JPH05206801A - Delay circuit - Google Patents

Delay circuit

Info

Publication number
JPH05206801A
JPH05206801A JP4012137A JP1213792A JPH05206801A JP H05206801 A JPH05206801 A JP H05206801A JP 4012137 A JP4012137 A JP 4012137A JP 1213792 A JP1213792 A JP 1213792A JP H05206801 A JPH05206801 A JP H05206801A
Authority
JP
Japan
Prior art keywords
resistor
circuit
capacitor
thin film
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4012137A
Other languages
Japanese (ja)
Inventor
Eiichi Hasegawa
栄一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Precision Circuits Inc
Original Assignee
Nippon Precision Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Precision Circuits Inc filed Critical Nippon Precision Circuits Inc
Priority to JP4012137A priority Critical patent/JPH05206801A/en
Publication of JPH05206801A publication Critical patent/JPH05206801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pulse Circuits (AREA)

Abstract

PURPOSE:To obtain a highly precise resistance value, and to obtain the delay circuit of high precision by forming a transistor circuit and a resistor on the same silicon substrate, and simultaneously, forming the resistor of a thin film resistor. CONSTITUTION:The resistor 1 for delay and the transistor circuit are formed on the same silicon substrate, and simultaneously, the resistor is formed of the thin film resistor. Namely, the resistor 1 consisting of the thin film resistor and the transistor circuit consisting of MOS transistors 3 to 8, CMOS inverters 9, 10, the CMOS inverter 11 of a Schmitt trigger type, and a CMOS NAND gate 12 are formed on the same substrate (namely, in the same integrated circuit). The resistor 1 and a capacitor 2 are connected through a constant current circuit constituted of the MOS transistors 5, 6, and an input signal is delayed on the basis of a time constant determined by the resistor 1 and the capacitor 2. Henceforth, the MOS transistor 8 too is turned into an ON state, and the electric charge of the capacitor 2 is discharged through this.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遅延回路に関する。FIELD OF THE INVENTION The present invention relates to a delay circuit.

【0002】[0002]

【従来の技術】従来、CRの時定数を利用した遅延回路
では、遅延用の抵抗とトランジスタ回路とを同一のシリ
コン基板に集積化する場合、遅延用の抵抗には拡散抵抗
を用いていた。図5は、遅延用の抵抗に拡散抵抗を用い
た場合のシリコン集積回路の断面図である。61はシリ
コン基板、62は低濃度拡散層、63はフィールド絶縁
層、64はコンタクト用の高濃度拡散層、65は層間絶
縁層、66は引出し用電極である。すなわち、低濃度拡
散層62を拡散抵抗として用いている。
2. Description of the Related Art Conventionally, in a delay circuit using a CR time constant, when a delay resistor and a transistor circuit are integrated on the same silicon substrate, a diffused resistor is used as the delay resistor. FIG. 5 is a cross-sectional view of a silicon integrated circuit in which a diffused resistor is used as a delay resistor. Reference numeral 61 is a silicon substrate, 62 is a low concentration diffusion layer, 63 is a field insulating layer, 64 is a high concentration diffusion layer for contact, 65 is an interlayer insulating layer, and 66 is an extraction electrode. That is, the low concentration diffusion layer 62 is used as the diffusion resistance.

【0003】[0003]

【発明が解決しようとする課題】拡散抵抗では抵抗値自
体のバラツキや抵抗値の温度変化が大きく(総合的な抵
抗値のバラツキは±40%程度)、高精度の抵抗を形成
することが困難である。したがって、遅延用の抵抗とト
ランジスタ回路とを同一のシリコン基板に集積化する場
合、精度のよい遅延回路を実現することができなかっ
た。
With diffused resistors, variations in the resistance value itself and changes in the resistance value with temperature are large (total variation in resistance value is about ± 40%), and it is difficult to form a highly accurate resistor. Is. Therefore, when the delay resistor and the transistor circuit are integrated on the same silicon substrate, an accurate delay circuit cannot be realized.

【0004】本発明の目的は、高精度の抵抗をトランジ
スタ回路が形成されたシリコン基板に集積化し、精度の
よい遅延回路を得ることである。
An object of the present invention is to integrate a high-precision resistor on a silicon substrate on which a transistor circuit is formed to obtain a highly accurate delay circuit.

【0005】[0005]

【課題を解決するための手段】本発明における遅延回路
は、遅延用の抵抗とトランジスタ回路とを同一のシリコ
ン基板上に形成するとともに、遅延用の抵抗を薄膜抵抗
を用いて形成したものである。
In the delay circuit of the present invention, the delay resistor and the transistor circuit are formed on the same silicon substrate, and the delay resistor is formed by using a thin film resistor. ..

