JP4664533B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP4664533B2
JP4664533B2 JP2001172981A JP2001172981A JP4664533B2 JP 4664533 B2 JP4664533 B2 JP 4664533B2 JP 2001172981 A JP2001172981 A JP 2001172981A JP 2001172981 A JP2001172981 A JP 2001172981A JP 4664533 B2 JP4664533 B2 JP 4664533B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
heat
heating
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172981A
Other languages
Japanese (ja)
Other versions
JP2002364919A (en
Inventor
康二 ▲高▼倉
桂嗣 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001172981A priority Critical patent/JP4664533B2/en
Publication of JP2002364919A publication Critical patent/JP2002364919A/en
Application granted granted Critical
Publication of JP4664533B2 publication Critical patent/JP4664533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ガス、LPガス等を用いてガスエンジン発電機や燃料電池発電機を運転し電気を発生し、副産物として発生した熱を貯湯式の湯水の加熱に利用するコージェネレーションシステムに関するものである。
【0002】
【従来の技術】
図2は、従来のコージェネレーションシステムの変形例としての貯湯式の給湯熱源装置を示す構成図である。
図2において、10は循環路、11は内部に温度成層を形成する貯湯タンク、12は湯水を循環させる循環ポンプ、13は循環ポンプ12からの吐出湯を一方のパイプを経由して貯湯タンク11へ送出するか又は他方のパイプへ送出する上部用三方弁、14は貯湯タンク11の底部の水を循環路10へ送出するか又は上部用三方弁13と共に循環路を形成する底部用三方弁、15はエアコンの室外機の排熱(凝縮熱)を熱交換する熱交換器、16は後述のガスエンジン20の排熱を熱交換する熱交換器、17は循環路10の湯水を加熱する補助熱源、18はエアコンの室内機、19はガスエンジン20,後述のコンプレッサ21等を内蔵した室外機、21はガスエンジン20で駆動されるコンプレッサである。コージェネレーションシステムとは本来は電気と熱を発生するシステムであるが、図2に示すガスエンジン20は、コンプレッサ21を駆動する動力源および熱交換器16の熱源として動作するものなので、図2の装置はコージェネレーションシステムの変形例であると言える。
【0003】
このように構成された貯湯式の給湯熱源装置について、その貯湯動作を説明する。
貯湯タンク11内に加熱された湯を貯湯する際には、底部三方弁14により貯湯タンク11の底部の水を循環路10に取り出し、その水を加熱部15〜17で加熱しながら循環路10を循環させて、その加熱された湯を上部三方弁13により貯湯タンク11の上部に戻して温度成層を形成して貯湯する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来のコージェネレーションシステムでは、補助熱源17が貯湯タンク11の上流に配置されているため、熱交換器15、熱交換器16で加熱された湯を更に補助熱源17で加熱することになり、補助熱源17で異常な高温(100℃を越える温度)に達した湯が貯湯タンク11内に供給される可能性があり、貯湯タンク11内に多量の水蒸気が発生して貯湯タンク11内が異常高圧となり、膨張爆発する可能性があるという問題点を有していた。これを避けるためには、貯湯タンク11を小型ボイラとして管理者を置く必要があるが、このようなことは家庭用コージェネレーションシステムや業務用コージェネレーションシステムに要求できることではない。
【0005】
本発明は、上記問題点を解消するため、貯湯系統における貯湯タンク内に多量の水蒸気が発生して貯湯タンク内が異常高圧となることを防止することができるコージェネレーションシステムを提供することを目的とする。
【0006】
【課題を解決するための手段】
この課題を解決するために本発明のコージェネレーションシステムは、エンジン発電機等の排熱装置の排熱を貯湯の加熱などに利用するコージェネレーションシステムであって、コージェネレーションシステムは、エンジン発電機等の排熱装置の排熱の熱交換のみを行って湯水を加熱し、温度成層を形成して貯湯タンクに貯湯を行う貯湯系統と、高温暖房を行う高温暖房系統と、風呂の追焚きのための熱交換を行う風呂加熱系統と、を有し、貯湯系統が、貯湯用熱交換器と貯湯タンクとの間に配設され貯湯用熱交換器で熱交換されて加熱された湯を貯湯タンクから水量制御弁を通って貯湯用熱交換器へと循環させる循環ポンプを備え、高温暖房系統が、暖房弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、高温暖房用熱交換器、暖房弁を通って貯湯系統の循環ポンプの上流に戻る循環路を備え、風呂加熱系統が、風呂弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、風呂追焚き用熱交換器、風呂弁、貯湯系統の貯湯用熱交換器の上流に戻る循環路を備え、給湯時においては、貯湯タンク内の湯が、貯湯タンクの下流側に配設される補助熱源を経由して給湯口から供給される構成を備えている。
これにより、貯湯系統における貯湯タンク内に多量の水蒸気が発生して貯湯タンク内が異常高圧となることを防止することができるコージェネレーションシステムが得られる。
【0007】
【発明の実施の形態】
本発明の請求項1に記載のコージェネレーションシステムは、エンジン発電機等の排熱装置の排熱を貯湯の加熱などに利用するコージェネレーションシステムであって、コージェネレーションシステムは、エンジン発電機等の排熱装置の排熱の熱交換のみを行って湯水を加熱し、温度成層を形成して貯湯タンクに貯湯を行う貯湯系統と、高温暖房を行う高温暖房系統と、風呂の追焚きのための熱交換を行う風呂加熱系統と、を有し、貯湯系統が、貯湯用熱交換器と貯湯タンクとの間に配設され貯湯用熱交換器で熱交換されて加熱された湯を貯湯タンクから水量制御弁を通って貯湯用熱交換器へと循環させる循環ポンプを備え、高温暖房系統が、暖房弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、高温暖房用熱交換器、暖房弁を通って貯湯系統の循環ポンプの上流に戻る循環路を備え、風呂加熱系統が、風呂弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、風呂追焚き用熱交換器、風呂弁を通って貯湯系統の貯湯用熱交換器の上流に戻る循環路を備え、給湯時においては、貯湯タンク内の湯が、貯湯タンクの下流側に配設される補助熱源を経由して給湯口から供給されることとしたものである。
この構成により、補助熱源は貯湯系統における貯湯運転に何ら関与しないので、貯湯系統における貯湯運転に補助熱源の影響が及ぶことがなくなり、補助熱源による異常高温の湯が貯湯タンク内に発生することもなく、貯湯タンクが膨張爆発する可能性は無くなるという作用を有する。また、貯湯タンクの貯湯の温度が低い場合には補助熱源で加熱された湯が給湯口から供給されることになり、低温湯が供給されることを防止することができる。さらに、補助熱源を利用して高温の暖房を実現することでき、多様な暖房を実現することができる。
【0008】
請求項2に記載のコージェネレーションシステムは、請求項1に記載のコージェネレーションシステムにおいて、床暖房を行う床暖房系統を備え、床暖房系統は、エンジン発電機等の排熱装置の排熱および/または補助熱源の発生熱を熱交換して湯水を加熱することとしたものである。
この構成により、エンジン発電機等の排熱装置の排熱による低温床暖房を実現できると共に、補助熱源を利用して浴室暖房換気扇やファンコンベクタ等の高温の暖房を実現することもでき、多様な暖房を実現することができるという作用を有する。
【0009】
以下、本発明の実施の形態について、図1を用いて説明する。
(実施の形態1)
図1は本発明の実施の形態1によるコージェネレーションシステムを示す構成図である。
図1において、1は温度成層を形成して貯湯を行う貯湯系統、2はガスエンジン発電機の排熱を利用して(例えばウォータージャケットからの湯を利用して)貯湯系統1における湯水の加熱等を行うエンジン排熱系統、3は床暖房を行う床暖房系統、4は高温暖房を行う高温暖房系統、5は風呂の追焚きのための熱交換を行う風呂加熱系統、6は風呂の追焚きを行う風呂追焚き系統、7は全体を制御する制御装置、8は都市ガス・LPガスを用いて発電と排熱を行う(すなわち電気と熱を併給する)排熱装置としてのガスエンジン発電機、9は浴槽、31、32、35は開放・閉鎖(オン・オフ)の動作を行う開閉弁、33、34は湯が供給され床暖房の対象となる床、36は浴室暖房換気扇やファンコンベクタ等の高温暖房機である。
