JPH0523022B2 - - Google Patents

Info

Publication number
JPH0523022B2
JPH0523022B2 JP59105126A JP10512684A JPH0523022B2 JP H0523022 B2 JPH0523022 B2 JP H0523022B2 JP 59105126 A JP59105126 A JP 59105126A JP 10512684 A JP10512684 A JP 10512684A JP H0523022 B2 JPH0523022 B2 JP H0523022B2
Authority
JP
Japan
Prior art keywords
lead
battery
unformed
pbo
anode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59105126A
Other languages
Japanese (ja)
Other versions
JPS60249243A (en
Inventor
Tatsuo Kikuchi
Naoyuki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP59105126A priority Critical patent/JPS60249243A/en
Publication of JPS60249243A publication Critical patent/JPS60249243A/en
Publication of JPH0523022B2 publication Critical patent/JPH0523022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は密閉型鉛蓄電池の製造法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the manufacturing method of sealed lead-acid batteries.

従来鉛又は鉛合金の基板にPbOの活物質原料に
希硫酸及び水を注液して混練したペーストを充填
し、熟成工程を経て充填板としこれを化成して上
記Pb又はPbOをPb又はPbO2の活物質にするもの
であるが、この場合Pbに比しPbO2にするのに多
量の電気量を必要とするものであつた。特に密閉
型蓄電池においてはこの電気量のアンバランスが
大きくなると化成処理工程に著しい影響を及ぼす
ものであつた。即ち、陽極板と陰極板とを電槽内
に組込んだ状態にて化成を行う場合、陽極板は
200%近くの電気量を必要とするのに対し陰極板
は120〜130%程度の電気量にて化成を終了するも
のである。従つて陰極板を陽極板と同時に化成す
ると陰極は過充電をおこしH2ガスを発生し水の
分解を生じて電解液を損失する。この対策として
電解液を補充すればよいが、多数の電池において
これを常時観察することは極めて煩雑な手数を要
するものであつた。
Conventionally, a lead or lead alloy substrate is filled with a paste made by pouring dilute sulfuric acid and water into a PbO active material raw material and kneading it, and then undergoing an aging process to form a filling plate and chemically converting the above Pb or PbO into Pb or PbO. However, in this case, compared to Pb, it required a large amount of electricity to convert it into PbO 2 . Particularly in the case of sealed storage batteries, if the imbalance in the amount of electricity becomes large, it has a significant effect on the chemical conversion treatment process. In other words, when performing chemical conversion with the anode plate and cathode plate assembled in the battery case, the anode plate
While nearly 200% of the amount of electricity is required, the cathode plate completes the formation with about 120 to 130% of the amount of electricity. Therefore, if the cathode plate is anodized at the same time as the anode plate, the cathode will overcharge, generate H 2 gas, and cause water decomposition, resulting in loss of electrolyte. As a countermeasure to this problem, it is possible to replenish the electrolyte, but it is extremely troublesome to constantly observe this in a large number of batteries.

したがつてこれまでは陽極板と陰極板とを夫々
別個に化成を行つた後リテーナマツトを介して蓄
電池を組立てた後注液を行つて密閉化していた
が、この方式による場合には作業が煩雑となりか
つ電池のコストが著しく高くなる等の欠点があつ
た。
Therefore, in the past, the anode plate and the cathode plate were chemically formed separately, the battery was assembled via a retainer mat, and then the liquid was injected and sealed, but this method required complicated work. However, there were disadvantages such as a significant increase in the cost of the battery.

従つて、化成工程において、陽極板化成の電気
量を少くすることによつてガスとして逸散する電
解液量を防ぎしかも化成効率を向上せしめうる密
閉型鉛蓄電池の製造法の出現が要望されているも
のであつた。
Therefore, there is a need for a manufacturing method for a sealed lead-acid battery that can prevent the amount of electrolyte dissipated as gas by reducing the amount of electricity required for anode plate formation in the chemical formation process, and improve the chemical formation efficiency. It was something that existed.

本発明はかかる要望に応じ鋭意研究を行つた結
果開発したものである。即ち本発明は鉛又は鉛合
金の基板に四酸化三鉛(Pb3O4)を主成分とする
活物質原料を充填した未化成陽極板と鉛(Pb)
又は酸化鉛(PbO)を主成分とする活物質原料を
充填した未化成陰極板とをリテーナーマツトを介
して積層した極板群を電槽内に収納し、該電槽内
で各極板を化成することを特徴とする密閉型鉛蓄
電池の製造法である。
The present invention was developed as a result of intensive research in response to such demands. That is, the present invention uses lead (Pb) and an unformed anode plate in which a lead or lead alloy substrate is filled with an active material raw material whose main component is trilead tetroxide (Pb 3 O 4 ).
Alternatively, a group of electrode plates in which an unformed cathode plate filled with an active material whose main component is lead oxide (PbO) and an unformed cathode plate are stacked together via a retainer mat is stored in a battery case, and each electrode plate is stacked in the battery case. This is a manufacturing method for sealed lead-acid batteries characterized by chemical formation.

本発明は未化成陽極板の活物質原料としてPb3
O4を主成分とするペーストを使用することによ
り、化成工程においてこのPb3O4が硫酸と反応し
て容易にβ−PbO2を生成するため化成を行うた
めの電気量を減少せしめることができ、これによ
つて電槽内にて未化成の陰極板と同時に化成する
ことが出来るのである。
The present invention uses Pb 3 as an active material raw material for an unformed anode plate.
By using a paste whose main component is O 4 , this Pb 3 O 4 reacts with sulfuric acid during the chemical conversion process to easily generate β-PbO 2 , which reduces the amount of electricity needed to perform chemical conversion. This makes it possible to chemically form the unformed cathode plate at the same time in the battery case.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 Pb3O41Kgに注水76cc、希硫酸(比重1.265)
150ccを夫々加えてペースト状に練合させたもの
を鉛合金基板に充填して未化成陽極板とする。
Example: Pour 76cc of water into 1Kg of Pb 3 O 4 , dilute sulfuric acid (specific gravity 1.265)
150 cc of each was added and kneaded into a paste, which was then filled into a lead alloy substrate to form an unformed anode plate.

一方陰極板は従来動揺PbあるいはPbOを主成
分とする活物質原料1Kgに注水40cc、希硫酸(比
重1.265)80ccを夫々加えてペースト状に練合せ
たものを鉛合金基板面に充填して未化成陰極板と
する。
On the other hand, cathode plates are conventionally made by adding 40 cc of water and 80 cc of dilute sulfuric acid (specific gravity 1.265) to 1 kg of active material raw material mainly composed of Pb or PbO, kneading it into a paste, and filling it onto the lead alloy substrate surface. Use a chemically formed cathode plate.

この両極板を熟成乾燥した後、リテーナマツト
(t=14mm)を介して電槽内に収納して蓄電池を
組立て、これに比重1.240の希硫酸をセル当り350
〜360cc注液して化成して密閉型鉛蓄電池をえた。
After the bipolar plates are aged and dried, they are stored in a battery case via a retainer mat (t = 14 mm) to assemble a storage battery, and then diluted sulfuric acid with a specific gravity of 1.240 is added at 350 ml per cell.
A sealed lead-acid battery was obtained by injecting ~360cc of liquid and chemically converting it.

なお、本発明と比較するために未化成陽極板を
従来の活物質原料としてPbO又はPbを使用した
以外はすべて上記実施例と同様にして蓄電池を組
立て、化成を行つて密閉型鉛蓄電池(従来品)を
えた。
In addition, for comparison with the present invention, a storage battery was assembled in the same manner as in the above embodiment except that PbO or Pb was used as the conventional active material raw material for the unformed anode plate, chemical formation was performed, and a sealed lead-acid battery (conventional products).

斯くしてえた本発明方法による密閉型鉛蓄電池
と従来の方法による密閉型鉛蓄電池において陽極
板の化成に要する理論電気量を判定した。その結
果は第1図に示す通りである。
The theoretical amount of electricity required to form the anode plate was determined for the sealed lead-acid battery produced by the method of the present invention and the sealed lead-acid battery produced by the conventional method. The results are shown in FIG.

第1図により明らかの如く本発明鉛蓄電池の製
造法における陽極板によれば陰極板と同等の電気
量130%以下にして十分に化成を行うことが出来
うるため、陰極板に過充電をおこさしめることな
く、これによつて電解液の逸散するのを防止する
と共にガスの吸収性良好な密閉型鉛蓄電池をえ
た。
As is clear from FIG. 1, with the anode plate in the lead-acid battery manufacturing method of the present invention, sufficient chemical formation can be carried out with less than 130% of the amount of electricity equivalent to that of the cathode plate, so overcharging of the cathode plate is avoided. A sealed lead-acid battery which prevents electrolyte from escaping and has good gas absorption properties without being compressed was obtained.

これに対し従来の方法による密閉型鉛蓄電池の
未化成陽極板による場合には電解液の分解量が多
くガスを多量に発生し密閉することが出来ないも
のであつた。
On the other hand, in the case of using an unformed anode plate for a sealed lead-acid battery according to the conventional method, the amount of electrolyte decomposed is large, and a large amount of gas is generated, making it impossible to seal the battery.

以上詳述した如く本発明密閉型鉛蓄電池の製造
法によれば未化成陽極板を化成するにおいて電気
量を著しく少くして未化成の陰極板とほぼ同量の
電気量にて化成を行うことが出来うるための電槽
内にて同時に化成を可能ならしめ電解液の逸散を
防止して化成効率を向上せしめる等顕著な効果を
有する。
As detailed above, according to the method of manufacturing a sealed lead-acid battery of the present invention, the amount of electricity used to form an unformed anode plate is significantly reduced, and the formation can be performed using approximately the same amount of electricity as that for an unformed cathode plate. It has remarkable effects such as making it possible to carry out chemical formation at the same time in the battery container, preventing the electrolyte from escaping, and improving the chemical formation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明密閉型鉛蓄電池の製造法における
陽極板と従来の密閉型鉛蓄電池の製造法における
陽極板との化成において電気量と化成度との関係
曲線図である。
The drawing is a relationship curve diagram between the amount of electricity and the degree of chemical formation in the formation of the anode plate in the manufacturing method of a sealed lead-acid battery according to the present invention and the anode plate in the conventional manufacturing method of a sealed lead-acid battery.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛又は鉛合金の基板に四酸化三鉛(Pb3O4
を主成分とする活物質原料を充填した未化成陽極
板と鉛(Pb)又は酸化鉛(PbO)を主成分とす
る活物質原料を充填した未化成陰極板とをリテー
ナーマツトを介して積層した極板群を電槽内に収
納し、該電槽内で各極板を化成することを特徴と
する密閉型鉛蓄電池の製造法。
1 Trilead tetroxide (Pb 3 O 4 ) on a lead or lead alloy substrate
An unformed anode plate filled with an active material raw material mainly composed of lead (Pb) or lead oxide (PbO) and an unformed cathode plate filled with an active material raw material mainly composed of lead (Pb) or lead oxide (PbO) are laminated via a retainer mat. A method for manufacturing a sealed lead-acid battery, which comprises storing a group of electrode plates in a battery case, and chemically forming each electrode plate in the battery case.
JP59105126A 1984-05-24 1984-05-24 Positive plate for sealed storage battery Granted JPS60249243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105126A JPS60249243A (en) 1984-05-24 1984-05-24 Positive plate for sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105126A JPS60249243A (en) 1984-05-24 1984-05-24 Positive plate for sealed storage battery

Publications (2)

Publication Number Publication Date
JPS60249243A JPS60249243A (en) 1985-12-09
JPH0523022B2 true JPH0523022B2 (en) 1993-03-31

Family

ID=14399087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105126A Granted JPS60249243A (en) 1984-05-24 1984-05-24 Positive plate for sealed storage battery

Country Status (1)

Country Link
JP (1) JPS60249243A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815081B2 (en) * 1987-06-19 1996-02-14 松下電器産業株式会社 Manufacturing method of electrode plate for lead-acid battery
JP2917277B2 (en) * 1988-10-28 1999-07-12 松下電器産業株式会社 Lead storage battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023732A (en) * 1973-06-30 1975-03-14
JPS5240012A (en) * 1975-09-24 1977-03-28 Western Electric Co Signal processor for converting digital sampling frequency
JPS54153240A (en) * 1978-05-24 1979-12-03 Japan Storage Battery Co Ltd Method of producing closed lead storage battery
JPS56136460A (en) * 1980-03-28 1981-10-24 Shin Kobe Electric Mach Co Ltd Production of lead storage battery plate
JPS56138867A (en) * 1980-03-31 1981-10-29 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead battery
JPS58197662A (en) * 1982-05-10 1983-11-17 Matsushita Electric Ind Co Ltd Pasted positive electrode for lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023732A (en) * 1973-06-30 1975-03-14
JPS5240012A (en) * 1975-09-24 1977-03-28 Western Electric Co Signal processor for converting digital sampling frequency
JPS54153240A (en) * 1978-05-24 1979-12-03 Japan Storage Battery Co Ltd Method of producing closed lead storage battery
JPS56136460A (en) * 1980-03-28 1981-10-24 Shin Kobe Electric Mach Co Ltd Production of lead storage battery plate
JPS56138867A (en) * 1980-03-31 1981-10-29 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead battery
JPS58197662A (en) * 1982-05-10 1983-11-17 Matsushita Electric Ind Co Ltd Pasted positive electrode for lead storage battery

Also Published As

Publication number Publication date
JPS60249243A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
JPH0523022B2 (en)
JPH10188963A (en) Sealed lead-acid battery
JPS58115775A (en) Lead-acid battery
JP2721514B2 (en) Manufacturing method of sealed lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JPH07288128A (en) Activation method for sealed lead-acid battery
JP2002343413A (en) Seal type lead-acid battery
JPH042053A (en) Manufacture of positive electrode plate of lead acid battery
JPH0550813B2 (en)
JPH0887999A (en) Manufacture of lead-acid battery
JPH0770318B2 (en) Lead acid battery
JPH0458458A (en) Battery jar formation method for sealed lead-acid battery
JPH10134810A (en) Manufacture of lead-acid battery
JPH05166504A (en) Manufacture of lead-acid battery positive electrode plate
JPH11120998A (en) Manufacture of lead-acid battery
JP2008091189A (en) Sealed lead acid storage battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPS6050861A (en) Positive plate for quick use type lead storage battery
JP2000323132A (en) Lead-acid battery forming method
JPH053709B2 (en)
JPS62216167A (en) Positive pole active material for lead storage battery
JPS6229063A (en) Positive electrode plate for lead storage battery
JP2000182615A (en) Lead-acid battery
JPH0787097B2 (en) Method of manufacturing positive electrode plate for paste-type lead acid battery
JPS59139565A (en) Electrode plate manufacturing method of lead storage battery