JPH05214402A - Production of metal powder for hot isostatic pressing - Google Patents

Production of metal powder for hot isostatic pressing

Info

Publication number
JPH05214402A
JPH05214402A JP4017770A JP1777092A JPH05214402A JP H05214402 A JPH05214402 A JP H05214402A JP 4017770 A JP4017770 A JP 4017770A JP 1777092 A JP1777092 A JP 1777092A JP H05214402 A JPH05214402 A JP H05214402A
Authority
JP
Japan
Prior art keywords
metal powder
powder
cip
isostatic pressing
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4017770A
Other languages
Japanese (ja)
Inventor
Ryohei Kumagai
良平 熊谷
Yasushi Takayama
康 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP4017770A priority Critical patent/JPH05214402A/en
Publication of JPH05214402A publication Critical patent/JPH05214402A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve strength and ductility after HIP as to the metal powder used in producing a compact from the metal powder by previously imparting a distortion strain with a CIP technique to the metal powder. CONSTITUTION:As to the metal powder to produce a compact by hot isostatic pressing, the metal powder grains are subjected to cold isostatic pressing to produce a metal powder for hot isostatic pressing. Since the isostatic pressing as the characteristic of CIP is utilized, the powder grains are surely distorted, hence the stability and nonspecificity in operation are provided, and the powder is extremely inexpensive and enhanced in practicality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱間等方圧加圧によって
金属粉末から成形体を製造する際の金属粉末の前処理方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pretreating a metal powder when a compact is produced from the metal powder by hot isostatic pressing.

【0002】[0002]

【従来の技術】近年、セラミックスや金属間化合物等の
難加工性材料については、鋳造や鍛造による成形体を製
造することは困難ないしは製造コスト上問題があるため
に、熱間等方圧加圧加工(以下HIPという)によっ
て、粉末から成形体を製造する技術の応用が益々増大さ
れつゝある。その応用の一つとして特開平2−1457
01号公報のように、チタン・アルミニュウム合金粉末
粒を真空容器または不活性雰囲気を充填した容器内に装
入し鋼球等を衝突せしめて、この合金粉末粒に歪みを与
えることで、合金粉末粒の加圧焼結体の緻密化を、この
合金の結晶粒粗大化温度以下で達成できるというもので
ある。すなわち、粉体を容器に充填し、HIP加工を行
う場合に用いる粉末にあらかじめ常温で機械的に歪を与
えておくと、HIPにおける高密度化が容易になり、H
IP後の強度と延性が向上するというものである。しか
も、これらの粉末に加工歪を与えるための手段として、
ボールミルまたは、ボールミルに若干の攪拌翼を付けた
アトライターと呼ばれるものが用いられているが、しか
し、これらの場合に、ボールや容器内面が摩耗し、粉末
に混入するので、品質管理上問題がある。
2. Description of the Related Art In recent years, for hard-to-process materials such as ceramics and intermetallic compounds, it is difficult to manufacture a molded body by casting or forging, or there is a problem in manufacturing cost. By the processing (hereinafter referred to as HIP), the application of the technique for producing a molded body from powder is being increasingly increased. As one of its applications, JP-A-2-1457.
As disclosed in No. 01 publication, titanium-aluminum alloy powder particles are loaded into a vacuum container or a container filled with an inert atmosphere, steel balls or the like are caused to collide with each other, and strain is imparted to the alloy powder particles. It is possible to achieve the densification of the pressure-sintered body of grains at a temperature not higher than the crystal grain coarsening temperature of this alloy. That is, if powder is filled in a container and mechanically strained in advance at room temperature for powder used for HIP processing, the density of HIP can be easily increased.
The strength and ductility after IP are improved. Moreover, as a means for imparting processing strain to these powders,
A ball mill or what is called an attritor in which some stirring blades are attached to the ball mill is used.However, in these cases, the balls and the inner surface of the container are worn and mixed into the powder, which causes problems in quality control. is there.

【0003】[0003]

【発明が解決しようとする課題】上記のように、HIP
に用いる金属粉末に変形歪を与える場合の手段として、
ボールミリングにおいて、ボールや容器が金属粉末とは
別の材料である限りは、その摩耗粉の混入は避けられな
い。この場合、処理された金属粉末が本来材質的に降伏
強度が高く、変形され難い材料ほど、高変形歪を与えた
場合のHIPへの影響は大きい。従って、ボールミリン
グは強化せざるを得ず、そのため摩耗粉の混入は益々増
大する傾向となる。例えば、TiAl金属間化合物粉末
での適用では、その混入成分は、2%にも達し、その結
果TiAlのHIP材の高温性能が劣化することが知ら
れている。このように摩耗粉の混入が避けられない以
上、ボールや容器等の材料を金属粉末と同一成分材、も
しくは、混入しても材質的に実害を与えない材料にする
必要があり、この点の問題は実用的には解決されていな
いのが実情である。
As described above, the HIP
As a means for giving deformation strain to the metal powder used for
In ball milling, as long as the ball and the container are made of a material different from the metal powder, the abrasion powder is inevitably mixed. In this case, the material having a high yield strength and being less likely to be deformed by the treated metal powder has a greater effect on HIP when a high deformation strain is applied. Therefore, the ball milling has to be strengthened, so that the inclusion of wear debris tends to increase more and more. For example, when TiAl intermetallic compound powder is applied, the content of the mixed component reaches 2%, and as a result, the high temperature performance of the TiAl HIP material is known to deteriorate. In this way, since it is unavoidable to mix abrasion powder, it is necessary to make the material of the ball, container, etc. the same component material as the metal powder, or a material that does not actually harm the material even if mixed. The reality is that the problem has not been practically solved.

【0004】そこで、本発明は、前記実情を鑑み変形歪
を与えようとする金属粉末に対して、同じ金属粉末が同
時に相互に変形加工の作用材としても働く方法の一つの
対応として、金属粉末を容器に充填し、単軸もしくは多
軸加圧を行う方法がある。これはプレス機によっても良
く、圧延ロールを利用しても可能である。このようにし
て加工処理された金属粉末の加工歪は歪量に大きいバラ
ツキを生じ、変形しなかった金属粉末も多量含むことか
ら、これらの知見にもとずき、本発明者らは鋭意検討を
重ねた結果、金属粉末への歪の与え方として、冷間等方
圧加圧加工(以下CIPという)を利用する方法を提供
することを目的とするものである。
In view of the above-mentioned circumstances, the present invention provides a method of responding to a metal powder which is to be subjected to a deformation strain, in which the same metal powder simultaneously acts as a working material for the deformation processing. There is a method of filling the container with a container and performing uniaxial or multiaxial pressing. This may be done by a press machine or by using a rolling roll. The processing strain of the metal powder processed in this way causes a large variation in the amount of strain, and since a large amount of the metal powder that has not been deformed is also included, the present inventors have diligently studied based on these findings. It is an object of the present invention to provide a method of utilizing cold isostatic pressing (hereinafter referred to as CIP) as a method of applying strain to metal powder as a result of stacking.

【0005】[0005]

【課題を解決するための手段】本発明はHIP技術を利
用して、金属粉末から成形体を製造する場合に用いる金
属粉末において、この金属粉末にあらかじめCIP技術
を応用した変形歪を与えておくことを特徴とするもの
で、その発明の要旨とするところは、熱間等方圧加圧に
より金属粉末から成形体を製造するその金属粉末におい
て、該金属粉末の粒子に冷間等方圧加圧加工を施すこと
を特徴とする熱間等方圧加圧加工用金属粉末の製造方法
にある。
According to the present invention, the HIP technique is used to impart a deformation strain to the metal powder, which is obtained by applying the CIP technique, to the metal powder used in the case of producing a molded product from the metal powder. The present invention is characterized in that, in a metal powder for producing a molded product from a metal powder by hot isostatic pressing, cold isostatic pressing is applied to particles of the metal powder. A method for producing a metal powder for hot isostatic pressing, characterized by performing pressure processing.

【0006】以下本発明について詳細に説明する。本発
明の特徴とするCIPの方法としては、特別の装置を必
要とせず、通常ゴム製容器に金属粉末を充填し、圧力を
かけて金属粉末に変形を与える方法で、十分目的を達成
することができる。しかし、圧力をかけ過ぎて、ブロッ
クに成形されてしまっては、粉末状で取り出すことが出
来ないので、成形以前の圧力で行う必要がある。この成
形以前の圧力値は適用する金属粉末の材質と形状に影響
するので、その金属粉末の材質と形状によって特定すれ
ば良い。また、最終的にHIP技術の適用をするので、
HIP時の加圧力が各粒子に均等に作用し、粒子間に空
孔欠陥を残さないようにするためCIP技術で変形歪を
与える工程では、球形粉の特徴として、ブロック成形さ
れにくゝ、この目的に対するCIPの圧力には実用的に
許容できる十分な範囲をもっていると言うことができ
る。
The present invention will be described in detail below. The CIP method, which is a feature of the present invention, does not require a special apparatus and is a method of filling a metal container with a metal powder and applying a pressure to deform the metal powder. You can However, if it is molded into a block by applying too much pressure, it cannot be taken out in powder form, so it is necessary to carry out the pressure before molding. Since the pressure value before molding affects the material and shape of the applied metal powder, it may be specified by the material and shape of the metal powder. Also, because HIP technology is finally applied,
In the process of applying a deformation strain by CIP technology so that the pressure force during HIP acts on each particle evenly and no vacancy defects are left between particles, the characteristic of spherical powder is that it is difficult to be block-formed. It can be said that the CIP pressure for this purpose has a practically sufficient range.

【0007】なお、図1はCIPにより金属粉末に変形
歪加工を与えたときの変形の様子を示す電子顕微鏡写真
の模式図であって、図1AはHIPに好適な球状均等径
の金属粉末がCIPの際の容器に充填されたときの粉末
相互の接触状態を示す模式図であり、図1BはこれにC
IP圧力をかけて変形したときの状態を示す模式図であ
る。すなわち、球状粉かCIP後もブロック化しにくい
ことを示しているものである。この状況については図2
によって明確に示されている。図2は本発明によるCI
P処理によって金属粉末に歪を与えた、そのHIP材の
変形状態を模式した図である。これからも、HIP材の
変形している状況がわかる。これに対して、図3は比較
のためにCIP処理により金属粉末に変形歪加工を与え
ないものの電子顕微鏡写真の模式図で、これからわかる
ように、HIP材の変形状態がみられない。
FIG. 1 is a schematic view of an electron micrograph showing the state of deformation when the metal powder is subjected to deformation strain processing by CIP. FIG. 1A shows a metal powder having a spherical uniform diameter suitable for HIP. FIG. 1B is a schematic view showing a contact state between powders when they are filled in a container during CIP, and FIG.
It is a schematic diagram which shows the state when it deform | transforms by applying IP pressure. That is, it shows that it is difficult to block even after spherical powder or CIP. Figure 2 shows this situation.
Is clearly shown by. FIG. 2 shows a CI according to the present invention.
It is the figure which modeled the deformation state of the HIP material which gave distortion to metal powder by P processing. It can be seen from this that the HIP material is deformed. On the other hand, FIG. 3 is a schematic diagram of an electron micrograph of a metal powder which is not subjected to deformation strain processing by CIP treatment for comparison. As can be seen, the HIP material is not deformed.

【0008】[0008]

【作用】本発明はHIP成形に用いる金属粉末におい
て、あらかじめCIP処理により金属粉末粒子に変形歪
を与えるものであるが、このCIPを用いることによ
り、個々の金属粉末に対し等方圧が加えられるという利
点がある。また、粉末自身にデンドライト等にもとずく
組織と変形能に異方性があったとしても、CIPを適用
することによって、圧力が等方圧であるため確実に変形
を与えるということが出来る。このように、変形歪を与
えた金属粉末は予め転位を与えているということで、H
IP処理における緻密化が確実に進行するからHIP温
度で動的再結晶を生ずる結果、HIP処理後のブロック
は組織が緻密化し、常温の引張破断強度が向上する。こ
のような効果は殆どの金属系材料においても可能とな
る。特に鋳造や鍛造では割れが生じて、部材加工が出来
ない金属間化合物においては、本発明は極めて有効な加
工方法の一つである。
According to the present invention, in the metal powder used for HIP molding, a deformation strain is given to the metal powder particles by CIP treatment in advance. By using this CIP, isotropic pressure is applied to each metal powder. There is an advantage that. Further, even if the powder itself has anisotropy in the structure and the deformability based on dendrite or the like, by applying CIP, it is possible to surely give the deformation because the pressure is isotropic. As described above, since the metal powder that has been subjected to the deformation strain has been given dislocations in advance,
Since the densification in the IP treatment surely proceeds, dynamic recrystallization occurs at the HIP temperature. As a result, the structure of the block after the HIP treatment is densified and the tensile fracture strength at room temperature is improved. Such an effect is possible even in most metallic materials. The present invention is one of the most effective processing methods especially for intermetallic compounds which cannot be processed into members because cracks occur in casting or forging.

【0009】このような有効な加工方法の適用につい
て、例えば、軽量で高温強度の優れたTiAl金属間化
合物について、本発明を適用する場合については、その
CIP加圧圧力は200〜500MPaを必要とする。
この高温強度の優れたTiAl金属間化合物の粉末は極
めて変形しにくい特徴を有し、そのため200MPa未
満では変形歪が十分に行われず、そのため前記したHI
P緻密化並びにミクロ組織の微細化においても十分に得
られない。しかし、200MPa以上での変形歪であれ
ば、圧力保持時間はそれ程長時間を必要としないが、C
IP装置内の加圧を確実ならしめるためには少なくとも
5分以上保持すれば十分である。
When the present invention is applied to the application of such an effective processing method, for example, to the TiAl intermetallic compound which is lightweight and has excellent high temperature strength, the CIP pressurizing pressure is required to be 200 to 500 MPa. To do.
This TiAl intermetallic compound powder having excellent high-temperature strength has a characteristic that it is extremely difficult to be deformed, and therefore, deformation strain is not sufficiently performed at less than 200 MPa.
It cannot be sufficiently obtained in P densification and microstructure refinement. However, if the deformation strain is 200 MPa or more, the pressure holding time is not so long, but C
It is sufficient to maintain the pressure in the IP device for at least 5 minutes or more in order to ensure the pressure.

【0010】また、形状記憶材料として知られているN
iTi金属間化合物の場合は、TiAl粉末よりも加圧
変形が起きやすく、本発明によって歪変形を与えるため
のCIP加圧圧力は150〜500MPaであれば十分
である。しかし、この場合も加圧時間については装置的
に確実ならしめるためには、少なくとも5分間この圧力
に保持すれば実用化することができる。なお、これらの
材料での実施に当って圧力幅があるとは言え、500M
Paを越えた場合には、後工程でのHIPにおいて適合
しにくゝなるのでCIP加圧圧力は後工程であるHIP
との関係に於いて適用しなければならない。
N, which is also known as a shape memory material,
In the case of the iTi intermetallic compound, pressure deformation is more likely to occur than in TiAl powder, and the CIP pressure pressure of 150 to 500 MPa for imparting strain deformation according to the present invention is sufficient. However, also in this case, in order to ensure the pressurizing time in terms of the apparatus, it can be put to practical use if it is kept at this pressure for at least 5 minutes. It should be noted that although there is a pressure range for implementation with these materials,
If it exceeds Pa, it will not be suitable for HIP in the subsequent process, so the CIP pressurizing pressure will be HIP in the subsequent process.
Must be applied in relation to.

【0011】[0011]

【実施例】【Example】

実施例1 TiとAlの化学成分比が原子比で52:48のTiA
1金属間化合物を回転電極法により球形粉末とし、その
平均粒径が220μmのものをゴム製容器に充填し、表
1の各条件でCIP処理を行った。処理された金属粉末
を容器から取り出して、純チタン製カプセルに真空封入
し、1.323Kの温度で180MPaの圧力の下に3
時間保持のHIP処理を行った。HIP後の材料は、純
チタンの容器部分を切削除去した後、組織観察により金
属粉末のCIPの圧力、200MPa以上において組織
の微細化効果が見られ、更に、600MPaまで上げる
と金属粉末に割れを生じ異形粒子が増大し、HIPカプ
セルへの充填密度不均一のため不適となった。従って、
表1からわかるように、TiAl金属間化合物の場合は
CIPの圧力は200〜500MPa、加圧保持時間を
5分以上とすることが最適であり、この範囲での適用に
よってHIP後の組織においての微細化効果が得られる
ことを示している。こうように軽い耐熱材料として、し
かも特異な機能をもった材料であるTiAl金属間化合
物は鋳造成形においては割れが発生し歩留りが悪く、鋳
造、圧延成形が殆んど不可能であるが、本発明によっ
て、工業的に実現可能となった。
Example 1 TiA having a chemical composition ratio of Ti and Al of 52:48 in atomic ratio.
One intermetallic compound was made into a spherical powder by a rotating electrode method, and the one having an average particle diameter of 220 μm was filled in a rubber container and subjected to CIP treatment under each condition of Table 1. The treated metal powder was taken out of the container, vacuum-encapsulated in a pure titanium capsule, and heated under a pressure of 180 MPa at a temperature of 1.323 K for 3 times.
A HIP treatment for holding time was performed. As for the material after HIP, after cutting and removing the container part of pure titanium, the microscopic effect of the structure was observed at the pressure of CIP of the metal powder, 200 MPa or more by observing the structure. The resulting irregular shaped particles increased and became unsuitable due to uneven packing density in the HIP capsule. Therefore,
As can be seen from Table 1, in the case of the TiAl intermetallic compound, it is optimal that the CIP pressure is 200 to 500 MPa and the pressure holding time is 5 minutes or longer. It shows that a miniaturization effect can be obtained. As described above, the TiAl intermetallic compound, which is a material having a unique function as a light heat resistant material, has a poor yield due to cracking in casting, and casting and rolling are almost impossible. The invention has made it industrially feasible.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2 NiとTiの化学成分比が原子比で50.7:49.3
を有するNiTi金属間化合物を回転電極法により球形
粉末とし、その平均粒径が220μmのものをゴム製容
器に充填し、表2に示す各条件でCIP処理を行った。
処理された金属粉末を容器から取り出して、純チタン製
カプセルに真空封入し、1.523Kの温度で180M
Paの圧力の下に2時間保持のHIP処理を行った。H
IP後の材料は、純チタンの容器部分を切削除去した
後、組織観察により金属粉末のCIP処理条件による組
織の微細化効果を確認した。その結果、CIPの圧力、
150MPa以上においてHIP材の組織微細化が得ら
れ、更に、600MPaまで上げると金属粉末の欠けが
生じHIPに不適となり、また、650MPaでは一部
に粒子の欠けにもとずき、ブロック状に成形された。よ
って、表2からわかるように、NiTi金属間化合物の
場合はCIPの圧力は150〜500MPa、加圧保持
時間を5分以上とすることが最適であリ、この範囲での
適用によってHIP後の組織においての微細化効果が得
られることを示している。こうように形状記憶並びに超
弾性材料として、しかも難加工材料であるNiTi金属
間化合物においてもTiAl金属間化合物と同様、鋳造
成形においては割れが発生し歩留りが悪く、鋳造、圧延
成形が殆んど不可能であるが、本発明によつて、工業的
に実現可能となった。
Example 2 The chemical composition ratio of Ni and Ti was 50.7: 49.3 in atomic ratio.
The NiTi intermetallic compound having the formula (1) was made into a spherical powder by the rotating electrode method, the average particle size of which was 220 μm was filled in a rubber container, and CIP treatment was performed under the respective conditions shown in Table 2.
The treated metal powder is taken out of the container, vacuum-encapsulated in a pure titanium capsule, and 180M at a temperature of 1.523K.
The HIP treatment was carried out under a pressure of Pa for 2 hours. H
As for the material after IP, the effect of refining the structure by the CIP processing conditions of the metal powder was confirmed by observing the structure after cutting and removing the container part of pure titanium. As a result, CIP pressure,
Microstructure of HIP material can be obtained at 150MPa or more, and further increase to 600MPa causes metal powder chipping, which is not suitable for HIP. At 650MPa, partly due to particle chipping, it is formed into a block shape. Was done. Therefore, as can be seen from Table 2, in the case of the NiTi intermetallic compound, it is optimal that the CIP pressure is 150 to 500 MPa and the pressure holding time is 5 minutes or longer. It shows that the miniaturization effect in the tissue can be obtained. Like the TiAl intermetallic compound, which is a shape-memory and superelastic material, and which is a difficult-to-process material, cracks occur in casting and yield is poor, and casting and rolling are almost impossible. Although impossible, the present invention has made it industrially feasible.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】以上述べたように、本発明は粉末成形法
等に使用されている既存のCIP装置をそのまま金属粉
末の歪付加を目的として使用し、新しい設備を設ける必
要もなく、しかもCIP技術の特徴である等方圧加圧を
利用することにより粉末粒子へ確実に変形を作用せしめ
る点での安定性と操作の非特異性とをもっており、極め
て低コストによってその効果を達成でき、かつ、成形加
工材の品種の拡大を図ることが出来る実用性の高いもの
であり、工業上の効果は著しいものがある。
As described above, according to the present invention, the existing CIP apparatus used in the powder molding method or the like is used as it is for the purpose of adding strain to the metal powder, and it is not necessary to install new equipment. By utilizing isotropic pressure, which is a feature of the technology, it has stability and operational non-specificity in that the powder particles can be reliably deformed, and its effect can be achieved at extremely low cost, and In addition, it is a highly practical material that can be used for expanding the variety of processed materials and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における金属粉末相互の接触状態を示す
電子顕微鏡写真の模式図、
FIG. 1 is a schematic diagram of an electron micrograph showing a contact state between metal powders in the present invention,

【図2】本発明に係るCIP処理により金属粉末に歪を
与えた場合の電子顕微鏡写真の模式図、
FIG. 2 is a schematic diagram of an electron micrograph showing a case where strain is applied to a metal powder by the CIP treatment according to the present invention,

【図3】従来でのCIP処理をしない場合の電子顕微鏡
写真の模式図である。
FIG. 3 is a schematic view of an electron microscope photograph when the conventional CIP process is not performed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間等方圧加圧により金属粉末から成形
体を製造するその金属粉末において、該金属粉末の粒子
に冷間等方圧加圧加工を施すことを特徴とする熱間等方
圧加圧加工用金属粉末の製造方法。
1. A metal powder for producing a compact from a metal powder by hot isostatic pressing, characterized in that particles of the metal powder are subjected to cold isostatic pressing. A method for producing metal powder for pressurizing and pressing.
JP4017770A 1992-02-03 1992-02-03 Production of metal powder for hot isostatic pressing Withdrawn JPH05214402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017770A JPH05214402A (en) 1992-02-03 1992-02-03 Production of metal powder for hot isostatic pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017770A JPH05214402A (en) 1992-02-03 1992-02-03 Production of metal powder for hot isostatic pressing

Publications (1)

Publication Number Publication Date
JPH05214402A true JPH05214402A (en) 1993-08-24

Family

ID=11952955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017770A Withdrawn JPH05214402A (en) 1992-02-03 1992-02-03 Production of metal powder for hot isostatic pressing

Country Status (1)

Country Link
JP (1) JPH05214402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
JPWO2004106587A1 (en) * 2003-05-29 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method, discharge surface treatment apparatus, and discharge surface treatment method
JP4523545B2 (en) * 2003-05-29 2010-08-11 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method

Similar Documents

Publication Publication Date Title
JP3839493B2 (en) Method for producing member made of Ti-Al intermetallic compound
KR101237122B1 (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
US4066449A (en) Method for processing and densifying metal powder
JP5697604B2 (en) Manufacturing method of metal parts
CN104726803B (en) A method of preparing the nano crystal metal material of the transgranular precipitated phase containing nano-scale
JP5758204B2 (en) Titanium alloy member and manufacturing method thereof
JPS60228659A (en) Malleable improvement for nickel base superalloy
CN110000387A (en) A kind of big specification fine grain tungsten bar and its two rolling preparation methods
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
CN110983152B (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
JPH05214402A (en) Production of metal powder for hot isostatic pressing
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
US4832760A (en) Method for refining microstructures of prealloyed titanium powder compacts
JP2019516021A (en) Manufacturing method using powder metallurgy of a member composed of titanium or titanium alloy
Chandran et al. Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing
JPS6360265A (en) Production of aluminum alloy member
JPH02259029A (en) Manufacture of aluminide
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
KR100856758B1 (en) Manufacturing method of the iridium and ruthenium sputtering target having a fine grain size
JPH03155427A (en) Hot forging method for titanium alloy sintered material
JP3551355B2 (en) Ru target and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518