【0010】
上記貯湯系統1は、貯湯タンク101、循環ポンプ102、逆流防止の逆止弁102a、湯水の温度を計測する貯湯サーミスタ103〜106、通水水量を連続的に制御する水量制御弁107、通水のオン、オフ制御を行う給水弁108、循環する湯水の温度を計測する循環湯サーミスタ109、温度成層を形成するためのじゃま板110、111、熱の供給側124aと受給側124bとから成る貯湯用熱交換器124、循環ポンプ102から吐出される湯水をバイパスする貯湯弁125を有する。
また上記エンジン排熱系統2は、排熱ポンプ201、湯が100℃を越えないように大気に開放された湯水タンク202、熱動三方弁203、床暖房系統3との間において熱の供給を行う供給側204aと熱の受給側204bとを有する低温暖房用熱交換器204、排熱サーミスタ205、ガスエンジン発電機8の発電能力に余剰が生じた場合にその余剰電力を回収して熱源として使用するための余剰電力回収用ヒータ206、排熱ポンプ201からの湯水が吐出される往路口207、ガスエンジン発電機8のウォータージャケットからの湯水が供給される戻り口208、熱動三方弁203での検知温度が低い場合のバイパスを形成するバイパス管209を有する。
【0011】
さらに上記床暖房系統3は、暖房ポンプ301、高温暖房系統4側に配設された熱供給側302aと床暖房系統3側に配設された熱受給側302bとから成る高温暖房用熱交換器302、暖房往路サーミスタ303、バイパス管304、暖房戻りサーミスタ305、湯水タンク306、往路口307、戻り口308を有する。
さらに上記高温暖房系統4は、方向性のある水流センサ(方向性水流センサ、図示せず)を有する補助熱源401、加熱サーミスタ402、高温暖房系統4を作動させるためのオン、オフ動作の暖房弁403、温水タンク306内の水位が低下したときに湯を供給する暖房補給水弁404を有する。
さらに、風呂加熱系統5は、熱の供給側501aと熱の受給側501bとから成る風呂追焚き用熱交換器501、風呂加熱系統5を作動させるためのオン、オフ動作の風呂弁502を有する。
さらに、風呂追焚き系統6は、風呂循環ポンプ601、浴槽9へ追焚用の湯を供給する往路口602、浴槽9からの湯水が供給される戻り口603、湯張りの湯が貯湯系統1の湯張り弁114、逆止弁115、116から供給される湯供給管604、浴槽9との間を循環する湯水の温度を計測する風呂循環サーミスタ605を有する。
【0012】
さらに、給湯系統9Aは、逆流防止の逆止弁115、116、122、通水水量を連続的に制御する水量制御弁113、通水のオン、オフ制御を行う湯張り弁114、貯湯タンク101からの湯と給水口118からの水とを混合する混合弁112、給湯口117、圧力調整の減圧弁119、給水温度を計測する給水サーミスタ120、水量を計測する水量センサ121、排水口123を有する。
ここで、各部の温度について説明する。ガスエンジン発電機8から貯湯用熱交換器124へ供給される湯の温度は75〜80℃程度であり、低温暖房用熱交換器204へ供給される湯の温度は65〜70℃程度である。また、補助熱源401から高温暖房用熱交換器302や風呂追焚き用熱交換器501へ供給される湯の温度は80℃程度である。
【0013】
以上のように構成されたコージェネレーションシステムについて、その動作を説明する。
まず貯湯系統1および給湯系統9Aの動作について説明する。
貯湯動作においては、貯湯ポンプ102は図示しないモータにより駆動され、また貯湯用熱交換器124は熱交換を行い、給水弁108は開放状態(オン状態)となっていて、水量制御弁107は、貯湯タンク101の上部から貯湯タンク101内に流入する湯水の量が適量となるように、その開度を制御される。貯湯用熱交換器124で熱交換されて加熱された湯は循環湯サーミスタ109を経て循環ポンプ102から貯湯タンク101へ供給され、水量制御弁107→給水弁108→貯湯用熱交換器124というように循環する。この循環ポンプ102→貯湯タンク101→水量制御弁107→給水弁108→貯湯用熱交換器124の循環路を第1の循環路と呼ぶ。循環ポンプ102から貯湯タンク101への供給量は、水量制御弁107の開度により制御されるが、貯湯タンク101内で温度成層を形成するように50リットル/時間程度に制御される。水量制御弁107で制御可能な水量の分解能は100リットル/時間程度であるので、この分解能を例えば10リットル/時間程度に向上させるために貯湯弁125でバイパスさせる。また貯湯弁125は循環ポンプ102や貯湯用熱交換器124などと共に循環路(第2の循環路)を形成しており、第1の循環路における湯水の温度が低い場合には、給水弁108を閉鎖状態(オフ状態)として第2の循環路のみを形成し、貯湯用熱交換器124による温度上昇を待つ。給湯口117や湯張り弁114の開放により貯湯タンク101内の貯湯量が減少した場合には、給水口118からの給水圧が貯湯タンク101の底部の水圧に対して相対的に高まり、給水が行われる。給水口118からの給水は減圧弁119や水量センサ121などを経由して行われる。
【0014】
給湯時においては、貯湯タンク101内の湯は、補助熱源401と混合弁112と水量制御弁113を経由して給湯口117から供給される。補助熱源401は、貯湯サーミスタ103の計測温度が低く、内蔵の水流センサが水流を検知したときに、通水を加熱する。したがって、貯湯タンク101の貯湯の温度が低い場合には補助熱源401で加熱された湯が給湯口117から供給されることになり、低温湯が供給されることを防止することができる。なお、湯張り弁114は浴槽9への湯張りのための弁である。
【0015】
次に、エンジン排熱系統2について説明する。
ガスエンジン発電機8からの湯(75℃〜80℃程度の湯)は、戻り口208から余剰電力回収用ヒータ206を経由して貯湯用熱交換器124に達し、貯湯用熱交換器124において貯湯系統1に対して熱供給を行う。貯湯用熱交換器124を通過した湯(65℃〜70℃程度の湯)は、低温暖房用熱交換器204に達し、低温暖房用熱交換器204において床暖房系統3に対して熱供給を行う。熱動三方弁203を経由した湯は、開放型の湯水タンク202を経由して排熱ポンプ201により往路口207からガスエンジン発電機8側へ吐出される。開放型の湯水タンク202は通過する湯の温度を100℃以下に抑えるためのものである。これにより、貯湯系統1における湯が100℃を越えることが防止される。熱動三方弁203を経由する湯水の温度が低い場合(例えばガスエンジン発電機8が起動直後で循環水の温度が60℃以下の場合)には、ガスエンジン発電機8からの湯水は貯湯用熱交換器124、低温暖房用熱交換器204を経由せず、バイパス管209を経由することになる。これにより、低い温度の湯水で熱交換が行われるのを防止することができると共に立ち上がりを速くすることができる。
【0016】
次に床暖房系統3について説明する。
暖房ポンプ301からの湯水は低温暖房用熱交換器204でエンジン排熱系統2からの熱を受給し、高温暖房用熱交換器302に達する。高温暖房用熱交換器302は浴室暖房換気扇やファンコンベクタ等の高温暖房機36を使用する高温の暖房を行うためのものであり、低温床暖房の場合には湯は、高温暖房用熱交換器302で熱交換が行われることなく通過し、暖房往路サーミスタ303を経由して往路口307から吐出される。床側では、開閉弁31がオンであれば床33に供給され、開閉弁32がオンであれば床34に供給される。床を経由して戻り口308から供給される湯水は暖房戻りサーミスタ305、湯水タンク306を経由して再度、暖房ポンプ301から吐出される。バイパス管304は開閉弁31、32が共にオフ状態のときに低温暖房用熱交換器204、高温暖房用熱交換器302で熱交換した湯の温度が検知できなくなることを防止するためのものである。温水タンク306内の水位が所定の水位より下がった場合には暖房補給水弁404から湯水タンク306に湯が供給される。
【0017】
次に、高温暖房を行う高温暖房系統4について説明する。
高温暖房系統4は暖房弁403のオンにより動作を開始する。暖房弁403をオンにすると、循環ポンプ102→補助熱源401→高温暖房用熱交換器302→暖房弁403の循環路が形成され、加熱サーミスタ402の計測温度が所定温度(例えば80℃)以下の場合には補助熱源401が動作し、湯水が加熱される。高温暖房用熱交換器302においては床暖房系統3に対して熱の供給が行われ、開閉弁35の開放により高温暖房機36に高温の湯が通水され、高温の暖房が可能となる。
【0018】
次に、風呂の追焚きのための熱交換を行う風呂加熱系統5について説明する。 風呂加熱系統5は風呂弁502のオンにより動作を開始する。風呂弁502をオンにすると、循環ポンプ102→補助熱源401→風呂追焚き用熱交換器501→風呂弁502→貯湯用熱交換器124の循環路が形成され、加熱サーミスタ402の計測温度が所定温度(例えば60℃)以下の場合には補助熱源401が動作し、風呂追焚き用熱交換器501において熱の供給が行われ、風呂の追焚きが行われる。
【0019】
次に、風呂の追焚きを行う風呂追焚き系統6について説明する。
風呂循環ポンプ601の吐出湯水は、風呂追焚き用熱交換器501から熱を受給し、加熱され、往路口602から浴槽9へ湯が供給される。浴槽9からの戻り湯は戻り口603、風呂循環サーミスタ605を経由して風呂循環ポンプ601に戻る。風呂循環ポンプ601を所定時間(例えば20分)おきに一定時間(例えば1分)運転させることにより風呂循環サーミスタ605の計測温度が所定温度(例えば40℃)以下になれば自動的に追焚きを行うようにすることもできる。湯張り用管604は貯湯系統1の開閉弁114からの湯により湯張りを行うためのものである。
なお、本実施の形態では、熱と電気を発生するものとしてガスエンジン発電機8について記載したが、本発明はこれに限らず、同じく熱と電気を発生する燃料電池などについても同様に適用でき、同様の効果を奏するものである。
【0020】
以上のように本実施の形態によれば、エンジン8等の排熱装置の排熱の熱交換のみを行って湯水を加熱し、温度成層を形成して貯湯タンク101に貯湯を行う貯湯系統1を有することにより、補助熱源401は貯湯系統1を構成せず、貯湯系統1に補助熱源401の影響が及ぶことがなく、補助熱源401による異常高温の湯が貯湯タンク101内に発生することもなく、貯湯タンク101が膨張爆発する可能性は無くすことができる。
また、給湯時においては貯湯タンク101の下流側に配設される補助熱源401を備えたことにより、貯湯タンク101の下流側の補助熱源401により給湯温度を所定温度に維持することができる。
さらに、床暖房を行う床暖房系統3を備え、床暖房系統3は、エンジン8等の排熱装置の排熱および/または補助熱源401の発生熱を熱交換して湯水を加熱することにより、エンジン8等の排熱装置の排熱による低温床暖房を実現できると共に、補助熱源401を利用して高温の暖房を実現することでき、多様な暖房を実現することができる。
【0021】
【発明の効果】
以上説明したように本発明の請求項1に記載のコージェネレーションシステムによれば、エンジン発電機等の排熱装置の排熱を貯湯の加熱などに利用するコージェネレーションシステムであって、コージェネレーションシステムは、エンジン発電機等の排熱装置の排熱の熱交換のみを行って湯水を加熱し、温度成層を形成して貯湯タンクに貯湯を行う貯湯系統と、高温暖房を行う高温暖房系統と、風呂の追焚きのための熱交換を行う風呂加熱系統と、を有し、貯湯系統が、貯湯用熱交換器と貯湯タンクとの間に配設され貯湯用熱交換器で熱交換されて加熱された湯を貯湯タンクから水量制御弁を通って貯湯用熱交換器へと循環させる循環ポンプを備え、高温暖房系統が、暖房弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、高温暖房用熱交換器、暖房弁を通って貯湯系統の循環ポンプの上流に戻る循環路を備え、風呂加熱系統が、風呂弁のオンにより動作を開始し、貯湯系統の循環ポンプの下流から分岐して補助熱源、風呂追焚き用熱交換器、風呂弁、貯湯系統の貯湯用熱交換器の上流に戻る循環路を備え、給湯時においては、貯湯タンク内の湯が、貯湯タンクの下流側に配設される補助熱源を経由して給湯口から供給されることにより、補助熱源は貯湯系統における貯湯運転に何ら関与しないので、貯湯系統における貯湯運転に補助熱源の影響が及ぶことがなくなり、補助熱源による異常高温の湯が貯湯タンク内に発生することもなく、貯湯タンクが膨張爆発する可能性は無くなるという有利な効果が得られる。また、貯湯タンクの貯湯の温度が低い場合には補助熱源で加熱された湯が給湯口から供給されることになり、低温湯が供給されることを防止することができる。さらに、補助熱源を利用して高温の暖房を実現することでき、多様な暖房を実現することができる。
【0022】
請求項2に記載のコージェネレーションシステムによれば、請求項1に記載のコージェネレーションシステムにおいて、床暖房を行う床暖房系統を備え、床暖房系統は、エンジン発電機等の排熱装置の排熱および/または補助熱源の発生熱を熱交換して湯水を加熱することにより、エンジン発電機等の排熱装置の排熱による低温床暖房を実現できると共に、補助熱源を利用して浴室暖房換気扇やファンコンベクタ等の高温の暖房を実現することもでき、多様な暖房を実現することができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1によるコージェネレーションシステムを示す構成図
【図2】従来のコージェネレーションシステムの変形例としての貯湯式の給湯熱源装置を示す構成図
【符号の説明】
1 貯湯系統
2 エンジン排熱系統
3 床暖房系統
4 高温暖房系統
5 風呂加熱系統
6 風呂追焚き系統
7 制御装置
8 ガスエンジン発電機
9 浴槽
9A 給湯系統
31、32、35 開閉弁
33、34 床
36 高温暖房機
101 貯湯タンク
102 循環ポンプ
102a、115、116、122 逆止弁
103、104、105、106 貯湯サーミスタ
107、113 水量制御弁
108 給水弁
109 循環湯サーミスタ
110、111 じゃま板
112 混合弁
114 湯張り弁
117 給湯口
118 給水口
119 減圧弁
120 給水サーミスタ
121 水量センサ
123 排水口
124 貯湯用熱交換器
124a、204a、302a、501a 熱の供給側
124b、204b、302b、501b 熱の受給側
125 貯湯弁
201 排熱ポンプ
202、306 湯水タンク
203 熱動三方弁
204 低温暖房用熱交換器
205 排熱サーミスタ
206 余剰電力回収用ヒータ
207、307、602 往路口
208、308、603 戻り口
209、304 バイパス管
301 暖房ポンプ
302 高温暖房用熱交換器
303 暖房往路サーミスタ
305 暖房戻りサーミスタ
401 補助熱源
402 加熱サーミスタ
403 暖房弁
404 暖房補給水弁
501 風呂追焚き用熱交換器
502 風呂弁
601 風呂循環ポンプ
604 湯供給管
605 風呂循環サーミスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cogeneration system that operates a gas engine generator or a fuel cell generator using city gas, LP gas, etc., generates electricity, and uses heat generated as a by-product for heating hot water of a hot water storage type. It is.
[0002]
[Prior art]
FIG. 2 is a configuration diagram showing a hot water storage type hot water supply heat source device as a modification of the conventional cogeneration system.
In FIG. 2, 10 is a circulation path, 11 is a hot water storage tank in which temperature stratification is formed, 12 is a circulation pump for circulating hot water, and 13 is a hot water storage tank 11 for discharging hot water from the circulation pump 12 via one pipe. Or a three-way valve for the upper part that sends the water at the bottom of the hot water storage tank 11 to the circulation path 10 or forms a circulation path together with the upper three-way valve 13; 15 is a heat exchanger for exchanging exhaust heat (condensation heat) of the outdoor unit of the air conditioner, 16 is a heat exchanger for exchanging heat of exhaust gas of the gas engine 20 described later, and 17 is an auxiliary for heating hot water in the circulation path A heat source, 18 is an indoor unit of an air conditioner, 19 is an outdoor unit incorporating a gas engine 20 and a compressor 21 described later, and 21 is a compressor driven by the gas engine 20. The cogeneration system is originally a system that generates electricity and heat, but the gas engine 20 shown in FIG. 2 operates as a power source for driving the compressor 21 and a heat source for the heat exchanger 16, so that FIG. It can be said that the apparatus is a modification of the cogeneration system.
