a water temperature of 20 ° C. to form a monomolecular film on the water surface. After removing the solvent, increase the surface pressure to 25
After increasing the pressure to mN / m and keeping the surface pressure constant, the same electrode substrate as that used in Example 1 was gently immersed in a direction across the water surface at a speed of 5 mm / min, and then 5 mm.
The film was gently pulled up at a speed of / min to form a two-layer Y-type monomolecular cumulative film. This operation was repeated 6 times to accumulate 12 layers of monomolecular film. Next, this substrate was heat-treated at 300 ° C. for 10 minutes to imidize the hexaamicylamine polyamic acid salt to obtain a polyimide monomolecular cumulative film of formula (3).

【0060】[0060]

【化3】 以上のようにして作成した記録媒体1に対しても、実施
例1、2と同様な記録、再生、消去を行なうことができ
た。。以上述べてきた実施例中では、記録層101の形
成にLB法を使用してきたが、極めて薄く均一な膜が形
成できる成膜法であればLB法に限らず使用可能であ
り、具体的にはMBE法やCVD法等の真空蒸着法が挙
げられる。
[Chemical 3] Recording, reproduction and erasing similar to those in Examples 1 and 2 could be performed on the recording medium 1 produced as described above. . In the embodiments described above, the LB method is used for forming the recording layer 101, but any film forming method capable of forming an extremely thin and uniform film can be used without being limited to the LB method. Examples include vacuum deposition methods such as MBE method and CVD method.

【0061】使用可能な材料もπ電子共役系を含む他の
有機化合物の他、電圧印加によって導電状態が変化しう
る材料であれば、例えばカルコゲン化合物等の無機材料
などにも拡げうる。
The material that can be used can be expanded to other organic compounds containing a π-electron conjugated system as well as inorganic materials such as chalcogen compounds as long as the conductive state can be changed by voltage application.

【0062】さらには半導体を記録媒体側電極として、
電極と記録層を一体化して用いることも可能である。
Further, the semiconductor is used as the recording medium side electrode,
It is also possible to use the electrode and the recording layer integrally.

【0063】尚、本発明は基板材料やその形状及びその
表面構造について何ら限定するものではない。
The present invention does not limit the substrate material, its shape and its surface structure.

【0064】一方、プローブ電極の材料は、導電性を有
するものであれば、本発明に適用可能である。また、片
持ち梁も兼ねるように線材、例えば、白金線を90°に
曲げて使用することもできる。弾性部材として用いたS
iO2 の片持ち梁は、これに限定されるものではなく両
持ち梁や薄膜構造など様々な形が考えられ、また材料と
してもAu、Ni、SUS、BeCu箔など使用可能で
ある。いずれにしても微小な力によって変位する必要が
ある。
On the other hand, the material of the probe electrode is applicable to the present invention as long as it has conductivity. Further, a wire rod, for example, a platinum wire may be bent at 90 ° and used so that it also serves as a cantilever. S used as an elastic member
The iO 2 cantilever is not limited to this, and various shapes such as a double-supported beam and a thin film structure are conceivable, and Au, Ni, SUS, BeCu foil or the like can be used as the material. In any case, it is necessary to displace by a small force.

【0065】xyz微動装置は円筒型圧電素子を用いて
いるが、トライポット型の圧電素子やバイモルフ型など
も使用可能である。
The xyz fine movement device uses a cylindrical piezoelectric element, but a tripot type piezoelectric element, a bimorph type or the like can also be used.

【0066】上述した各実施例は記録再生装置であった
が記録又は再生のみの装置でもよい。
Although each of the embodiments described above is a recording / reproducing apparatus, it may be a recording / reproducing only apparatus.

【0067】[0067]

【発明の効果】以上説明したように、本発明によってプ
ローブ電極を極めて媒体に接近させたため記録密度が向
上した。さらに記録媒体表面の凹凸の読み出し信号への
影響が減少し、しかもビット情報の書き込み領域と非書
き込み領域とでの信号比が増大し、且つ、安定したため
読み出しエラーのほとんどない、信頼性の高い記録及び
/又は再生装置を提供できる。
As described above, according to the present invention, the recording density is improved because the probe electrode is extremely close to the medium. Further, the influence of the unevenness of the surface of the recording medium on the read signal is reduced, the signal ratio between the bit information writing area and the non-writing area is increased, and the recording is stable, so that there is almost no read error and highly reliable recording. And / or a playback device can be provided.

【0068】また、装置動作中、微小弾性体の変形量に
換算しうる信号の、第2の弾性体の機械的共振周波数以
下の成分で帰還制御することにより、媒体のうねりや傾
きのように大きな高低差に対してもプローブ電極は追従
し、データの読み出しに障害が生じない。さらに複数個
のプローブ電極を具備した場合のプローブ先端位置のバ
ラツキ等の補償が可能となる。
Further, during the operation of the apparatus, feedback control is performed with a component of the signal which can be converted into the deformation amount of the minute elastic body, which is equal to or lower than the mechanical resonance frequency of the second elastic body. The probe electrode follows even a large height difference, and no trouble occurs in reading data. Further, when a plurality of probe electrodes are provided, it is possible to compensate for variations in probe tip position.

【0069】またさらに、微小弾性体は帰還制御の必要
がないため、高速の帰還制御回路が不要となり、特に複
数のプローブを具備した場合、周辺回路の負担が軽くな
る。
Furthermore, since the micro-elastic body does not require feedback control, a high-speed feedback control circuit is not required, and especially when a plurality of probes are provided, the load on the peripheral circuit is lightened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の記録及び/又は再生装置の記録ヘッド
を図解的に示した説明図である。
FIG. 1 is an explanatory view schematically showing a recording head of a recording and / or reproducing apparatus of the present invention.

【図2】本発明の第1の記録及び/又は再生装置を図解
的に説明した説明図である。
FIG. 2 is an explanatory diagram schematically illustrating a first recording and / or reproducing apparatus of the present invention.

【図3】プローブ電極と記録層表面との距離を変えた時
に得られた両者間に流れる電流と両者間に働く力の変化
を示す特性図である。
FIG. 3 is a characteristic diagram showing changes in the current flowing between the probe electrode and the surface of the recording layer obtained when the distance between the probe electrode and the surface of the recording layer is changed, and changes in the force acting between the two.

【図4】記録用のパルス電圧波形である。FIG. 4 is a pulse voltage waveform for recording.

【図5】消去用のパルス電圧波形である。FIG. 5 is a pulse voltage waveform for erasing.

【図6】本発明第2の記録及び/又は再生装置を図解的
に示した説明図である。
FIG. 6 is an explanatory diagram schematically showing a second recording and / or reproducing apparatus of the present invention.

【図7】複数個のプローブ電極を用いた記録、再生、消
去実験においてある1つのプローブ電極に与えられたビ
ット情報、記録用パルス列、消去用パルス列を示す。
FIG. 7 shows bit information, a recording pulse train, and an erasing pulse train given to one probe electrode in a recording, reproducing, and erasing experiment using a plurality of probe electrodes.

【図8】本発明で用いた記録層を金属電極で挟持したM
IM素子の構成略図である。
FIG. 8: M in which the recording layer used in the present invention is sandwiched by metal electrodes
3 is a schematic diagram of the configuration of an IM element.

【図9】図8の素子で得られる電流電圧特性である。9 is a current-voltage characteristic obtained with the device of FIG.

【図10】図8の素子で得られるメモリー効果を表わす
電流電圧特性である。
10 is a current-voltage characteristic showing a memory effect obtained by the device of FIG.

【符号の説明】[Explanation of symbols]

1 プローブ電極 1a プローブ先端 1b 導電コート 2 プローブ電極支持体 2a 微小弾性体 2b 第2の弾性体 3 プローブ電極駆動機構 3a,3a’,3a” 電極 3b,3b’ 圧電性薄膜 4 記録媒体 4a 記録層 4b 電極 4c 基板 5 xyz微動装置 6 xyz粗動装置 7 ベース 8 xyz微動装置の制御回路 9 xyz粗動装置の制御回路 10 マイクロコンピュータ 11 電流検出回路 12 電圧印加回路 13 圧電素子制御回路 14 圧電素子 15 プローブ電極駆動機構制御回路 16 プローブ電極の支持機構 17 単分子累積膜 18 Al電極 19 Au電極 20 電流検出用取出電極 DESCRIPTION OF SYMBOLS 1 probe electrode 1a probe tip 1b conductive coat 2 probe electrode support 2a micro elastic body 2b second elastic body 3 probe electrode driving mechanism 3a, 3a ', 3a "electrodes 3b, 3b' piezoelectric thin film 4 recording medium 4a recording layer 4b electrode 4c substrate 5 xyz fine movement device 6 xyz coarse movement device 7 base 8 xyz fine movement device control circuit 9 xyz coarse movement device control circuit 10 microcomputer 11 current detection circuit 12 voltage application circuit 13 piezoelectric element control circuit 14 piezoelectric element 15 Probe electrode drive mechanism control circuit 16 Support mechanism for probe electrode 17 Monomolecular cumulative film 18 Al electrode 19 Au electrode 20 Extraction electrode for current detection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 邦裕 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihiro Sakai 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 物体に対し情報読み取り及び/又は入力
を行うためのプローブを支持する支持体が、プローブの
設けられた第一の弾性体と、該第一の弾性体より低い共
振周波数を有しかつプローブと物体との距離を変化させ
るための駆動機能を有した第二の弾性体とを接合した構
造を有していることを特徴とするプローブ構造体。
1. A support for supporting a probe for reading and / or inputting information to an object has a first elastic body provided with the probe and a resonance frequency lower than that of the first elastic body. And a probe structure having a structure in which a second elastic body having a driving function for changing the distance between the probe and the object is joined.
【請求項2】 情報記録媒体にプローブを介して情報の
記録を行う装置で、前記プローブを支持する支持体が、
プローブの設けられた第一の弾性体と、該第一の弾性体
より低い共振周波数を有しかつプローブと情報記録媒体
との距離を変化させるための駆動機能を有した第二の弾
性体とを接合した構造を有していることを特徴とする記
録装置。
2. An apparatus for recording information on an information recording medium via a probe, wherein a support for supporting the probe comprises:
A first elastic body provided with a probe, and a second elastic body having a resonance frequency lower than that of the first elastic body and having a driving function for changing the distance between the probe and the information recording medium. A recording apparatus having a structure in which the above are joined.
【請求項3】 情報記録媒体にプローブを介して情報の
記録を行う装置であって、前記プローブを支持する支持
体が、プローブを設けられた微小弾性体と該微小弾性体
より低い共振周波数を有しかつプローブと情報記録媒体
との距離を変化させるための駆動機構を有した第二の弾
性体とを接合した構造を有しており、前記微小弾性体を
前記プローブ・情報記録媒体の間隔変動を補正する方向
に変形させる力が前記プローブ・情報記録媒体間に作用
する様に前記プローブ・情報記録媒体を配置し、更に前
記微小弾性体の変形が、常に所定の値を超えないよう変
形を補正する方向に前記駆動機構によって第二の弾性体
を変形させることによって前記プローブ・情報記録媒体
間隔を制御し、該制御状態で前記プローブ・情報記録媒
体間に電圧を印加して情報の記録を行うことを特徴とす
る記録装置。
3. An apparatus for recording information on an information recording medium via a probe, wherein a support for supporting the probe has a microelastic body provided with the probe and a resonance frequency lower than that of the microelastic body. And a second elastic body having a drive mechanism for changing the distance between the probe and the information recording medium, and the micro elastic body is arranged between the probe and the information recording medium. The probe and the information recording medium are arranged so that the force for deforming in the direction of correcting the fluctuation acts between the probe and the information recording medium, and further, the deformation of the micro elastic body does not always exceed a predetermined value. The probe / information recording medium interval is controlled by deforming the second elastic body by the drive mechanism in a direction to correct the voltage, and a voltage is applied between the probe / information recording medium in the controlled state. A recording device for recording information by recording.
【請求項4】 前記プローブ・情報記録媒体間に作用す
る力としてプローブ・情報記録媒体間の原子間斥力を用
いることを特徴とする請求項2又は3記載の記録装置。
4. The recording apparatus according to claim 2, wherein an interatomic repulsive force between the probe and the information recording medium is used as the force acting between the probe and the information recording medium.
【請求項5】 前記プローブが複数存在し、おのおのが
前記支持体で支持されていることを特徴とする請求項2
〜4いずれか記載の記録装置。
5. A plurality of the probes are present, each of which is supported by the support.
The recording device according to any one of to 4.
【請求項6】 前記プローブ・情報記録媒体間の電圧印
加により前記情報記録媒体の電気特性を変化されること
により記録を行うことを特徴とする請求項2〜5いずれ
か記載の記録装置。
6. The recording apparatus according to claim 2, wherein the recording is performed by changing the electrical characteristics of the information recording medium by applying a voltage between the probe and the information recording medium.
【請求項7】 前記第二の弾性体の変形量が前記微小弾
性体の変形量、または前記微小弾性体の変形量に換算し
うる信号によって帰還制御されることを特徴とする請求
項2〜6いずれか記載の記録装置。
7. The feedback control according to claim 2, wherein the deformation amount of the second elastic body is feedback-controlled by a deformation amount of the minute elastic body or a signal that can be converted into a deformation amount of the minute elastic body. 6. The recording device according to any one of 6.
【請求項8】 プローブを介して物体から情報の検出を
行う装置で、前記プローブを支持する支持体が、プロー
ブの設けられた第一の弾性体と、該第一の弾性体より低
い共振周波数を有しかつプローブと物体との距離を変化
させるための駆動機能を有した第二の弾性体とを接合し
た構造を有していることを特徴とする情報検出装置。
8. An apparatus for detecting information from an object through a probe, wherein a support for supporting the probe has a first elastic body provided with the probe and a resonance frequency lower than that of the first elastic body. And a second elastic body having a driving function for changing the distance between the probe and the object.
【請求項9】 情報記録媒体にプローブを介して情報の
再生を行う装置で、前記プローブを支持する支持体が、
プローブの設けられた第一の弾性体と、該第一の弾性体
より低い共振周波数を有しかつプローブと情報記録媒体
との距離を変化させるための駆動機能を有した第二の弾
性体とを接合した構造を有していることを特徴とする再
生装置。
9. An apparatus for reproducing information on an information recording medium via a probe, wherein a support for supporting the probe comprises:
A first elastic body provided with a probe, and a second elastic body having a resonance frequency lower than that of the first elastic body and having a driving function for changing the distance between the probe and the information recording medium. A reproducing apparatus having a structure in which the above are joined.
【請求項10】 情報記録媒体にプローブを介して情報
の再生を行う装置で前記プローブを支持する支持体が、
プローブを設けられた微小弾性体と該微小弾性体より低
い共振周波数を有しかつプローブと情報記録媒体との距
離を変化させるための駆動機構を有した第二の弾性体と
を接合した構造を有しており、前記微小弾性体を前記プ
ローブ・情報記録媒体の間隔変動を補正する方向に変形
させる力が前記プローブ・情報記録媒体間に作用する様
に前記プローブ・情報記録媒体を配置し、更に前記微小
弾性体の変形が、常に所定の値を超えないよう変形を補
正する方向に前記駆動機構によって第二の弾性体を変形
させることによって前記プローブ・情報記録媒体間隔を
制御し、該制御状態で前記プローブ・情報記録媒体間の
電流を検出することによって再生を行うことを特徴とす
る再生装置。
10. A support for supporting the probe in an apparatus for reproducing information on an information recording medium via the probe,
A structure in which a micro elastic body provided with a probe and a second elastic body having a resonance frequency lower than that of the micro elastic body and having a drive mechanism for changing the distance between the probe and the information recording medium are joined together The probe / information recording medium is arranged so that a force that deforms the micro elastic body in a direction of correcting the interval variation of the probe / information recording medium acts between the probe / information recording medium, Further, the probe / information recording medium interval is controlled by deforming the second elastic body by the driving mechanism in a direction of correcting the deformation so that the deformation of the micro elastic body does not always exceed a predetermined value. A reproducing apparatus, which reproduces by detecting a current between the probe and the information recording medium in a state.
【請求項11】 前記プローブ・情報記録媒体間に作用
する力としてプローブ・情報記録媒体間の原子間斥力を
用いることを特徴とする請求項9又は10記載の再生装
置。
11. The reproducing apparatus according to claim 9, wherein an interatomic repulsive force between the probe and the information recording medium is used as a force acting between the probe and the information recording medium.
【請求項12】 前記プローブが複数存在し、おのおの
が前記支持体で支持されていることを特徴とする請求項
9〜11いずれか記載の再生装置。
12. The reproducing apparatus according to claim 9, wherein there are a plurality of the probes, each of which is supported by the support.
【請求項13】 前記プローブ・情報記録媒体間の電圧
印加により前記情報記録媒体の電気特性を変化されるこ
とにより記録を行うことを特徴とする請求項9〜12い
ずれか記載の再生装置。
13. The reproducing apparatus according to claim 9, wherein recording is performed by changing an electric characteristic of the information recording medium by applying a voltage between the probe and the information recording medium.
【請求項14】 前記第二の弾性体の変形量が前記微小
弾性体の変形量、または前記微小弾性体の変形量に換算
しうる信号によって帰還制御されることを特徴とする請
求項9〜13いずれか記載の再生装置。
14. The feedback control according to claim 9, wherein the deformation amount of the second elastic body is feedback-controlled by a deformation amount of the minute elastic body or a signal that can be converted into the deformation amount of the minute elastic body. 13. The reproducing device according to any one of 13.
【請求項15】 情報記録媒体間にプローブを介して情
報の記録及び再生を行う装置で、前記プローブを支持す
る支持体が、プローブの設けられた第一の弾性体と、該
第一の弾性体より低い共振周波数を有しかつプローブと
情報記録媒体との距離を変化させるための駆動機能を有
した第二の弾性体とを接合した構造を有していることを
特徴とする記録再生装置。
15. An apparatus for recording and reproducing information between information recording media via a probe, wherein a support for supporting the probe comprises a first elastic body provided with the probe and the first elastic body. A recording / reproducing apparatus having a structure in which a second elastic body having a resonance frequency lower than that of the body and having a driving function for changing the distance between the probe and the information recording medium is joined. ..
【請求項16】 情報記録媒体にプローブを介して情報
の記録及び再生を行う装置で前記プローブを支持する支
持体が、プローブを設けられた微小弾性体と該微小弾性
体より低い共振周波数を有しかつプローブと情報記録媒
体との距離を変化させるための駆動機構を有した第二の
弾性体とを接合した構造を有しており、前記微小弾性体
を前記プローブ・情報記録媒体の間隔変動を補正する方
向に変形させる力が前記プローブ・情報記録媒体間に作
用する様に前記プローブ・情報記録媒体を配置し、更に
前記微小弾性体の変形が、常に所定の値を超えないよう
変形を補正する方向に前記駆動機構によって第二の弾性
体を変形させることによって前記プローブ・情報記録媒
体間隔を制御し、該制御状態で前記プローブ・情報記録
媒体間に電圧を印加して情報の記録を行い、で前記プロ
ーブ・情報記録媒体間の電流を検出することによって再
生を行うことを特徴とする記録再生装置。
16. A support for supporting the probe in an apparatus for recording and reproducing information on and from an information recording medium has a micro elastic body provided with the probe and a resonance frequency lower than that of the micro elastic body. In addition, the probe and the information recording medium have a structure in which a second elastic body having a driving mechanism for changing the distance between the probe and the information recording medium is joined. The probe / information recording medium is arranged so that the force for deforming in the direction of correcting the force acts between the probe / information recording medium, and further, the deformation of the microelastic body is prevented from exceeding a predetermined value at all times. The distance between the probe and the information recording medium is controlled by deforming the second elastic body by the driving mechanism in the direction of correction, and a voltage is applied between the probe and the information recording medium in the controlled state. The information recording / reproducing apparatus is characterized in that the information is recorded and then reproduced by detecting the current between the probe and the information recording medium.
【請求項17】 前記プローブ・情報記録媒体間に作用
する力としてプローブ・情報記録媒体間の原子間斥力を
用いることを特徴とする請求項15又は16記載の記録
再生装置。
17. The recording / reproducing apparatus according to claim 15, wherein an interatomic repulsive force between the probe and the information recording medium is used as a force acting between the probe and the information recording medium.
【請求項18】 前記プローブが複数存在し、おのおの
が前記支持体で支持されていることを特徴とする請求項
15〜17いずれか記載の記録再生装置。
18. The recording / reproducing apparatus according to claim 15, wherein there are a plurality of the probes, each of which is supported by the support.
【請求項19】 前記プローブ・情報記録媒体間の電圧
印加により前記情報記録媒体の電気特性を変化されるこ
とにより記録を行うことを特徴とする請求項15〜18
いずれか記載の記録再生装置。
19. The recording is performed by changing the electric characteristics of the information recording medium by applying a voltage between the probe and the information recording medium.
The recording / reproducing apparatus according to any one of the above.
【請求項20】 前記プローブ・情報記録媒体間の電流
検出により前記情報記録媒体の電気特性を検出すること
により再生を行うことを特徴とする請求項15〜18い
ずれか記載の記録再生装置。
20. The recording / reproducing apparatus according to claim 15, wherein reproduction is performed by detecting an electric characteristic of the information recording medium by detecting a current between the probe and the information recording medium.
【請求項21】 前記第二の弾性体の変形量が前記微小
弾性体の変形量、または前記微小弾性体の変形量に換算
しうる信号によって帰還制御されることを特徴とする請
求項15〜20いずれか記載の記録再生装置。
21. The feedback control according to claim 15, wherein the deformation amount of the second elastic body is feedback-controlled by a deformation amount of the minute elastic body or a signal that can be converted into the deformation amount of the minute elastic body. 20. The recording / reproducing apparatus according to any one of 20.
JP4061477A 1992-02-17 1992-02-17 Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device Expired - Fee Related JP3023728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061477A JP3023728B2 (en) 1992-02-17 1992-02-17 Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061477A JP3023728B2 (en) 1992-02-17 1992-02-17 Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH05234156A true JPH05234156A (en) 1993-09-10
JP3023728B2 JP3023728B2 (en) 2000-03-21

Family

ID=13172190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061477A Expired - Fee Related JP3023728B2 (en) 1992-02-17 1992-02-17 Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3023728B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623029B1 (en) * 2005-01-19 2006-09-14 엘지전자 주식회사 Header of NANO Data Storage including Cantilever for Erasing Data
JP2010534514A (en) * 2007-07-23 2010-11-11 アクアティック セイフティ コンセプツ エルエルシー Swimmer electronic monitoring system
US8730049B2 (en) 2011-03-03 2014-05-20 Aquatic Safety Concepts Llc Water sensing electrode circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623029B1 (en) * 2005-01-19 2006-09-14 엘지전자 주식회사 Header of NANO Data Storage including Cantilever for Erasing Data
JP2010534514A (en) * 2007-07-23 2010-11-11 アクアティック セイフティ コンセプツ エルエルシー Swimmer electronic monitoring system
US8730049B2 (en) 2011-03-03 2014-05-20 Aquatic Safety Concepts Llc Water sensing electrode circuit

Also Published As

Publication number Publication date
JP3023728B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5481528A (en) Information processor and method using the information processor
US5461605A (en) Information recording/reproducing method, recording carrier and apparatus for recording and/or reproducing information on information recording carrier by use of probe electrode
JP2794348B2 (en) Recording medium, manufacturing method thereof, and information processing apparatus
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
US5481527A (en) Information processing apparatus with ferroelectric rewritable recording medium
JP2981804B2 (en) Information processing apparatus, electrode substrate used therein, and information recording medium
JP2756254B2 (en) Recording device and playback device
JP3135779B2 (en) Information processing device
JPH0721598A (en) Probe unit and information processor using the same
JP3023728B2 (en) Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device
JP2942013B2 (en) Recording and / or playback device
JP2981788B2 (en) Information processing apparatus using scanning probe microscope, information processing method and surface matching method
JPH01312753A (en) Recording and reproducing device
JP3005077B2 (en) Recording and / or reproducing method and apparatus
JP3044421B2 (en) Recording medium manufacturing method
JP3029503B2 (en) Recording method and information processing apparatus
CA2035995A1 (en) Probe unit, information processing device and information processing method by use thereof
JP3060143B2 (en) Recording medium and information processing apparatus using the same
JPH0714224A (en) Recording medium and information processor
JP2942011B2 (en) Information storage device
JP2994833B2 (en) Recording and / or reproducing apparatus, method and information detecting apparatus
JP3220914B2 (en) Recording medium manufacturing method
JP2872662B2 (en) Recording medium and its erasing method
JPH06333276A (en) Recording medium and its production and information processor using this recording medium
JPH0528549A (en) Recording medium and information processor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees