JPH0522649B2 - - Google Patents

Info

Publication number
JPH0522649B2
JPH0522649B2 JP4011985A JP4011985A JPH0522649B2 JP H0522649 B2 JPH0522649 B2 JP H0522649B2 JP 4011985 A JP4011985 A JP 4011985A JP 4011985 A JP4011985 A JP 4011985A JP H0522649 B2 JPH0522649 B2 JP H0522649B2
Authority
JP
Japan
Prior art keywords
titanate
alkali metal
conductive
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4011985A
Other languages
Japanese (ja)
Other versions
JPS61197422A (en
Inventor
Takuro Morimoto
Kihachiro Nishiuchi
Kenichi Wada
Masayoshi Suzue
Yukya Haruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP4011985A priority Critical patent/JPS61197422A/en
Publication of JPS61197422A publication Critical patent/JPS61197422A/en
Publication of JPH0522649B2 publication Critical patent/JPH0522649B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、導電性チタン酸アルカリ金属塩及び
その製法に関する。 (背景) 近年、新規な導電性材料に対するニーズが増大
しており、静電気除去材料や帯電防止材料又は導
電性材料となりうる素材の研究、開発が活発に行
なわれている。 これらの導電性素材としては、一般に金、銀、
白金、銅、ニツケル等の導電性金属類、カーボン
ブラツクなどの炭素材料類、酸化錫、酸化アンチ
モン等の金属酸化物、更にはポリピロール、ポリ
アセチレン等の有機導電性化合物等が知られてお
り、これらの導電性素材を利用した導電性の塗
料、接着剤、インキ、布帛、繊維、成形体及び焼
結体等が各種の用途に応用されている。 (従来の技術) チタン酸塩に導電性を付与する一般的な方法と
しては、チタン酸塩の表面を導電性物質で被覆す
る方法及びチタン酸塩を還元して低次酸化物から
なるチタン酸塩を得る方法が知られている。 前者の被覆法は、チタン酸塩の表面に導電性物
質を物理的又は化学的方法により沈着させること
により、導電性物質で被覆されたチタン酸塩を得
るものであつて、ここに導電性物質としては、
銀、銅、ニツケル、錫、アンチモン等が用いられ
る。この方法は、無電解メツキ関連技術の適用が
可能で、操作が簡単であり、かつ基質となるチタ
ン酸塩を何ら変質させることなしに、これに導電
性を付与しうるという利点がある。しかし、原料
となるチタン酸塩は通常5〜100m2/gもの比表
面積を有する微細粉末の形で供給されるため、本
粉体の表面を充分な導電性を発揮する程度に均一
に被覆するためには、原料チタン酸塩1g当たり
1〜5gもの被覆用導電性物質を必要とする。こ
のことは、製品である導電性チタン酸塩の重量組
成として、被覆物質がチタン酸塩と同量又はそれ
以上となることを意味し、このため、チタン酸塩
本来の特性が減殺されるのみならず、価格的にも
高価となるから、その産業的利用性が低下する。 後者の還元法においては、チタン酸塩を還元雰
囲気で焼成するか、チタン酸塩を還元雰囲気下で
製造することにより、一般式、 M2O・nTiO2-x(式中、Mはアルカリ金属、n
は2〜12の整数、xは0<x≦1の実数であ
る) で表わされる導電性を示す低次酸化物からなるチ
タン酸塩が得られる。この還元法により得られる
導電性チタン酸塩は、還元条件の制御により任意
の低次酸化物からなるチタン酸塩を得ることがで
き、これにより導電性を自由に制御できる点で極
めて有用性の高いものではあるが、チタン酸塩の
種類によつて還元しにくい場合があり、かつ環元
を高温下で又は長時間行う必要があるため、還元
処理に際してチタン酸塩が熔融して焼結体を作つ
たり又は結晶状態が変化したりする等の好ましく
ない現象を起こすことがあつた。 (発明の目的) 本発明の目的は、少量の周期律表第族の元素
の使用によつて公知の導電性チタン酸塩における
以上の問題点を解決し、チタン酸アルカリ金属塩
本来の特性を保持した導電性チタン酸アルカリ金
属塩を提供することである。 本発明のまた別の目的は、導電性チタン酸アル
カリ金属塩を製造するにあたり、熔融したり結晶
状態が変化したりしない温度領域で目的物を収得
できる製法を提供することである。 本発明の更に他の目的は、原料非導電性チタン
酸塩の物性をそのまま保有する導電性チタン酸ア
ルカリ金属塩の製法を提供することである。 本発明のなお別の目的は、導電性にバラツキの
ない導電性チタン酸アルカリ金属塩を得ることで
ある。 (問題点を解決するための手段) 本発明は、周期律表第族の元素でドープされ
ていることを特徴とする新規な導電性チタン酸ア
ルカリ金属塩及びその製法に係る。 本発明の製法における原料物質となるチタン酸
アルカリ金属塩は、一般式、 M2O・nTiO2(式中Mはアルカリ金属、nは2
〜12の整数である) で示されるが、目的上微細粉末状又は繊維状のも
のが好ましい。具体的には、チタン酸リチウム、
チタン酸ナトリウム、チタン酸カリウムなどが挙
げられる。これらチタン酸塩の中、代表的なチタ
ン酸カリウムを例にあげて説明すると、二チタン
酸カリウム、四チタン酸カリウム、六チタン酸カ
リウムなどが工業的に生産されている。四チタン
酸カリウムは層状構造をもつ繊維状体であり、ま
た六チタン酸カリウムはトンネル構造をもつ繊維
状体である。しかし本発明においては、特に式、
K2O・6TiO2で表わされる六チタン酸カリウム
が、耐火・断熱性、機械的強度が優れているのみ
でなく、充填剤として用いたとき、成形物の表面
平滑性が優れている点で有利である。 本発明の原料として使用されるチタン酸アルカ
リ金属塩としては、特に繊維状のものが好まし
く、一般的には繊維状のチタン酸カリウムが実用
上好適であつて、殊に繊維長5μm以上、アスペク
ト比(縦横比)20以上、特に100以上のものが補
強性充填剤として適している。 本発明における周期律表第族の元素(以下
「ドープ金属」と呼ぶ)は、アルカリ土類金属類
の他、亜鉛、カドミウム及び水銀を包含するが、
後二者は人体への毒性、環境汚染等の恐れが懸念
されるので、目的上好適とは言えない。そして、
性能、無公害性のその他の見地から、亜鉛が最も
実用的である。 本発明に係る導電性チタン酸アルカリ金属塩
は、 1 一般式M2O・nTiO2(M、nの意味は前記と
同じ)で示されるチタン酸アルカリ金属塩と、
ベリリウム、マグネシウム、カルシウム、スト
ロンチウム、バリウム、亜鉛、カドミウム、水
銀等の本発明のドープ金属又はこれらの金属を
含む化合物との混合物を焼成するか、或は、 2 一般式M2O・nTiO2(M、nの意味は前記と
同じ)でされるチタン酸アルカリ金属塩を本発
明のドープ金属の蒸気雰囲気中で処理し、金属
をチタン酸アルカリ金属塩の表面に付着させる
こと。 等により製造されうる。 本発明の実施に使用されるドープ金属として
は、結晶状又はアモルフアス状の亜鉛、カドミウ
ム、水銀が好ましい。またドープ金属の化合物と
しては、当該金属の、酸化物、水酸化物、
炭酸塩,硫酸塩,亜硫酸塩,硝酸塩もしくは亜硝
酸塩等の無機酸塩、塩化物,臭化物,沃化物も
しくは弗化物等のハロゲン化物、ギ酸,酢酸,
プロピオン酸,カプロン酸もしくはシユウ酸等の
有機酸塩、金属アルコラート及びアセチルア
セトナート等のキレート化物などを挙げることが
できる。 本発明おいては、上の金属や金属化合物が粉末
状の場合はなるべく粒径が小さい方が良い。そし
て混合の仕方として直接原料チタン酸アルカリ金
属塩と混合してもよいが、成るべく少量の水等の
分散媒を加えて原料チタン酸アルカリ金属塩と混
合、スラリー化後、噴霧乾燥して均一な混合体を
調製するのが良い。また、水等の溶媒に可溶性の
ものの場合でも、当該金属化合物の溶液を単に原
料チタン酸塩上に散布するよりは、当該溶液中に
原料チタン酸アルカリ金属塩を混合してスラリー
化した後、噴霧乾燥して均一な混合体とするのが
好ましい。 本発明において、ドープ金属又はその化合物の
添加量につき特に制限がある訳ではないが、通
常、チタン酸アルカリ金属塩100重量部に対し、
ドープ金属約2〜15重量部程度又はこれに対応す
る量のドープ金属化合物を添加すれば充分本発明
の目的を達成することができる。 本発明の導電性チタン酸アルカリ金属塩は、上
述のドープ金属又はその化合物より選ばれた一種
又はそれ以上のドープ物質を混合されたチタン酸
アルカリ金属塩を、不活性ガス雰囲気中又は還元
性雰囲気下に500〜1000℃の温度で焼成すること
により製造することができる。後に実施例で詳述
するが、例えばチタン酸アルカリ金属塩を密閉型
高温加熱炉に入れてから減圧下で系内の空気を除
去するか又は炉内に窒素ガスを導入して空気を窒
素で先ず置換し、次いで昇温させ500〜1000℃に
なつた後にそのまま反応させるか、或は水素ガス
を炉内に導入しつつ加熱して反応させることによ
り、チタン酸アルカリ金属塩の結晶中から酸素が
引き抜かれて導電性となつた導電性チタン酸アル
カリ金属塩が得られる。 ドープ金属として亜鉛が混合された系において
は、系が500〜1000℃に加熱されると、亜鉛が熔
融し又は気化してチタン酸アルカリ金属塩と接触
し、この活性亜鉛がチタン酸アルカリ金属塩の格
子を構成している酸素原子と反応して該酸素を引
き抜く。そしてここに生成した酸化亜鉛の一部
は、導電性チタン酸アルカリ金属塩結晶中にに固
溶するが、殆どは蒸発、揮散するから、原料チタ
ン酸アルカリ金属塩の物性は殆ど変化しない。ま
た水素ガスを導入した場合には、更に水素による
引き抜きが起こるから、短時間内に導電性チタン
酸アルカリ金属塩を収得することができる。なお
この場合、反応容器の素材としてカーボン製の素
材を使用すると一層良い結果が得られる。 ドープ金属化合物として亜鉛系化合物を混合し
た場合には、炉内に雰囲気が500℃を越えた頃か
ら亜鉛系化合物が分解又は熔融を始め、チタン酸
アルカリ金属塩中に酸化亜鉛が固溶、拡散する。
そして、次いで水素ガスが導入されることによ
り、酸素の引き抜きと同時にイオン価の異なる亜
鉛イオンが導入されるから、著しい導電性を有す
る還元チタン酸アルカリ金属塩を収得することが
できる。この場合も、容器としてカーボン系素材
を使用した方が良い結果を与える。これは、カー
ボン系材料の使用により、炉内の雰囲気が還元雰
囲気化するためと解釈される。 以上の反応にいて、ドープ金属が亜鉛の場合に
は、窒素ガスもしくはアルゴンガスなどの不活性
ガス雰囲気又は水素ガスなどの還元雰囲気いずれ
でもよい。またドープ金属化合物が亜鉛系化合物
の場合には、不活性ガスとカーボン系素材の組合
せ及び水素ガスを使用する還元雰囲気下での焼成
が好ましい。 本発明の反応における焼成温度は、通常500〜
1000℃、好ましくは600〜900℃の範囲内であつ
て、焼成時間は、通常15〜120分、好ましくは20
〜70分の範囲内である。 本発明の方法では、焼成に際して通常用いられ
る還元助剤を併用することができる。好適な還元
助剤の例としては、例えば炭素粉末、炭化珪素、
炭化硼素もしくは炭化チタン等の炭化物、メタ
ン、プロパン、ブタン、ペンタン、ヘキサン、ベ
ンゼン、トルエン、キシレン、リグロイン、ケロ
シン等の脂肪族もしくは芳香族炭化水素又はそれ
らの混合物及びその他各種の高炭素含有物質、更
にはヒドラジン等の水素化窒素化合物等を例示で
きる。これらの還元助剤は、焼成前に予め原料中
に混合するのみでよいが、焼成時の温度で気化す
る性質を有する炭化水素等の助剤の場合には、別
個にガス化させて不活性ガスと共に焼成炉中に導
入してもよい。特にトルエン、ベンゼン、四塩化
炭素及びメタンは、夫々700〜750℃、750〜800
℃、850〜900℃及び900〜950℃の温度範囲内の温
度で嫌気的に熱分解して炭素質をチタン酸アルカ
リ金属塩の表面に沈着させるので、自体還元助剤
として作用すると同時に、沈着物(炭素質)によ
る被覆が成績体の導電性を更に向上させる。 本発明の製法で得られた導電性チタン酸アルカ
リ金属塩は、微細粉末状、微細繊維状、微細層状
等の形状を有する導電性素材であつて、焼結する
ことにより導電性焼結体を、結合剤と混練するこ
とにより導電性塗料、インキ又は接着剤を、また
樹脂と混練することにより導電性コンパウンド又
はシート等を、更に他の布帛材料と抄造又は混紡
することにより、導電性布帛、繊維又はペーパー
を夫々収得することができる。特に、本発明に係
る導電性チタン酸アルカリ金属塩は、従来の無機
質導電性素材の特徴である耐熱性を備えると共
に、優れた寸法安定性、表面平滑性及び補強性を
有するから、導電性複合材料を生産するための導
電性素材として、極めて有用である。 (実施例) 以下、実施例を挙げて発明実施の諸態様につい
て説明するが、例示は当然説明用のものであつ
て、発明思想の限定乃至制限を意図したものでは
ない。 実施例1 (製造例) チタン酸カリウム[大塚化学(株)製、商品名テイ
スモD]5g及び塩化亜鉛[半井化学薬品(株)製]
0.5gに水を加えて混合、スラリー化した後、ス
プレードライして小顆粒状の混合体を形成させ
た。この混合体を30ml容の黒鉛坩堝内に収容し、
該坩堝をシリコニツト製管状電気炉内に移して密
封した。次いで、室温下に該電気炉内に窒素ガス
を150ml/分の流量割合で約1時間流通させ、雰
囲気を調整した後、窒素ガスの導通を継続したま
ま炉温を500℃まで昇温させた。その後、導入ガ
スを水素ガスに切り換え、該ガスを流量120ml/
分の割合で導入しながら、徐々に昇温させ、850
℃に約1時間保持した後、電気炉の電源を切つて
水素ガスの導入を続けたまま放冷し、温度が200
℃まで低下したとき導入ガスを窒素ガスに切り換
え、室温まで放冷後、坩堝を炉外に取り出した。 得られた導電性チタン酸カリウムは青色に帯色
していた。 実施例2 (同上) チタン酸カリウム[テイスモD](前掲)5g
及び塩化亜鉛(前掲)1gに水を加えて混合、ス
ラリー化後、スプレードライして小顆粒状混合体
を作成した。当該混合体を30ml容の磁製容器内に
収容し、容器をシリコニツト製管状電気炉内に移
し、室温で該炉内に窒素ガスを150ml/分の流量
割合で約1時間流通させて、雰囲気を調整した。
次いで、窒素ガスの導入を続けながら炉温を600
℃まで昇温させ、約20分間同温度に保持した後、
導入ガスを水素ガスに切り換え、該ガスを流量
120ml/分の割合で導入しながら徐々に昇温させ
た。炉温が900℃に達した後、同温度で更に約1
時間保持した。その後、電気炉の電源を切り、引
続き水素ガスの導入を続けながら200℃まで放冷
し、次いで導入ガスを窒素ガスに切り換え、室温
まで冷却した後、炉外に取り出した。 以上の還元処理により、青色に帯色した導電性
チタン酸カリウムが得られた。 実施例3 (同上) 実施例1において、導入ガスを水素ガスに変更
し、同ガスを120ml/分の割合で導入しながら、
750℃に約1時間保持した以外は全て実施例1と
同様に操作して、青色に帯色した導電性チタン酸
カリウムを得た。 実施例4 (同上) チタン酸ナトリウム[大塚化学(株)製]15gと粉
末マグネシウム[上掲会社製]0.5gを乳鉢内で
充分混合した後、30ml容の白金坩堝内に収容し
た。この坩堝をシリコニツト製管状電気炉に移
し、室温で該炉内に窒素ガスを150ml/分の流量
割合で約1時間流して雰囲気を調整した。次い
で、窒素ガスの導入を続けたまま500℃まで昇温
させた後、導入ガスを水素ガスに切り換え、同ガ
スを流量120ml/分の割合で導入し、徐々に昇温
させて900℃で50分間保持した。後、電気炉の電
源を切り、水素ガスの導入を続けたまま200℃ま
で放冷させ、その後、導入ガスを窒素ガスに切り
換え、室温まで冷却してから炉外に取り出した。 かくして、青色に帯色した導電性チタン酸ナト
リウムが得られた。 実施例5 (同上) チタン酸ナトリウム[上掲]5gと無水酸化亜
鉛1gとの混合物に水を加え、混捏してスラリー
状とした後、噴霧乾燥して小顆粒状の混合体を調
製した。得られた混合体を50ml容の黒鉛坩堝内に
収容し、坩堝をシリコニツト製管状電気炉に移
し、窒素ガスを導入して炉内の雰囲気を調整し
た。次いで、炉内に150ml/分の割合で窒素ガス
を導入しながら徐々に昇温させ、炉温が500℃に
達した後、導入ガスを水素ガスに切り換えて更に
昇温させ、約1時間850℃に保持した。後、電源
を切つて水素ガスを流したまま放冷し、炉温が
200℃まで低下したとき、導入ガスを窒素ガスに
切り換え、室温まで放冷後、炉外に取り出した。 上記方法で還元処理された成績体は、青色に帯
色した導電性チタン酸ナトリウムであつた。 実施例6 (同上) チタン酸カリウム[大塚化学(株)製]5gと亜鉛
アセチルアセトネート[半井化学薬品(株)製]1g
をアセチルアセトン10g中に分散させた液をスプ
レードライして小顆粒状の混合体を作成し、以下
実施例1と同様に還元処理することにより、青色
に帯色した導電性チタン酸カリウムを得た。 実施例7 (同上) チタン酸カリウム[大塚化学(株)製]5gとカル
シウム[半井化学薬品(株)製]0.5gを乳鉢中で研
磨して両者の均質な混合物を調製した。別に、窒
素導入管と加熱器とを付した気化容器にベンゼン
を所定量満たした気化器付石英管を準備し、これ
に前記混合物を収容、石英綿で封止後、該石英管
をシリコニツト製管状電気炉に移し、別個の導入
管から室温で窒素ガスを150ml/分の流量割合で
約1時間導入して雰囲気を調整した。その後、炉
内へ窒素ガスの導入を続けながら500℃まで昇温
させた後、本炉内へ上記ベンゼン気化器からベン
ゼン蒸気を濃度2000ppm、150ml/分の流量割合
で併せ導入して、導入ガスをベンゼン・窒素混合
ガスに切り換え、更に800℃まで昇温させた後、
同温度になお約1時間保持した。次いで、電気炉
の電源を切り、導入ガスを窒素ガスに切り換えな
がら放冷し、炉温が200℃まで冷却した後、炉外
に取り出した。 上述の方法で還元処理することにより黒紫色に
帯色した導電性チタン酸カリウムが得られた。 実施例8 (同上) 実施例7において、気化容器をメタンガスボン
ベに、処理温度を900℃に変えた以外、同例と同
様に処理したところ、濃紫色の導電性チタン酸カ
リウムが得られた。 実施例9 (同上) チタン酸カリウム[大塚化学(株)製]5gと亜鉛
粉末[半井化学(株)製]及び炭素粉末[三菱化成
(株)、MA100]0.5gを充分混合してから30mlの白
金坩堝に収容し、この坩堝をシリコニツト製管状
電気炉内に移し、室温で窒素ガスを150ml/分の
流量割合で約1時間導入して雰囲気を調整した。
その後、窒素ガス導入を続けたまま900℃まで昇
温させ、同温度に50分間保持後、電気炉の電源を
切り、窒素ガスを導入したまま室温まで放冷し、
炉外に取り出した。 坩堝の内容物から炭素粉末を分離することによ
り、青色に帯色した導電性チタン酸ナトリウムが
得られた。 実施例10 (試験例) 実施例1〜9によつて得られた各々の導電性チ
タン酸アルカリ金属塩90重量部を、流動パラフイ
ン10重量部と乳鉢で良く混合後、直径10mmφ、長
さ20mmの金型内にて、50Kg/cm2の圧力を加えなが
ら10分間、加圧成形して円柱形の試験用成形体を
得た。これらの成形体の両面に銀ペーストを塗布
後、デジタルマルチメーター[タケダ理研(株)製]
を用いて導電性を測定し、求められた抵抗値から
各試料の体積抵抗率を下式に従つて算出した。結
果は下表−1の通りであつた。 体積抵抗率(Ω・cm)= 測定抵抗値(Ω)×電極面積(cm2)/電極間距離
(cm)
(Industrial Application Field) The present invention relates to a conductive alkali metal titanate and a method for producing the same. (Background) In recent years, the need for new conductive materials has increased, and research and development of materials that can be used as static electricity removal materials, antistatic materials, or conductive materials are being actively conducted. These conductive materials generally include gold, silver,
Conductive metals such as platinum, copper, and nickel, carbon materials such as carbon black, metal oxides such as tin oxide and antimony oxide, and organic conductive compounds such as polypyrrole and polyacetylene are known. Conductive paints, adhesives, inks, fabrics, fibers, molded bodies, sintered bodies, etc. using conductive materials are used for various purposes. (Prior art) General methods for imparting electrical conductivity to titanate include coating the surface of titanate with a conductive substance and reducing titanate to reduce titanate, which is a lower oxide. Methods of obtaining salt are known. The former coating method is to obtain a titanate coated with a conductive substance by depositing a conductive substance on the surface of the titanate by a physical or chemical method. as,
Silver, copper, nickel, tin, antimony, etc. are used. This method has the advantage that electroless plating-related technology can be applied, the operation is simple, and conductivity can be imparted to the titanate substrate without changing its properties in any way. However, since the raw material titanate is usually supplied in the form of a fine powder with a specific surface area of 5 to 100 m 2 /g, the surface of the powder must be uniformly coated to the extent that it exhibits sufficient conductivity. For this purpose, 1 to 5 g of conductive material for coating is required per 1 g of raw titanate. This means that the weight composition of the conductive titanate product is the same or more than that of the titanate, and as a result, the original properties of the titanate are only diminished. Moreover, it becomes expensive and its industrial applicability decreases. In the latter reduction method, titanate is calcined in a reducing atmosphere or titanate is produced in a reducing atmosphere to obtain the general formula M 2 O・nTiO 2-x (where M is an alkali metal ,n
is an integer from 2 to 12, and x is a real number satisfying 0<x≦1. The conductive titanate obtained by this reduction method is extremely useful in that it is possible to obtain a titanate made of any lower oxide by controlling the reduction conditions, and the conductivity can be freely controlled. Although it is expensive, it may be difficult to reduce depending on the type of titanate, and the ring element must be treated at high temperature or for a long time, so the titanate melts during the reduction treatment and becomes a sintered body. In some cases, undesirable phenomena such as formation of crystals or changes in the crystal state may occur. (Objective of the Invention) The object of the present invention is to solve the above-mentioned problems in known conductive titanates by using a small amount of elements from group 3 of the periodic table, and to improve the original properties of alkali metal titanates. It is an object of the present invention to provide an alkali metal titanate having an electrically conductive property. Another object of the present invention is to provide a method for producing a conductive alkali metal titanate in which the desired product can be obtained in a temperature range where the product does not melt or change its crystalline state. Still another object of the present invention is to provide a method for producing a conductive alkali metal titanate that retains the physical properties of the raw material non-conductive titanate. Still another object of the present invention is to obtain a conductive alkali metal titanate having uniform conductivity. (Means for Solving the Problems) The present invention relates to a novel conductive alkali metal titanate salt characterized in that it is doped with an element of group 3 of the periodic table, and a method for producing the same. The alkali metal titanate which is the raw material in the production method of the present invention has the general formula: M 2 O・nTiO 2 (where M is an alkali metal and n is 2
(an integer of 12 to 12), but a fine powder or fibrous form is preferable for the purpose. Specifically, lithium titanate,
Examples include sodium titanate and potassium titanate. Among these titanates, representative examples of potassium titanate include potassium dititanate, potassium tetratitanate, potassium hexatitanate, and the like, which are industrially produced. Potassium tetratitanate is a fibrous material with a layered structure, and potassium hexatitanate is a fibrous material with a tunnel structure. However, in the present invention, in particular the formula,
Potassium hexatitanate represented by K 2 O 6TiO 2 not only has excellent fire resistance, heat insulation properties, and mechanical strength, but also has excellent surface smoothness of molded products when used as a filler. It's advantageous. As the alkali metal titanate used as a raw material in the present invention, fibrous ones are particularly preferable, and fibrous potassium titanate is generally suitable for practical use, especially those with fiber length of 5 μm or more and aspect ratio. Those having a ratio (aspect ratio) of 20 or more, especially 100 or more are suitable as reinforcing fillers. In the present invention, the elements of Group 1 of the periodic table (hereinafter referred to as "doped metals") include zinc, cadmium, and mercury in addition to alkaline earth metals.
The latter two are not suitable for the intended purpose because of concerns about toxicity to the human body and environmental pollution. and,
From performance, non-polluting and other standpoints, zinc is the most practical. The conductive alkali metal titanate according to the present invention includes: 1 an alkali metal titanate represented by the general formula M 2 O·nTiO 2 (M and n have the same meanings as above);
The doped metal of the present invention such as beryllium, magnesium, calcium, strontium , barium, zinc, cadmium, mercury or a mixture with a compound containing these metals is calcined, or (M, n have the same meanings as above) is treated in a vapor atmosphere of the doped metal of the present invention to cause the metal to adhere to the surface of the alkali metal titanate. It can be manufactured by et al. Preferred doped metals used in the practice of the present invention are crystalline or amorphous zinc, cadmium, and mercury. In addition, doped metal compounds include oxides, hydroxides,
Inorganic acid salts such as carbonates, sulfates, sulfites, nitrates or nitrites, halides such as chlorides, bromides, iodides or fluorides, formic acid, acetic acid,
Examples include organic acid salts such as propionic acid, caproic acid, or oxalic acid, chelates such as metal alcoholates, and acetylacetonate. In the present invention, when the upper metal or metal compound is in powder form, the particle size is preferably as small as possible. Although it is possible to mix directly with the raw material alkali metal titanate, it is possible to add a small amount of a dispersion medium such as water as much as possible, mix with the raw material alkali metal titanate, form a slurry, and then spray dry it to make it uniform. It is best to prepare a mixture. In addition, even in the case of compounds that are soluble in solvents such as water, rather than simply spraying a solution of the metal compound onto the raw material titanate, after mixing the raw material alkali metal titanate into the solution and making a slurry, Preferably, the mixture is spray dried into a homogeneous mixture. In the present invention, there is no particular restriction on the amount of the dope metal or its compound added, but usually, for 100 parts by weight of the alkali metal titanate,
Addition of about 2 to 15 parts by weight of the dope metal or a corresponding amount of the dope metal compound is sufficient to accomplish the objects of the present invention. The conductive alkali metal titanate of the present invention is prepared by preparing an alkali metal titanate mixed with one or more doping substances selected from the above doped metals or compounds thereof in an inert gas atmosphere or a reducing atmosphere. It can be produced by firing at a temperature of 500-1000℃. As will be described in detail later in Examples, for example, after placing an alkali metal titanate in a closed high-temperature heating furnace, the air in the system is removed under reduced pressure, or nitrogen gas is introduced into the furnace and the air is replaced with nitrogen. Oxygen is removed from the crystals of alkali metal titanate by first substituting, then raising the temperature to 500 to 1000°C and then allowing the reaction to take place, or by heating and reacting while introducing hydrogen gas into the furnace. is extracted to obtain a conductive alkali metal titanate salt which has become conductive. In a system in which zinc is mixed as a dope metal, when the system is heated to 500 to 1000°C, the zinc melts or vaporizes and comes into contact with the alkali metal titanate, and this activated zinc converts into the alkali metal titanate. reacts with the oxygen atoms that make up the lattice of the lattice and extracts the oxygen. A part of the zinc oxide produced here is dissolved in the conductive alkali metal titanate crystal, but most of it evaporates and volatilizes, so that the physical properties of the raw material alkali metal titanate hardly change. Furthermore, when hydrogen gas is introduced, further extraction by hydrogen occurs, so that a conductive alkali metal titanate can be obtained within a short time. In this case, better results can be obtained if a carbon material is used as the material for the reaction vessel. When a zinc-based compound is mixed as a dope metal compound, the zinc-based compound begins to decompose or melt when the atmosphere in the furnace exceeds 500°C, and zinc oxide becomes a solid solution and diffuses into the alkali metal titanate. do.
Then, by introducing hydrogen gas, zinc ions with different ionic valences are introduced at the same time as oxygen is extracted, so that a reduced alkali metal titanate having remarkable electrical conductivity can be obtained. In this case as well, it is better to use a carbon-based material for the container. This is interpreted to be because the atmosphere inside the furnace becomes a reducing atmosphere due to the use of carbon-based materials. In the above reaction, when the doped metal is zinc, either an inert gas atmosphere such as nitrogen gas or argon gas or a reducing atmosphere such as hydrogen gas may be used. Further, when the doped metal compound is a zinc-based compound, firing in a reducing atmosphere using a combination of an inert gas and a carbon-based material and hydrogen gas is preferred. The firing temperature in the reaction of the present invention is usually 500 -
The temperature is 1000℃, preferably 600 to 900℃, and the firing time is usually 15 to 120 minutes, preferably 20 minutes.
Within the range of ~70 minutes. In the method of the present invention, a reduction aid commonly used during firing can be used in combination. Examples of suitable reducing aids include carbon powder, silicon carbide,
carbides such as boron carbide or titanium carbide, aliphatic or aromatic hydrocarbons such as methane, propane, butane, pentane, hexane, benzene, toluene, xylene, ligroin, kerosene, or mixtures thereof, and various other high carbon-containing substances; Further examples include hydrogenated nitrogen compounds such as hydrazine. These reducing aids only need to be mixed into the raw materials before firing, but in the case of aids such as hydrocarbons that have the property of vaporizing at the firing temperature, they must be separately gasified and made inert. It may be introduced into the firing furnace together with the gas. In particular, toluene, benzene, carbon tetrachloride and methane are
℃, 850-900℃ and 900-950℃ to deposit carbon on the surface of the alkali metal titanate, which acts as a reducing agent itself and at the same time reduces the deposition Coating with material (carbonaceous material) further improves the conductivity of the material. The conductive alkali metal titanate obtained by the production method of the present invention is a conductive material having a shape of fine powder, fine fiber, fine layer, etc., and can be made into a conductive sintered body by sintering. , conductive paint, ink or adhesive by kneading with a binder, conductive compound or sheet etc. by kneading with resin, and conductive fabric by forming or blending with other fabric materials, Fibers or paper can be obtained respectively. In particular, the conductive alkali metal titanate according to the present invention has heat resistance, which is a characteristic of conventional inorganic conductive materials, as well as excellent dimensional stability, surface smoothness, and reinforcing properties. It is extremely useful as a conductive material for producing materials. (Examples) Hereinafter, various aspects of carrying out the invention will be described with reference to Examples, but the examples are, of course, for illustrative purposes and are not intended to limit or limit the idea of the invention. Example 1 (Production example) 5 g of potassium titanate [manufactured by Otsuka Chemical Co., Ltd., trade name Teismo D] and zinc chloride [manufactured by Hanui Chemicals Co., Ltd.]
Water was added to 0.5 g to form a slurry, which was then spray-dried to form a mixture in the form of small granules. This mixture was placed in a 30ml graphite crucible,
The crucible was transferred to a tubular electric furnace made of silicone and sealed. Next, nitrogen gas was passed through the electric furnace at a flow rate of 150 ml/min for about 1 hour at room temperature, and after adjusting the atmosphere, the furnace temperature was raised to 500°C while continuing to conduct the nitrogen gas. . Then, the introduced gas was switched to hydrogen gas, and the gas was supplied at a flow rate of 120ml/
Gradually raise the temperature while introducing at a rate of 850 min.
℃ for about 1 hour, turn off the power to the electric furnace and let it cool while continuing to introduce hydrogen gas until the temperature reaches 200℃.
When the temperature dropped to .degree. C., the introduced gas was switched to nitrogen gas, and after cooling to room temperature, the crucible was taken out of the furnace. The obtained conductive potassium titanate was blue in color. Example 2 (same as above) Potassium titanate [Teismo D] (listed above) 5 g
and 1 g of zinc chloride (listed above) were mixed with water to form a slurry, and then spray-dried to prepare a small granular mixture. The mixture was placed in a 30 ml porcelain container, the container was transferred to a silicone tubular electric furnace, and nitrogen gas was passed through the furnace at a flow rate of 150 ml/min for about 1 hour at room temperature to create an atmosphere. adjusted.
Next, while continuing to introduce nitrogen gas, the furnace temperature was increased to 600℃.
After raising the temperature to ℃ and keeping it at the same temperature for about 20 minutes,
Switch the introduced gas to hydrogen gas and increase the flow rate of the gas.
The temperature was gradually raised while introducing at a rate of 120 ml/min. After the furnace temperature reaches 900℃, continue heating at the same temperature for about 1 hour.
Holds time. Thereafter, the power to the electric furnace was turned off, and the furnace was allowed to cool down to 200° C. while continuing to introduce hydrogen gas.Then, the introduced gas was switched to nitrogen gas, and after cooling to room temperature, it was taken out of the furnace. Through the above reduction treatment, a blue-colored conductive potassium titanate was obtained. Example 3 (Same as above) In Example 1, the introduced gas was changed to hydrogen gas, and while introducing the same gas at a rate of 120 ml/min,
All operations were performed in the same manner as in Example 1 except that the temperature was maintained at 750° C. for about 1 hour, to obtain a blue-colored conductive potassium titanate. Example 4 (Same as above) 15 g of sodium titanate (manufactured by Otsuka Chemical Co., Ltd.) and 0.5 g of powdered magnesium (manufactured by the above-mentioned company) were thoroughly mixed in a mortar and then placed in a 30 ml platinum crucible. This crucible was transferred to a siliconite tubular electric furnace, and the atmosphere was adjusted by flowing nitrogen gas into the furnace at a flow rate of 150 ml/min for about 1 hour at room temperature. Next, the temperature was raised to 500°C while continuing to introduce nitrogen gas, and then the introduced gas was switched to hydrogen gas, which was introduced at a flow rate of 120ml/min, and the temperature was gradually raised to 50°C at 900°C. Hold for minutes. Afterwards, the power to the electric furnace was turned off, and the furnace was allowed to cool to 200°C while continuing to introduce hydrogen gas.Then, the introduced gas was switched to nitrogen gas, and the furnace was cooled to room temperature before being taken out of the furnace. In this way, blue-colored conductive sodium titanate was obtained. Example 5 (Same as above) Water was added to a mixture of 5 g of sodium titanate [listed above] and 1 g of anhydrous zinc oxide, kneaded to form a slurry, and then spray-dried to prepare a mixture in the form of small granules. The obtained mixture was placed in a 50 ml graphite crucible, the crucible was transferred to a siliconite tubular electric furnace, and nitrogen gas was introduced to adjust the atmosphere in the furnace. Next, the temperature was gradually increased while introducing nitrogen gas into the furnace at a rate of 150 ml/min, and after the furnace temperature reached 500°C, the introduced gas was switched to hydrogen gas and the temperature was further increased, and the temperature was increased to 850°C for about 1 hour. It was kept at ℃. After that, turn off the power and let it cool with hydrogen gas flowing until the furnace temperature reaches
When the temperature dropped to 200°C, the introduced gas was switched to nitrogen gas, and after cooling to room temperature, it was taken out of the furnace. The resultant material reduced by the above method was a blue-colored conductive sodium titanate. Example 6 (Same as above) 5 g of potassium titanate [manufactured by Otsuka Chemical Co., Ltd.] and 1 g of zinc acetylacetonate [manufactured by Hanui Chemical Co., Ltd.]
A small granular mixture was prepared by spray drying a liquid dispersed in 10 g of acetylacetone, and the mixture was reduced in the same manner as in Example 1 to obtain a blue-colored conductive potassium titanate. . Example 7 (Same as above) 5 g of potassium titanate [manufactured by Otsuka Chemical Co., Ltd.] and 0.5 g of calcium [manufactured by Hanui Chemical Co., Ltd.] were ground in a mortar to prepare a homogeneous mixture of the two. Separately, a quartz tube with a vaporizer is prepared by filling a predetermined amount of benzene in a vaporization container equipped with a nitrogen introduction tube and a heater, the mixture is stored in this, the quartz tube is sealed with quartz wool, and the quartz tube is made of silicone. The reactor was transferred to a tubular electric furnace, and the atmosphere was adjusted by introducing nitrogen gas at a flow rate of 150 ml/min for about 1 hour at room temperature from a separate inlet tube. After that, while continuing to introduce nitrogen gas into the furnace, the temperature was raised to 500℃, and then benzene vapor was also introduced into the main furnace from the benzene vaporizer at a concentration of 2000 ppm and a flow rate of 150 ml/min. After switching to benzene/nitrogen mixed gas and further raising the temperature to 800℃,
The same temperature was maintained for about 1 hour. Next, the power to the electric furnace was turned off, and the introduced gas was changed to nitrogen gas while the furnace was allowed to cool. After the furnace temperature had cooled to 200° C., it was taken out of the furnace. By reduction treatment using the method described above, conductive potassium titanate having a blackish-purple color was obtained. Example 8 (Same as above) A deep purple conductive potassium titanate was obtained in the same manner as in Example 7 except that the vaporization container was changed to a methane gas cylinder and the treatment temperature was changed to 900°C. Example 9 (Same as above) 5 g of potassium titanate [manufactured by Otsuka Chemical Co., Ltd.], zinc powder [manufactured by Hanui Chemical Co., Ltd.], and carbon powder [manufactured by Mitsubishi Chemical Co., Ltd.]
Co., Ltd., MA100] was thoroughly mixed and then placed in a 30ml platinum crucible.The crucible was transferred to a siliconite tubular electric furnace, and nitrogen gas was introduced at a flow rate of 150ml/min for about 1 hour at room temperature. and adjusted the atmosphere.
After that, the temperature was raised to 900℃ while nitrogen gas was still being introduced, and after holding at the same temperature for 50 minutes, the electric furnace was turned off and allowed to cool to room temperature while nitrogen gas was still being introduced.
It was taken out of the furnace. By separating the carbon powder from the contents of the crucible, blue-colored conductive sodium titanate was obtained. Example 10 (Test Example) After thoroughly mixing 90 parts by weight of each of the conductive alkali metal titanates obtained in Examples 1 to 9 with 10 parts by weight of liquid paraffin in a mortar, the mixture was prepared into a powder having a diameter of 10 mmφ and a length of 20 mm. A cylindrical test molded product was obtained by pressure molding in a mold for 10 minutes while applying a pressure of 50 kg/cm 2 . After applying silver paste to both sides of these molded bodies, apply a digital multimeter [manufactured by Takeda Riken Co., Ltd.]
The conductivity was measured using the following method, and the volume resistivity of each sample was calculated from the obtained resistance value according to the formula below. The results were as shown in Table 1 below. Volume resistivity (Ω・cm) = Measured resistance value (Ω) x electrode area (cm 2 )/interelectrode distance (cm)

【表】【table】

【表】 (発明の効果) 本発明によれば、チタン酸アルカリ金属塩本来
の耐熱性及び補強性等の物性と、望まれる任意の
高導電性とを兼備した優れたチタン酸アルカリ金
属塩が提供されうる。加えてその製造面におい
て、本チタン酸アルカリ金属塩の製造に際しても
比較的低温かつ短時間の焼成条件で足りるから、
本発明は極めて高い産業上の利用性を有するもの
である。
[Table] (Effects of the invention) According to the present invention, an excellent alkali metal titanate that has both physical properties such as heat resistance and reinforcing properties inherent to an alkali metal titanate and desired high electrical conductivity is produced. can be provided. In addition, in terms of production, relatively low temperature and short firing conditions are sufficient when producing the present alkali metal titanate salt.
The present invention has extremely high industrial applicability.

Claims (1)

【特許請求の範囲】 1 周期律表第族の元素でドープされているこ
とを特徴とする導電性チタン酸アルカリ金属塩。 2 周期律表第族の元素が亜鉛である特許請求
の範囲第1項記載の導電性チタン酸アルカリ金属
塩。 3 チタン酸アルカリ金属塩と周期律表第族の
元素を含む化合物を焼成することを特徴とする導
電性チタン酸アルカリ金属塩の製法。 4 チタン酸アルカリ金属塩を周期律表第族元
素の蒸気雰囲気下で処理することを特徴とする導
電性チタン酸アルカリ金属塩の製法。 5 周期律表第族の元素が亜鉛である特許請求
の範囲第3項記載の導電性チタン酸アルカリ金属
塩の製法。 6 周期律表第族の元素が亜鉛である特許請求
の範囲第4項記載の導電性チタン酸アルカリ金属
塩の製法。
[Scope of Claims] 1. An electrically conductive alkali metal titanate salt, characterized in that it is doped with an element from group 3 of the periodic table. 2. The conductive alkali metal titanate salt according to claim 1, wherein the element of group 2 of the periodic table is zinc. 3. A method for producing a conductive alkali metal titanate, which comprises firing an alkali metal titanate and a compound containing an element of group 3 of the periodic table. 4. A method for producing a conductive alkali metal titanate, which comprises treating the alkali metal titanate in a vapor atmosphere of a group element of the periodic table. 5. The method for producing an electrically conductive alkali metal titanate salt according to claim 3, wherein the element of group 3 of the periodic table is zinc. 6. The method for producing a conductive alkali metal titanate salt according to claim 4, wherein the element of group 6 of the periodic table is zinc.
JP4011985A 1985-02-27 1985-02-27 Electrically conductive alkali metal titanate and production thereof Granted JPS61197422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011985A JPS61197422A (en) 1985-02-27 1985-02-27 Electrically conductive alkali metal titanate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011985A JPS61197422A (en) 1985-02-27 1985-02-27 Electrically conductive alkali metal titanate and production thereof

Publications (2)

Publication Number Publication Date
JPS61197422A JPS61197422A (en) 1986-09-01
JPH0522649B2 true JPH0522649B2 (en) 1993-03-30

Family

ID=12571940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011985A Granted JPS61197422A (en) 1985-02-27 1985-02-27 Electrically conductive alkali metal titanate and production thereof

Country Status (1)

Country Link
JP (1) JPS61197422A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632181A (en) * 1992-07-10 1994-02-08 Yoshikoo:Kk Telescopic pole mechanism
JP4915085B2 (en) * 2005-11-28 2012-04-11 ダイキン工業株式会社 Mounting plate for heat exchanger, air conditioner using the same, and method of assembling the air conditioner
JP2008204632A (en) * 2007-02-16 2008-09-04 Sumitomo Chemical Co Ltd Flaky compound

Also Published As

Publication number Publication date
JPS61197422A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
US11369929B2 (en) Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock
Liu et al. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures
KR100781664B1 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
Portehault et al. Facile general route toward tunable Magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites
CN108666566A (en) A kind of method preparing electrode material, electrode material and battery
KR100444142B1 (en) ITO fine powder and method for producing the same
CN107819116B (en) A kind of Si- conductivity ceramics composite negative pole material and preparation method for lithium battery
JP2002506560A (en) Method for producing lithium manganese mixed oxide and use thereof
JPH0522649B2 (en)
CN102558553A (en) Preparation method of one-dimensional conductive polyanion/attapulgite nano composite material
JPH0510420B2 (en)
JPH08337500A (en) Tin oxide whisker and its production
Koçyiğit Boron and praseodymium doped bismuth oxide nanocomposites: Preparation and sintering effects
Li et al. Effect of nitriding atmosphere on the morphology of AlN nanofibers from solution blow spinning
JP2001200211A (en) Electroconductive coating material
JPS6217021A (en) Production of reduced titanium oxide
US4686116A (en) Process for coating small refractory particles
CN113666654B (en) Conductive paste for preparing super capacitor and preparation method thereof
JPH0353501A (en) Varistor material and manufacture thereof
JPH0352412B2 (en)
CN110306261B (en) Preparation method of spiral nano carbon fiber
JPH044975B2 (en)
JPH0352411B2 (en)
US5837209A (en) Tin oxide whisker
JPH0433732B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term