【0006】[0006]

【実施例】図1は、本発明における遅延回路の第1実施
例を示した電気回路図である。1は薄膜抵抗を用いて形
成された抵抗、2はキャパシタ、3〜8はMOSトラン
ジスタ、9および10はCMOSインバ―タ、11はシ
ュミットトリガタイプのCMOSインバ―タ、12はC
MOSナンドゲートである。抵抗1とトランジスタ回路
(MOSトランジスタ3〜8、CMOSインバ―タ9お
よび10、シュミットトリガタイプのCMOSインバ―
タ11並びにCMOSナンドゲート12)とは、同一の
シリコン基板上、すなわち同一の集積回路内に形成され
ている。キャパシタ2は、上記トランジスタ回路が形成
された集積回路内に形成してもよいし、集積回路外に外
付けしてもよい。
1 is an electric circuit diagram showing a first embodiment of a delay circuit according to the present invention. 1 is a resistor formed by using a thin film resistor, 2 is a capacitor, 3 to 8 are MOS transistors, 9 and 10 are CMOS inverters, 11 is a Schmitt trigger type CMOS inverter, and 12 is C.
It is a MOS NAND gate. Resistor 1 and transistor circuit (MOS transistors 3 to 8, CMOS inverters 9 and 10, Schmitt trigger type CMOS inverter)
The gate 11 and the CMOS NAND gate 12) are formed on the same silicon substrate, that is, in the same integrated circuit. The capacitor 2 may be formed inside the integrated circuit in which the transistor circuit is formed, or may be externally attached outside the integrated circuit.

【0007】図2は、図1の遅延回路の動作を示したタ
イミングチャートである。以下、このタイミングチャー
トを用いて動作を説明する。
FIG. 2 is a timing chart showing the operation of the delay circuit of FIG. The operation will be described below with reference to this timing chart.

【0008】まず、入力端子“IN”が論理値“0”の
ときには、MOSトランジスタ3および7がオン状態、
MOSトランジスタ4、6および8がオフ状態となって
いる。したがって、キャパシタ2にはMOSトランジス
タ3を通して電荷が充電されており、また、MOSトラ
ンジスタ5および6で構成される定電流回路はオフ状態
となっている。
First, when the input terminal "IN" has the logical value "0", the MOS transistors 3 and 7 are turned on,
MOS transistors 4, 6 and 8 are off. Therefore, the capacitor 2 is charged with electric charge through the MOS transistor 3, and the constant current circuit constituted by the MOS transistors 5 and 6 is in the off state.

【0009】入力端子“IN”が論理値“1”になる
と、MOSトランジスタ4がオン状態、MOSトランジ
スタ3および7がオフ状態となる。その結果、抵抗1を
通してMOSトランジスタ5に定電流が流れ、キャパシ
タ2の電荷がMOSトランジスタ6を通して放電され
る。そして、キャパシタ2の電位がシュミットトリガC
MOSインバ―タ11の反転電位よりも低くなると、シ
ュミットトリガCMOSインバ―タ11の出力が反転し
て論理値“1”となる。すなわち、抵抗1とキャパシタ
2とはMOSトランジスタ5および6で構成される定電
流回路を介して間接的に結合されているため、入力信号
は抵抗1とキャパシタ2とで定まる時定数に基いて遅延
されるわけである。以後、MOSトランジスタ8もオン
状態となり、キャパシタ2の電荷はMOSトランジスタ
8を通して急激に放電される。
When the input terminal "IN" becomes the logical value "1", the MOS transistor 4 is turned on and the MOS transistors 3 and 7 are turned off. As a result, a constant current flows through the MOS transistor 5 through the resistor 1 and the charge of the capacitor 2 is discharged through the MOS transistor 6. The potential of the capacitor 2 is the Schmitt trigger C
When it becomes lower than the inversion potential of the MOS inverter 11, the output of the Schmitt trigger CMOS inverter 11 is inverted and becomes the logical value "1". That is, since the resistor 1 and the capacitor 2 are indirectly coupled via the constant current circuit composed of the MOS transistors 5 and 6, the input signal is delayed based on the time constant determined by the resistor 1 and the capacitor 2. It is done. After that, the MOS transistor 8 is also turned on, and the charge of the capacitor 2 is rapidly discharged through the MOS transistor 8.

【0010】入力端子“IN”が論理値が再び“0”に
なると、キャパシタ2にはMOSトランジスタ3を通し
て電荷が充電される。そして、キャパシタ2の電位がシ
ュミットトリガCMOSインバ―タ11の反転電位より
も高くなると、シュミットトリガCMOSインバ―タ1
1の出力が反転して論理値“0”となる。
When the logic value of the input terminal "IN" becomes "0" again, the capacitor 2 is charged with the electric charge through the MOS transistor 3. When the potential of the capacitor 2 becomes higher than the inversion potential of the Schmitt trigger CMOS inverter 11, the Schmitt trigger CMOS inverter 1
The output of 1 is inverted and becomes a logical value "0".

【0011】図3は図1の抵抗1(薄膜抵抗)の構成を
示した断面図であり、図4は図1のトランジスタ回路
(MOSトランジスタ3〜8、CMOSインバ―タ9お
よび10、シュミットトリガタイプのCMOSインバ―
タ11並びにCMOSナンドゲート12)に用いるMO
Sトランジスタの構成を示した断面図である。抵抗1と
トランジスタ回路とは同一のシリコン基板上に形成され
ている。21はN型のシリコン基板、22はP型の低濃
度拡散層、23はゲ―ト絶縁層、24はフィ―ルド絶縁
層(形成材料は酸化シリコン)、25はゲ―ト電極(形
成材料はモリブデン等)、26はソ―ス/ドレインを形
成する高濃度拡散層である。27は薄膜抵抗層であり、
NiCr系やSiCr系の薄膜抵抗材料を用いて形成さ
れている。28は層間絶縁層(形成材料は酸化シリコ
ン)である。29はソ―ス/ドレイン用引出し電極およ
び薄膜抵抗用引出し電極であり、両者はアルミニウムを
用いて同一の工程で形成されている。薄膜抵抗層27
は、従来の拡散抵抗に比べて高精度の抵抗値のものが形
成できるため(総合的な抵抗値のバラツキは±5%程
度)、精度のよい遅延回路を実現することができる。
FIG. 3 is a sectional view showing the structure of the resistor 1 (thin film resistor) of FIG. 1, and FIG. 4 is the transistor circuit of FIG. 1 (MOS transistors 3 to 8, CMOS inverters 9 and 10, Schmitt trigger). Type of CMOS Inver
MO to be used for the memory 11 and the CMOS NAND gate 12)
It is sectional drawing which showed the structure of the S transistor. The resistor 1 and the transistor circuit are formed on the same silicon substrate. Reference numeral 21 is an N-type silicon substrate, 22 is a P-type low-concentration diffusion layer, 23 is a gate insulating layer, 24 is a field insulating layer (silicon oxide is a forming material), and 25 is a gate electrode (a forming material). Is a molybdenum or the like), and 26 is a high concentration diffusion layer forming a source / drain. 27 is a thin film resistance layer,
It is formed by using a NiCr-based or SiCr-based thin film resistance material. Reference numeral 28 is an interlayer insulating layer (forming material is silicon oxide). Reference numeral 29 denotes a source / drain lead-out electrode and a thin-film resistor lead-out electrode, both of which are formed of aluminum in the same step. Thin film resistance layer 27
Since it is possible to form a resistor having a resistance value with a higher precision than that of the conventional diffused resistor (the total variation in the resistance value is about ± 5%), it is possible to realize an accurate delay circuit.

【0012】図6は、本発明における遅延回路の第2実
施例を示した電気回路図である。41は薄膜抵抗を用い
て形成された抵抗、42はキャパシタ、43はMOSト
ランジスタ、44および45はCMOSインバ―タであ
る。抵抗41とトランジスタ回路(MOSトランジスタ
43、CMOSインバ―タ44および45)とは、同一
のシリコン基板上、すなわち同一の集積回路内に形成さ
れている。キャパシタ42は、上記トランジスタ回路が
形成された集積回路内に形成してもよいし、集積回路外
に外付けしてもよい。抵抗41(薄膜抵抗)の構成およ
びトランジスタ回路に用いるMOSトランジスタの構成
は、上記第1実施例と同様である(図3および図4参
照)。本実施例においても、遅延用の抵抗41に薄膜抵
抗を用いているので、上記第1実施例と同様の効果を得
ることができる。
FIG. 6 is an electric circuit diagram showing a second embodiment of the delay circuit according to the present invention. Reference numeral 41 is a resistor formed by using a thin film resistor, 42 is a capacitor, 43 is a MOS transistor, and 44 and 45 are CMOS inverters. The resistor 41 and the transistor circuit (MOS transistor 43, CMOS inverters 44 and 45) are formed on the same silicon substrate, that is, in the same integrated circuit. The capacitor 42 may be formed inside the integrated circuit in which the transistor circuit is formed, or may be externally attached outside the integrated circuit. The configuration of the resistor 41 (thin film resistor) and the configuration of the MOS transistor used in the transistor circuit are the same as those in the first embodiment (see FIGS. 3 and 4). Also in this embodiment, since the thin film resistor is used as the delay resistor 41, the same effect as that of the first embodiment can be obtained.

【0013】[0013]

【発明の効果】本発明では、遅延用の抵抗を薄膜抵抗を
用いて形成したため、高精度の抵抗値が得られ、精度の
よい遅延回路を実現することができる。
According to the present invention, since the resistance for delay is formed by using the thin film resistance, the resistance value with high accuracy can be obtained and the delay circuit with high accuracy can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における遅延回路の第1実施例を示した
電気回路図である。
FIG. 1 is an electric circuit diagram showing a first embodiment of a delay circuit according to the present invention.

【図2】図1の遅延回路の動作を示したタイミングチャ
ートである。
FIG. 2 is a timing chart showing the operation of the delay circuit of FIG.

【図3】図1の抵抗1の構成を示した断面図である。3 is a cross-sectional view showing a configuration of a resistor 1 of FIG.

【図4】図1のトランジスタ回路を構成するMOSトラ
ンジスタの構成を示した断面図である。
FIG. 4 is a cross-sectional view showing a configuration of a MOS transistor that constitutes the transistor circuit of FIG.

【図5】従来例を示したものであり、遅延用の抵抗に拡
散抵抗を用いた場合のシリコン集積回路の断面図であ
る。
FIG. 5 shows a conventional example, and is a cross-sectional view of a silicon integrated circuit in which a diffused resistor is used as a delay resistor.

【図6】本発明における遅延回路の第2実施例を示した
電気回路図である。
FIG. 6 is an electric circuit diagram showing a second embodiment of the delay circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1……抵抗 2……キャパシタ 3〜8……MOSトランジスタ 9、10……CMOSインバ―タ 11……シュミットトリガタイプのCMOSインバ―タ 12……CMOSナンドゲート 21……シリコン基板 27……薄膜抵抗層 41……抵抗 42……キャパシタ 43……MOSトランジスタ 44、45……CMOSインバ―タ 1 ... Resistor 2 ... Capacitor 3-8 ... MOS transistor 9, 10 ... CMOS inverter 11 ... Schmitt trigger type CMOS inverter 12 ... CMOS NAND gate 21 ... Silicon substrate 27 ... Thin film resistor Layer 41 ... Resistor 42 ... Capacitor 43 ... MOS transistor 44, 45 ... CMOS inverter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 抵抗とキャパシタと上記キャパシタの電
荷を充放電するトランジスタ回路とを有し、上記抵抗と
上記キャパシタとで定まる時定数に基いて遅延信号を生
じる遅延回路において、 上記トランジスタ回路および上記抵抗を同一のシリコン
基板上に形成するとともに、上記抵抗を薄膜抵抗を用い
て形成したことを特徴とする遅延回路。
1. A delay circuit having a resistor, a capacitor, and a transistor circuit for charging and discharging the charge of the capacitor, wherein the delay circuit generates a delay signal based on a time constant determined by the resistor and the capacitor. A delay circuit characterized in that the resistors are formed on the same silicon substrate and the resistors are formed by using thin film resistors.
JP4012137A 1992-01-27 1992-01-27 Delay circuit Pending JPH05206801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4012137A JPH05206801A (en) 1992-01-27 1992-01-27 Delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4012137A JPH05206801A (en) 1992-01-27 1992-01-27 Delay circuit

Publications (1)

Publication Number Publication Date
JPH05206801A true JPH05206801A (en) 1993-08-13

Family

ID=11797130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4012137A Pending JPH05206801A (en) 1992-01-27 1992-01-27 Delay circuit

Country Status (1)

Country Link
JP (1) JPH05206801A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133977A1 (en) * 2017-12-29 2019-07-04 Texas Instruments Incorporated Delay based comparator
US11309903B1 (en) 2020-12-23 2022-04-19 Texas Instruments Incorporated Sampling network with dynamic voltage detector for delay output
US11316525B1 (en) 2021-01-26 2022-04-26 Texas Instruments Incorporated Lookup-table-based analog-to-digital converter
US11316526B1 (en) 2020-12-18 2022-04-26 Texas Instruments Incorporated Piecewise calibration for highly non-linear multi-stage analog-to-digital converter
US11387840B1 (en) 2020-12-21 2022-07-12 Texas Instruments Incorporated Delay folding system and method
US11424758B2 (en) 2018-12-31 2022-08-23 Texas Instruments Incorporated Conversion and folding circuit for delay-based analog-to-digital converter system
US11438001B2 (en) 2020-12-24 2022-09-06 Texas Instruments Incorporated Gain mismatch correction for voltage-to-delay preamplifier array
US11595053B2 (en) 2018-12-12 2023-02-28 Texas Instruments Incorporated Analog-to-digital converter with interpolation
US11881867B2 (en) 2021-02-01 2024-01-23 Texas Instruments Incorporated Calibration scheme for filling lookup table in an ADC
US11962318B2 (en) 2021-01-12 2024-04-16 Texas Instruments Incorporated Calibration scheme for a non-linear ADC

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136129A (en) * 1982-02-08 1983-08-13 Nippon Telegr & Teleph Corp <Ntt> Waveform conversion circuit
JPS6235551A (en) * 1985-08-08 1987-02-16 Nec Corp Constant-current source circuit of hybrid integrated circuit
JPS62142403A (en) * 1985-12-17 1987-06-25 Seiko Epson Corp Source follower circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136129A (en) * 1982-02-08 1983-08-13 Nippon Telegr & Teleph Corp <Ntt> Waveform conversion circuit
JPS6235551A (en) * 1985-08-08 1987-02-16 Nec Corp Constant-current source circuit of hybrid integrated circuit
JPS62142403A (en) * 1985-12-17 1987-06-25 Seiko Epson Corp Source follower circuit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133977A1 (en) * 2017-12-29 2019-07-04 Texas Instruments Incorporated Delay based comparator
US10958258B2 (en) 2017-12-29 2021-03-23 Texas Instruments Incorporated Delay based comparator
US11316505B2 (en) 2017-12-29 2022-04-26 Texas Instruments Incorporated Delay based comparator
US11595053B2 (en) 2018-12-12 2023-02-28 Texas Instruments Incorporated Analog-to-digital converter with interpolation
US11424758B2 (en) 2018-12-31 2022-08-23 Texas Instruments Incorporated Conversion and folding circuit for delay-based analog-to-digital converter system
US11316526B1 (en) 2020-12-18 2022-04-26 Texas Instruments Incorporated Piecewise calibration for highly non-linear multi-stage analog-to-digital converter
US11387840B1 (en) 2020-12-21 2022-07-12 Texas Instruments Incorporated Delay folding system and method
US11309903B1 (en) 2020-12-23 2022-04-19 Texas Instruments Incorporated Sampling network with dynamic voltage detector for delay output
US11438001B2 (en) 2020-12-24 2022-09-06 Texas Instruments Incorporated Gain mismatch correction for voltage-to-delay preamplifier array
US11962318B2 (en) 2021-01-12 2024-04-16 Texas Instruments Incorporated Calibration scheme for a non-linear ADC
US11316525B1 (en) 2021-01-26 2022-04-26 Texas Instruments Incorporated Lookup-table-based analog-to-digital converter
US11881867B2 (en) 2021-02-01 2024-01-23 Texas Instruments Incorporated Calibration scheme for filling lookup table in an ADC

Similar Documents

Publication Publication Date Title
JPH0654864B2 (en) Signal delay circuit
JPH05206801A (en) Delay circuit
JPH0159772B2 (en)
JP2003318710A (en) Delay circuit and semiconductor integrated circuit device
JPH08242148A (en) Power on reset circuit
JPH0152906B2 (en)
JPH05206731A (en) Cr oscillation circuit
JPH0535927B2 (en)
US4503345A (en) MOS/LSI Time delay circuit
JPH0410159B2 (en)
JP2507007B2 (en) Semiconductor device
JP2763788B2 (en) Level shift circuit
JPS63217820A (en) Cmos delay circuit
JP3124730B2 (en) Chopper comparator circuit
JP2535801B2 (en) Oscillator circuit
JPS60253254A (en) Automatic setting device for mos transistor threshold value
JP2544157B2 (en) Semiconductor integrated circuit device
JPH05136350A (en) Logic circuit and semiconductor device
JPS6243367B2 (en)
JPS63312715A (en) Delay circuit
JPH0474892B2 (en)
JPS62222713A (en) Cmos inverter circuit for delay
JPS63119251A (en) C-mos field effect transistor
JPH05204479A (en) Constant voltage circuit
JPH0421214B2 (en)