[0003]
The hot water storage operation of the hot water storage type hot water supply heat source apparatus configured as described above will be described.
When hot water stored in the hot water storage tank 11 is stored, the bottom three-way valve 14 takes out water at the bottom of the hot water storage tank 11 into the circulation path 10 and heats the water with the heating sections 15 to 17 while circulating the water 10 The heated hot water is returned to the upper part of the hot water storage tank 11 by the upper three-way valve 13 to form a temperature stratification and hot water is stored.
[0004]
[Problems to be solved by the invention]
However, in the conventional cogeneration system, since the auxiliary heat source 17 is disposed upstream of the hot water storage tank 11, hot water heated by the heat exchanger 15 and the heat exchanger 16 is further heated by the auxiliary heat source 17. Therefore, there is a possibility that hot water that has reached an abnormally high temperature (temperature exceeding 100 ° C.) in the auxiliary heat source 17 is supplied into the hot water storage tank 11, and a large amount of water vapor is generated in the hot water storage tank 11. Has an abnormally high pressure, which may cause expansion and explosion. In order to avoid this, it is necessary to place an administrator with the hot water storage tank 11 as a small boiler. However, this is not a requirement for a household cogeneration system or a commercial cogeneration system.
[0005]
In order to solve the above problems, an object of the present invention is to provide a cogeneration system capable of preventing a large amount of steam from being generated in a hot water storage tank in a hot water storage system and causing an abnormally high pressure in the hot water storage tank. And
[0006]
[Means for Solving the Problems]
In order to solve this problem, the cogeneration system of the present invention is a cogeneration system that uses the exhaust heat of an exhaust heat device such as an engine generator for heating hot water storage, etc., and the cogeneration system includes an engine generator, etc. The hot water storage system that heats hot water only by exchanging heat of the exhaust heat of the exhaust heat device, forms the temperature stratification and stores hot water in the hot water storage tank , the high temperature heating system that performs high temperature heating, and the renewal of the bath A hot water storage system, and a hot water storage system is disposed between the hot water storage heat exchanger and the hot water storage tank. A circulation pump that circulates through the water amount control valve to the hot water storage heat exchanger, the high-temperature heating system starts operating when the heating valve is turned on, branches from the downstream of the circulation pump of the hot water storage system, and an auxiliary heat source, It has a heat exchanger for heating and heating, a circulation path that goes back to the upstream of the circulation pump of the hot water storage system through the heating valve, and the bath heating system starts operation when the bath valve is turned on and branches off from the downstream of the circulation pump of the hot water storage system And a circulation path that returns to the upstream side of the auxiliary heat source, the bath heat exchanger, the bath valve, and the hot water storage heat exchanger of the hot water storage system, and the hot water in the hot water storage tank is located downstream of the hot water storage tank during hot water supply. It is provided with a configuration in which it is supplied from the hot water supply port via an auxiliary heat source disposed in the.
Thereby, the cogeneration system which can prevent that a lot of water vapor | steam generate | occur | produces in the hot water storage tank in a hot water storage system, and the inside of a hot water storage tank becomes abnormally high pressure is obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
A cogeneration system according to claim 1 of the present invention is a cogeneration system that uses the exhaust heat of an exhaust heat device such as an engine generator for heating hot water storage, etc., and the cogeneration system is an engine generator or the like. A hot water storage system that heats hot water only by exchanging heat from the exhaust heat of the exhaust heat device, forms a temperature stratification and stores hot water in a hot water storage tank, a high temperature heating system that performs high temperature heating, and a bath for reheating A bath heating system that performs heat exchange, and a hot water storage system is disposed between the hot water storage heat exchanger and the hot water storage tank, and the hot water heated by the hot water storage heat exchanger is heated from the hot water storage tank. It is equipped with a circulation pump that circulates through the water volume control valve to the hot water storage heat exchanger. The high-temperature heating system starts operation when the heating valve is turned on, branches from the downstream of the hot water storage system circulation pump, and has an auxiliary heat source and high temperature. heating It has a circulation path that returns to the upstream of the circulation pump of the hot water storage system through the heat exchanger and the heating valve. The bath heating system starts operation when the bath valve is turned on, and is branched to assist from the downstream of the circulation pump of the hot water storage system. A heat source, a bath-heating heat exchanger, and a circulation path that goes back to the upstream of the hot water storage heat exchanger of the hot water storage system through the bath valve , the hot water in the hot water storage tank is located downstream of the hot water storage tank during hot water supply. It is to be supplied from the hot water supply port via the auxiliary heat source provided .
With this configuration, the auxiliary heat source has no relation to the hot water storage operation in the hot water storage system, so the auxiliary heat source does not affect the hot water storage operation in the hot water storage system, and abnormally hot water due to the auxiliary heat source may be generated in the hot water storage tank. Therefore, there is no possibility that the hot water storage tank expands and explodes. Further, when the temperature of the hot water storage in the hot water storage tank is low, hot water heated by the auxiliary heat source is supplied from the hot water supply port, and it is possible to prevent low temperature hot water from being supplied. Furthermore, high-temperature heating can be realized using an auxiliary heat source, and various types of heating can be realized.
[0008]
The cogeneration system according to claim 2 is provided with a floor heating system for performing floor heating in the cogeneration system according to claim 1, wherein the floor heating system includes exhaust heat and / or exhaust heat from an exhaust heat device such as an engine generator. Alternatively, the hot water is heated by exchanging heat generated by the auxiliary heat source.
With this configuration, it is possible to realize low-temperature floor heating by exhaust heat from exhaust heat generators such as engine generators, and it is also possible to realize high-temperature heating such as bathroom heating ventilators and fan convectors using an auxiliary heat source. It has the effect | action that heating can be implement | achieved.
[0009]
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
(Embodiment 1)
FIG. 1 is a block diagram showing a cogeneration system according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a hot water storage system for storing hot water by forming a temperature stratification, 2 is heating hot water in the hot water storage system 1 using exhaust heat of the gas engine generator (for example, using hot water from a water jacket). Engine exhaust heat system that performs the above, 3 is the floor heating system that performs floor heating, 4 is the high temperature heating system that performs high temperature heating, 5 is the bath heating system that performs heat exchange for bathing, and 6 is the additional bath A bath reheating system that performs soaking, 7 is a control device that controls the whole, and 8 is a gas engine power generation as a heat exhausting device that generates and exhausts heat (ie, supplies both electricity and heat) using city gas and LP gas. , 9 is a bathtub, 31, 32 and 35 are open / close valves for opening and closing (on / off), 33 and 34 are floors supplied with hot water, and 36 is a bathroom heating ventilator or fan controller. A high-temperature heater such as a vector.
[0010]
The hot water storage system 1 includes a hot water storage tank 101, a circulation pump 102, a check valve 102a for preventing backflow, a hot water storage thermistor 103 to 106 for measuring the temperature of hot water, a water amount control valve 107 for continuously controlling the amount of water flow, and water flow. Hot water storage comprising a water supply valve 108 for controlling on / off of the water, a circulating hot water thermistor 109 for measuring the temperature of circulating hot water, baffles 110 and 111 for forming temperature stratification, a heat supply side 124a and a receiving side 124b. And a hot water storage valve 125 for bypassing hot water discharged from the circulation pump 102.
The engine exhaust heat system 2 supplies heat to the exhaust heat pump 201, the hot water tank 202 opened to the atmosphere so that the hot water does not exceed 100 ° C., the thermal three-way valve 203, and the floor heating system 3. When surplus power is generated in the heat generating capacity of the low temperature heating heat exchanger 204, the exhaust heat thermistor 205, and the gas engine generator 8 having the supply side 204a and the heat receiving side 204b to perform, the surplus power is recovered and used as a heat source. Surplus power recovery heater 206 for use, forward passage port 207 through which hot water from the exhaust heat pump 201 is discharged, return port 208 through which hot water from the water jacket of the gas engine generator 8 is supplied, thermal three-way valve 203 A bypass pipe 209 that forms a bypass when the detected temperature is low.
[0011]
Further, the floor heating system 3 includes a heating pump 301, a heat exchanger for high temperature heating comprising a heat supply side 302a disposed on the high temperature heating system 4 side and a heat receiving side 302b disposed on the floor heating system 3 side. 302, a heating outward thermistor 303, a bypass pipe 304, a heating return thermistor 305, a hot water tank 306, an outward opening 307, and a return opening 308.
Further, the high temperature heating system 4 includes an auxiliary heat source 401 having a directional water flow sensor (directional water flow sensor, not shown), a heating thermistor 402, and an on / off heating valve for operating the high temperature heating system 4. 403, a heating replenishment water valve 404 that supplies hot water when the water level in the hot water tank 306 drops.
Further, the bath heating system 5 includes a heat exchanger 501 for reheating a bath composed of a heat supply side 501a and a heat receiving side 501b, and an on / off operation bath valve 502 for operating the bath heating system 5. .
Further, the bath replenishment system 6 includes a bath circulation pump 601, a forward port 602 for supplying hot water for bathing to the bathtub 9, a return port 603 for supplying hot water from the bathtub 9, and hot water filled with hot water. A hot water supply valve 114, a hot water supply pipe 604 supplied from the check valves 115 and 116, and a bath circulation thermistor 605 for measuring the temperature of the hot water circulating between the bathtub 9.
[0012]
Further, the hot water supply system 9A includes check valves 115, 116, and 122 for preventing backflow, a water amount control valve 113 for continuously controlling the amount of water flow, a hot water valve 114 for performing on / off control of the water flow, and a hot water storage tank 101. A mixing valve 112 that mixes hot water from the water supply water and water from the water supply port 118, a hot water supply port 117, a pressure-reducing pressure reducing valve 119, a water supply thermistor 120 that measures the temperature of the water supply, a water amount sensor 121 that measures the amount of water, Have.
Here, the temperature of each part will be described. The temperature of hot water supplied from the gas engine generator 8 to the hot water storage heat exchanger 124 is about 75 to 80 ° C., and the temperature of hot water supplied to the low temperature heating heat exchanger 204 is about 65 to 70 ° C. . The temperature of hot water supplied from the auxiliary heat source 401 to the high-temperature heating heat exchanger 302 and the bath- heating heat exchanger 501 is about 80 ° C.
[0013]
The operation of the cogeneration system configured as described above will be described.
First, operations of the hot water storage system 1 and the hot water supply system 9A will be described.
In the hot water storage operation, the hot water storage pump 102 is driven by a motor (not shown), the hot water storage heat exchanger 124 performs heat exchange, the water supply valve 108 is open (on state), and the water amount control valve 107 is The opening degree is controlled so that the amount of hot water flowing into the hot water storage tank 101 from the upper part of the hot water storage tank 101 becomes an appropriate amount. Hot water heated by heat exchange in the hot water storage heat exchanger 124 is supplied from the circulation pump 102 to the hot water storage tank 101 through the circulating hot water thermistor 109, and the water amount control valve 107 → the water supply valve 108 → the hot water storage heat exchanger 124. Circulate to The circulation path of the circulation pump 102 → the hot water storage tank 101 → the water amount control valve 107 → the water supply valve 108 → the hot water storage heat exchanger 124 is referred to as a first circulation path. The supply amount from the circulation pump 102 to the hot water storage tank 101 is controlled by the opening degree of the water amount control valve 107, but is controlled to about 50 liters / hour so as to form a temperature stratification in the hot water storage tank 101. Since the resolution of the amount of water that can be controlled by the water amount control valve 107 is about 100 liters / hour, the hot water storage valve 125 is bypassed to improve the resolution to, for example, about 10 liters / hour. The hot water storage valve 125 forms a circulation path (second circulation path) together with the circulation pump 102, the hot water storage heat exchanger 124, and the like. When the temperature of the hot water in the first circulation path is low, the water supply valve 108 is provided. Is closed (off state), only the second circulation path is formed, and the temperature rise by the hot water storage heat exchanger 124 is awaited. When the amount of hot water stored in the hot water storage tank 101 decreases due to the opening of the hot water supply port 117 or the hot water filling valve 114, the water supply pressure from the water supply port 118 increases relatively with respect to the water pressure at the bottom of the hot water storage tank 101, Done. Water supply from the water supply port 118 is performed via the pressure reducing valve 119, the water amount sensor 121, and the like.
[0014]
At the time of hot water supply, hot water in the hot water storage tank 101 is supplied from the hot water supply port 117 via the auxiliary heat source 401, the mixing valve 112, and the water amount control valve 113. The auxiliary heat source 401 heats the water flow when the temperature measured by the hot water storage thermistor 103 is low and the built-in water flow sensor detects the water flow. Therefore, when the temperature of the hot water storage in the hot water storage tank 101 is low, hot water heated by the auxiliary heat source 401 is supplied from the hot water supply port 117, and it is possible to prevent low temperature hot water from being supplied. The hot water filling valve 114 is a valve for hot water filling to the bathtub 9.
[0015]
Next, the engine exhaust heat system 2 will be described.
Hot water from the gas engine generator 8 (75 ° C. to 80 ° C. of about water) from return port 208 via the surplus power recovery heater 206 reaches the hot-water stocking heat exchanger 124, the hot-water stocking heat exchanger 124 Heat is supplied to the hot water storage system 1. Hot water that has passed through the hot water storage heat exchanger 124 (hot water of about 65 ° C. to 70 ° C.) reaches the low temperature heating heat exchanger 204, and supplies heat to the floor heating system 3 in the low temperature heating heat exchanger 204. Do. Hot water that has passed through the thermal three-way valve 203 is discharged from the forward passage port 207 to the gas engine generator 8 side by the exhaust heat pump 201 via the open hot water tank 202. The open-type hot water tank 202 is for keeping the temperature of the hot water passing below 100 ° C. or less. Thereby, the hot water in the hot water storage system 1 is prevented from exceeding 100 ° C. When the temperature of the hot water passing through the thermal three-way valve 203 is low (for example, when the temperature of the circulating water is 60 ° C. or less immediately after the gas engine generator 8 is started), the hot water from the gas engine generator 8 is used for hot water storage. Instead of going through the heat exchanger 124 and the low-temperature heating heat exchanger 204, the heat goes through the bypass pipe 209. Thereby, it is possible to prevent heat exchange from being performed with hot water at a low temperature, and it is possible to speed up the start-up.
[0016]
Next, the floor heating system 3 will be described.
Hot water from the heating pump 301 receives heat from the engine exhaust heat system 2 in the low temperature heating heat exchanger 204 and reaches the high temperature heating heat exchanger 302. The high-temperature heating heat exchanger 302 is for performing high-temperature heating using a high-temperature heater 36 such as a bathroom heating ventilator or a fan convector. In the case of low- temperature floor heating , hot water is used as a high-temperature heating heat exchanger. The heat passes through 302 without being exchanged, and is discharged from the forward passage port 307 via the heating forward thermistor 303. On the floor side, if the on-off valve 31 is on, it is supplied to the floor 33, and if the on-off valve 32 is on, it is supplied to the floor 34. Hot water supplied from the return port 308 via the floor is again discharged from the heating pump 301 via the heating return thermistor 305 and the hot water tank 306. The bypass pipe 304 is used to prevent the temperature of hot water exchanged by the low-temperature heating heat exchanger 204 and the high-temperature heating heat exchanger 302 from being undetectable when both the on-off valves 31 and 32 are off. is there. When the water level in the hot water tank 306 falls below a predetermined water level, hot water is supplied from the heating replenishment water valve 404 to the hot water tank 306.
[0017]
Next, the high temperature heating system 4 that performs high temperature heating will be described.
The high temperature heating system 4 starts to operate when the heating valve 403 is turned on. When the heating valve 403 is turned on, a circulation path of the circulation pump 102 → the auxiliary heat source 401 → the high-temperature heating heat exchanger 302 → the heating valve 403 is formed, and the measured temperature of the heating thermistor 402 is a predetermined temperature (for example, 80 ° C.) or less. In such a case, the auxiliary heat source 401 operates to heat the hot water. In the high-temperature heating heat exchanger 302, heat is supplied to the floor heating system 3. When the on-off valve 35 is opened, high-temperature hot water is passed through the high-temperature heater 36, thereby enabling high-temperature heating.
[0018]
Next, the bath heating system 5 that performs heat exchange for bathing will be described. The bath heating system 5 starts to operate when the bath valve 502 is turned on. When the bath valve 502 is turned on, the circulation path of the circulation pump 102 → auxiliary heat source 401 → bath reheating heat exchanger 501 → bath valve 502 → hot water storage heat exchanger 124 is formed, and the measured temperature of the heating thermistor 402 is predetermined. When the temperature is lower than 60 ° C. (for example, 60 ° C.), the auxiliary heat source 401 is operated, and heat is supplied in the bath reheating heat exchanger 501 to reheat the bath.
[0019]
Next, the bath tracking system 6 that performs bath tracking will be described.
Hot water discharged from the bath circulation pump 601 receives heat from the bath-heating heat exchanger 501, is heated, and hot water is supplied from the forward port 602 to the bathtub 9. Return hot water from the bathtub 9 returns to the bath circulation pump 601 via the return port 603 and the bath circulation thermistor 605. By automatically operating the bath circulation pump 601 every predetermined time (for example, 20 minutes) for a certain time (for example, 1 minute), if the measured temperature of the bath circulation thermistor 605 falls below a predetermined temperature (for example, 40 ° C.) You can also do it. The hot water filling pipe 604 is for hot water filling with hot water from the on-off valve 114 of the hot water storage system 1.
In the present embodiment, the gas engine generator 8 is described as generating heat and electricity. However, the present invention is not limited to this and can be similarly applied to a fuel cell that generates heat and electricity. , Have the same effect.
[0020]
As described above, according to the present embodiment , the hot water storage system 1 that performs only heat exchange of the exhaust heat of the exhaust heat device such as the engine 8 to heat the hot water, forms a temperature stratification, and stores hot water in the hot water storage tank 101. The auxiliary heat source 401 does not constitute the hot water storage system 1, the auxiliary heat source 401 is not affected by the hot water storage system 1, and abnormally hot water from the auxiliary heat source 401 may be generated in the hot water storage tank 101. Therefore, the possibility that the hot water storage tank 101 expands and explodes can be eliminated.
Further, when hot water is supplied, the auxiliary heat source 401 disposed on the downstream side of the hot water storage tank 101 is provided, whereby the hot water supply temperature can be maintained at a predetermined temperature by the auxiliary heat source 401 on the downstream side of the hot water storage tank 101.
Furthermore, it is provided with a floor heating system 3 for performing floor heating, and the floor heating system 3 heats hot water by exchanging heat of exhaust heat from an exhaust heat device such as the engine 8 and / or heat generated by the auxiliary heat source 401, it is possible to realize a low breeding ground heating by waste heat of the exhaust heat device, such as an engine 8, by using an auxiliary heat source 401 can be realized a high-temperature heating, it is possible to realize a variety of heating.
[0021]
【The invention's effect】
As described above, the cogeneration system according to claim 1 of the present invention is a cogeneration system that uses the exhaust heat of an exhaust heat device such as an engine generator for heating hot water storage, etc. Is a hot water storage system that heats hot water only by exchanging heat of exhaust heat from an exhaust heat device such as an engine generator, forms a temperature stratification and stores hot water in a hot water storage tank, a high temperature heating system that performs high temperature heating, A bath heating system that performs heat exchange for replenishing the bath, and the hot water storage system is disposed between the hot water storage heat exchanger and the hot water storage tank, and heat is exchanged by the hot water storage heat exchanger. A circulating pump that circulates the hot water from the hot water storage tank through the water volume control valve to the hot water storage heat exchanger, and the high temperature heating system starts operating when the heating valve is turned on. Min And a circulation path that returns to the upstream of the circulation pump of the hot water storage system through an auxiliary heat source, a heat exchanger for high-temperature heating, and a heating valve, and the bath heating system starts operating when the bath valve is turned on to circulate the hot water storage system. It has a circulation path that branches from the downstream of the pump and returns to the upstream of the auxiliary heat source, the heat exchanger for bath reheating, the bath valve, and the hot water storage heat exchanger in the hot water storage system . Since the auxiliary heat source is not involved in the hot water storage operation in the hot water storage system by being supplied from the hot water supply port via the auxiliary heat source disposed on the downstream side of the hot water storage tank, the influence of the auxiliary heat source on the hot water storage operation in the hot water storage system is not affected. Thus, the hot water having an abnormally high temperature due to the auxiliary heat source is not generated in the hot water storage tank, and there is an advantageous effect that the hot water storage tank is not likely to expand and explode. Further, when the temperature of the hot water storage in the hot water storage tank is low, hot water heated by the auxiliary heat source is supplied from the hot water supply port, and it is possible to prevent low temperature hot water from being supplied. Furthermore, high-temperature heating can be realized using an auxiliary heat source, and various types of heating can be realized.
[0022]
According to the cogeneration system according to claim 2, in the cogeneration system according to claim 1, the floor heating system includes a floor heating system that performs floor heating, and the floor heating system includes exhaust heat of an exhaust heat device such as an engine generator. And / or by heating the hot water by exchanging the heat generated by the auxiliary heat source, it is possible to realize low-temperature floor heating by exhaust heat from an exhaust heat device such as an engine generator. High-temperature heating such as a fan convector can also be realized, and an advantageous effect that various heating can be realized is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a cogeneration system according to a first embodiment of the present invention. FIG. 2 is a block diagram showing a hot water storage hot water supply heat source device as a modification of a conventional cogeneration system.
DESCRIPTION OF SYMBOLS 1 Hot water storage system 2 Engine exhaust heat system 3 Floor heating system 4 High temperature heating system 5 Bath heating system 6 Bath reheating system 7 Control device 8 Gas engine generator 9 Bath 9A Hot water supply system 31, 32, 35 On-off valve 33, 34 Floor 36 High temperature heater 101 Hot water storage tank 102 Circulation pump 102a, 115, 116, 122 Check valve 103, 104, 105, 106 Hot water storage thermistor 107, 113 Water amount control valve 108 Water supply valve 109 Circulating hot water thermistor 110, 111 Baffle plate 112 Mixing valve 114 Hot water filling valve 117 Hot water supply port 118 Water supply port 119 Pressure reducing valve 120 Water supply thermistor 121 Water quantity sensor 123 Drain port
124 Hot water storage heat exchanger 124a, 204a, 302a, 501a Heat supply side 124b, 204b, 302b, 501b Heat receiving side 125 Hot water storage valve 201 Waste heat pump 202, 306 Hot water tank 203 Thermal three-way valve
204 Heat exchanger for low-temperature heating 205 Waste heat thermistor 206 Heater for recovering excess power 207, 307, 602 Outgoing port 208, 308, 603 Return port 209, 304 Bypass pipe 301 Heating pump
302 Heat Exchanger for High Temperature Heating 303 Heating Outward Thermistor 305 Heating Return Thermistor 401 Auxiliary Heat Source 402 Heating Thermistor 403 Heating Valve 404 Heating Supply Water Valve
501 Bath reheating heat exchanger 502 Bath valve 601 Bath circulation pump 604 Hot water supply pipe 605 Bath circulation thermistor

Claims (2)

エンジン発電機等の排熱装置の排熱を貯湯の加熱などに利用するコージェネレーションシステムであって、
前記コージェネレーションシステムは、前記エンジン発電機等の排熱装置の排熱の熱交換のみを行って湯水を加熱し、温度成層を形成して貯湯タンクに貯湯を行う貯湯系統と、高温暖房を行う高温暖房系統と、風呂の追焚きのための熱交換を行う風呂加熱系統と、を有し、
前記貯湯系統が、貯湯用熱交換器と貯湯タンクとの間に配設され前記貯湯用熱交換器で熱交換されて加熱された湯を前記貯湯タンクから水量制御弁を通って前記貯湯用熱交換器へと循環させる循環ポンプを備え、
前記高温暖房系統が、暖房弁のオンにより動作を開始し、前記貯湯系統の前記循環ポンプの下流から分岐して補助熱源、高温暖房用熱交換器、前記暖房弁を通って前記貯湯系統の前記循環ポンプの上流に戻る循環路を備え、
前記風呂加熱系統が、風呂弁のオンにより動作を開始し、前記貯湯系統の前記循環ポンプの下流から分岐して前記補助熱源、風呂追焚き用熱交換器、前記風呂弁、前記貯湯系統の前記貯湯用熱交換器の上流に戻る循環路を備え、
給湯時においては、前記貯湯タンク内の湯が、前記貯湯タンクの下流側に配設される前記補助熱源を経由して給湯口から供給されることを特徴とするコージェネレーションシステム。
A cogeneration system that uses exhaust heat from an exhaust heat generator such as an engine generator to heat hot water, etc.
The cogeneration system heats hot water only by exchanging heat of exhaust heat from an exhaust heat device such as the engine generator, forms a temperature stratification and stores hot water in a hot water storage tank, and performs high-temperature heating. A high-temperature heating system, and a bath heating system that performs heat exchange for bathing,
The hot water storage system is disposed between a hot water storage heat exchanger and a hot water storage tank, and hot water heated by heat exchange in the hot water storage heat exchanger is heated from the hot water storage tank through a water amount control valve. It has a circulation pump that circulates to the exchanger,
The high temperature heating system starts to operate when a heating valve is turned on, branches from the downstream of the circulation pump of the hot water storage system, passes through an auxiliary heat source, a high temperature heating heat exchanger, the heating valve, and the hot water storage system. With a circulation path returning upstream of the circulation pump,
The bath heating system starts to operate when a bath valve is turned on, branches from the downstream of the circulation pump of the hot water storage system, the auxiliary heat source, a heat exchanger for bath reheating, the bath valve, the hot water storage system It has a circulation path that goes back to the upstream of the heat exchanger for hot water storage,
During the hot water supply, cogeneration system hot water the hot water storage tank, characterized in that supplied from the hot water supply port via the auxiliary heat source which is disposed downstream of the hot water storage tank.
床暖房を行う床暖房系統を備え、前記床暖房系統は、前記エンジン発電機等の排熱装置の排熱および/または前記補助熱源の発生熱を熱交換して湯水を加熱することを特徴とする請求項1に記載のコージェネレーションシステム。A floor heating system for performing floor heating is provided, and the floor heating system heats hot water by exchanging heat of exhaust heat from an exhaust heat device such as the engine generator and / or heat generated by the auxiliary heat source. The cogeneration system according to claim 1.
JP2001172981A 2001-06-07 2001-06-07 Cogeneration system Expired - Fee Related JP4664533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172981A JP4664533B2 (en) 2001-06-07 2001-06-07 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172981A JP4664533B2 (en) 2001-06-07 2001-06-07 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2002364919A JP2002364919A (en) 2002-12-18
JP4664533B2 true JP4664533B2 (en) 2011-04-06

Family

ID=19014518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172981A Expired - Fee Related JP4664533B2 (en) 2001-06-07 2001-06-07 Cogeneration system

Country Status (1)

Country Link
JP (1) JP4664533B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100714U (en) * 1990-01-26 1991-10-21
JPH0445321A (en) * 1990-06-13 1992-02-14 Sanyo Electric Co Ltd Heating device
JPH05223268A (en) * 1992-02-06 1993-08-31 Nippondenso Co Ltd Cogeneration system
JPH10185314A (en) * 1996-12-25 1998-07-14 Tokyo Gas Co Ltd Waste heat input type electric water heater with additional heating function
JPH10197063A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Waste heat charging electric water heater
JP2821760B2 (en) * 1989-03-17 1998-11-05 高砂熱学工業 株式会社 Optimal control method for cogeneration system
JP2000121085A (en) * 1998-10-15 2000-04-28 Osaka Gas Co Ltd Hot water storage type hot water heating heat supply apparatus
JP2001065976A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system
JP2001065975A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821760B2 (en) * 1989-03-17 1998-11-05 高砂熱学工業 株式会社 Optimal control method for cogeneration system
JPH03100714U (en) * 1990-01-26 1991-10-21
JPH0445321A (en) * 1990-06-13 1992-02-14 Sanyo Electric Co Ltd Heating device
JPH05223268A (en) * 1992-02-06 1993-08-31 Nippondenso Co Ltd Cogeneration system
JPH10185314A (en) * 1996-12-25 1998-07-14 Tokyo Gas Co Ltd Waste heat input type electric water heater with additional heating function
JPH10197063A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Waste heat charging electric water heater
JP2000121085A (en) * 1998-10-15 2000-04-28 Osaka Gas Co Ltd Hot water storage type hot water heating heat supply apparatus
JP2001065976A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system
JP2001065975A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system

Also Published As

Publication number Publication date
JP2002364919A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
US8286423B2 (en) Cogeneration system
JP2003214705A (en) Cogeneration system
JP2012013293A (en) Heat supply system
JP6153328B2 (en) Cogeneration system and heating equipment
JP6429851B2 (en) Cogeneration system and heating equipment
JP2004263589A (en) Cogeneration system, and engine generator start method used for the same
JP6153329B2 (en) Cogeneration system and heating equipment
JP2004138298A (en) Cogeneration system
JP4031484B2 (en) Combined heat source machine
JP4664533B2 (en) Cogeneration system
JP2004232978A (en) Heat pump type hot water supply and heating apparatus
JP4363612B2 (en) Path temperature measuring method and exhaust heat recovery device
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP2002364918A (en) Cogeneration system
JP4000073B2 (en) Cogeneration system controller
JP4669156B2 (en) Cogeneration system
JP4000074B2 (en) Cogeneration system controller
JP2003021392A (en) Cogeneration system
JP6429850B2 (en) Cogeneration system
JP4398653B2 (en) Cogeneration system controller
JP2004225926A (en) Heat pump type hot water supply device and heat pump type hot water supply heating device
JP3916489B2 (en) Hot water cogeneration system
JP4093521B2 (en) Hot water storage heating system
JP2004085112A (en) Space heating apparatus
JP3990527B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4664533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees