JPH05199779A - Generator - Google Patents

Generator

Info

Publication number
JPH05199779A
JPH05199779A JP762992A JP762992A JPH05199779A JP H05199779 A JPH05199779 A JP H05199779A JP 762992 A JP762992 A JP 762992A JP 762992 A JP762992 A JP 762992A JP H05199779 A JPH05199779 A JP H05199779A
Authority
JP
Japan
Prior art keywords
heat
heating tank
alkali metal
solid electrolyte
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP762992A
Other languages
Japanese (ja)
Inventor
Takeshi Hiranuma
平沼  健
Moriaki Tsukamoto
守昭 塚本
Shigehiro Shimoyashiki
重広 下屋敷
Hisamichi Inoue
久道 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP762992A priority Critical patent/JPH05199779A/en
Publication of JPH05199779A publication Critical patent/JPH05199779A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To increase safety with temperature and pressure of a heating bath of an alkaline metal thermoelectric power generation device and generation output thereof become abnormal and to enhance reliability of the generation device. CONSTITUTION:A heating bath 3 which is filled with a high-temperature alkaline metal 7 which is screened by a solid electrolyte 1 and a condensation bath 4 which receives the alkaline metal 7 after generation are connected thermally by variable conductance heat pipe 21. A heat-reception part of the heat pipe 21 is laid out within the heating bath 3 and a cooling part is laid out within the condensation bath 4. When the amount of heat of the heating bath 3 becomes excessive, the heat of the heating bath 3 escapes to the condensation bath 4 through the heat pipe 21. Therefore, when a large amount of heat is accumulated in the heating bath 3 abruptly due to a rapid load fluctuation, etc., the heat is released to the outside of the heating bath 3, thus preventing a rapid charge in temperature and pressure which is generated at the joint between the heating bath 3 and the solid electrolyte 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電装置に係り、特に、
宇宙機器用の電源として好適なアルカリ金属熱電発電装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator, and in particular,
The present invention relates to an alkali metal thermoelectric generator suitable as a power source for space equipment.

【0002】[0002]

【従来の技術】アルカリ金属熱電発電装置(Alkali Met
al thermo Electrical Convertor:以下、AMTECと
いう。)の発電原理と、その基本構成は、特公昭47−
6660号公報に開示されている。このAMTECは、
アルカリ金属とアルカリ金属に対して導電性をもつ固体
電解質とを組み合わせて、アルカリ金属の熱エネルギを
電気エネルギに直接変換する直接熱電変換装置であり、
高温のアルカリ金属と低温のアルカリ金属の蒸気圧差を
発電の駆動力とし、特徴として20〜35%の高い熱電
変換効率があげられる。
2. Description of the Related Art Alkali Met
al thermo Electrical Convertor: Hereinafter referred to as AMTEC. The power generation principle and the basic configuration are described in JP-B-47-
It is disclosed in Japanese Patent No. 6660. This AMTEC is
A direct thermoelectric conversion device for directly converting the heat energy of an alkali metal into an electric energy by combining an alkali metal and a solid electrolyte having conductivity with respect to the alkali metal,
The vapor pressure difference between the high-temperature alkali metal and the low-temperature alkali metal is used as the driving force for power generation, and is characterized by a high thermoelectric conversion efficiency of 20 to 35%.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、その高
い熱電変換効率ゆえに、急激な負荷変動があったとき問
題がある。例えば、突然出力回路が開放された場合、そ
れまで電気エネルギに変換されていた熱エネルギが加熱
槽に放出されるため、加熱槽が急激に温度上昇したり、
その温度上昇で、発電の作動媒体であるアルカリ金属の
蒸気圧が急激に増大してしまうという問題がある。その
ため、急激な負荷変動があったときは高温の加熱槽,固
体電解質,この両者の接合部やその他の加熱槽に付加さ
れる構成要素に過大熱応力や圧力が加わり、装置の信頼
性を損なうことになる。
However, due to its high thermoelectric conversion efficiency, there is a problem when there is a sudden load change. For example, when the output circuit is suddenly opened, the heat energy that had been converted to electrical energy is released to the heating tank, causing the temperature of the heating tank to rise rapidly,
There is a problem that the vapor pressure of the alkali metal, which is the working medium for power generation, increases sharply due to the temperature rise. Therefore, when there is a sudden change in load, excessive thermal stress and pressure are applied to the high temperature heating tank, the solid electrolyte, the joint between the two and other components added to the heating tank, and the reliability of the device is impaired. It will be.

【0004】本発明の目的は、急激な負荷変動があった
ときでも過大な熱応力の発生を回避し、信頼性の高いア
ルカリ金属熱電発電装置を提供することにある。
It is an object of the present invention to provide a highly reliable alkali metal thermoelectric generator which avoids the occurrence of excessive thermal stress even when there is a sudden load change.

【0005】[0005]

【課題を解決するための手段】上記目的は、発電に関与
する作動媒体にて満たされ該作動媒体に対して導電性を
持つ固体電解質にて遮蔽された加熱槽と、前記固体電解
質の前記作動媒体に接する側と反対側に設けられた多孔
性電極と、前記固体電解質と前記多孔性電極とを透過し
た前記作動媒体を凝縮し蓄積する凝縮槽とを備える熱電
変換にて発電を行う発電装置において、前記加熱槽の温
度が設定温度以上になったとき該加熱槽内の熱を外部に
輸送する熱交換器を設けることで、達成される。
The above object is to provide a heating tank filled with a working medium that participates in power generation and shielded by a solid electrolyte having conductivity with respect to the working medium, and the operation of the solid electrolyte. A power generation device that performs power generation by thermoelectric conversion, including a porous electrode provided on the side opposite to the side in contact with the medium, and a condensing tank that condenses and accumulates the working medium that has passed through the solid electrolyte and the porous electrode. In the above, it is achieved by providing a heat exchanger that transports the heat in the heating tank to the outside when the temperature of the heating tank reaches or exceeds the set temperature.

【0006】好適には、熱交換器は加熱槽の温度や圧力
やその両者のいずれかを因子として、加熱槽からの伝熱
量を制御する制御手段を設ける。
Preferably, the heat exchanger is provided with a control means for controlling the amount of heat transferred from the heating tank by using either the temperature or pressure of the heating tank or both of them as factors.

【0007】あるいは、熱交換器は発電装置の発電出力
を因子として、加熱槽からの伝熱量を制御する制御手段
を設ける。
Alternatively, the heat exchanger is provided with control means for controlling the amount of heat transferred from the heating tank by using the power generation output of the power generator as a factor.

【0008】更に好適には、熱交換器はヒートパイプに
する。
More preferably, the heat exchanger is a heat pipe.

【0009】更に好適には、ヒートパイプの作動流体を
発電装置の作動媒体と同一とすることで、加熱槽とヒー
トパイプを一体化した発電装置にする。
More preferably, the working fluid of the heat pipe is the same as the working medium of the power generation device, so that the heating tank and the heat pipe are integrated.

【0010】更に好適には、熱交換器は加熱槽から冷却
器や加熱槽やその両者のいずれかへ伝熱する熱交換器に
する。
More preferably, the heat exchanger is a heat exchanger that transfers heat from the heating tank to the cooler, the heating tank, or both.

【0011】[0011]

【作用】加熱槽の熱量が過大になったとき、熱交換器
は、加熱槽の熱を加熱槽の外に輸送することができる。
これにより、急激な負荷変動があり、本来発電に関与す
る熱が突然に加熱槽内に蓄積されたとき、この熱を外に
逃がし、加熱槽,固体電解質,その接合部などに起こる
に急激な温度,圧力変化が抑制される。
When the amount of heat in the heating tank becomes excessive, the heat exchanger can transfer the heat in the heating tank to the outside of the heating tank.
As a result, when there is a sudden load change and the heat originally involved in power generation is suddenly accumulated in the heating tank, this heat is released to the outside and suddenly occurs in the heating tank, solid electrolyte, its joints, etc. Changes in temperature and pressure are suppressed.

【0012】特に、加熱槽の温度や圧力により、加熱槽
からの伝熱量を制御することで、温度や圧力変化に対し
て追従性がよくなる。
Particularly, by controlling the amount of heat transferred from the heating tank by the temperature and pressure of the heating tank, the followability with respect to changes in temperature and pressure is improved.

【0013】また、発電装置の発電出力に応じて、加熱
槽からの伝熱量を制御することで、負荷変動が生じたと
きに起こる加熱槽内の温度,圧力変化を予測した対応が
可能になる。
Further, by controlling the amount of heat transfer from the heating tank according to the power generation output of the power generator, it is possible to predict the change in temperature and pressure in the heating tank that occurs when a load change occurs. ..

【0014】熱交換器をヒートパイプとすると、小型の
熱交換器で伝熱量を大きくできる。また、ヒートパイプ
の作動流体を発電装置の作動媒体と同一とし、加熱槽と
ヒートパイプを一体化することで、温度,圧力をすばや
く逃がすことが可能になる。
When the heat exchanger is a heat pipe, the heat transfer amount can be increased with a small heat exchanger. Further, by making the working fluid of the heat pipe the same as the working medium of the power generator and integrating the heating tank and the heat pipe, it becomes possible to quickly release the temperature and pressure.

【0015】このとき、熱交換器が、加熱槽から冷却器
や凝縮槽に熱を逃す構造とすると、発電装置内で熱交換
ができ、装置構成が簡易になる。
At this time, if the heat exchanger has a structure that allows heat to escape from the heating tank to the cooler or the condensation tank, heat can be exchanged in the power generator, and the structure of the device is simplified.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明の第1実施例に係るAMTECの
構成図である。加熱槽3の開口部はβ”−アルミナ等の
固体電解質1にて閉塞され、内部にアルカリ金属例えば
液体ナトリウム7が充填されている。固体電解質1の反
対側には多孔性金属でなる電極2が取り付けられてい
る。電極2からは電極リード線9Aが引き出され、液体
ナトリウム7からは電極リード線9Bが引き出され、こ
の両リード線9A,9B間に図示しない外部負荷が接続
される。尚、10は電極リード9Aをこの発電装置のハ
ウジングから電気的に絶縁するための絶縁物である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an AMTEC according to the first embodiment of the present invention. The opening of the heating tank 3 is closed with a solid electrolyte 1 such as β ″ -alumina, and is filled with an alkali metal such as liquid sodium 7. The opposite side of the solid electrolyte 1 is an electrode 2 made of a porous metal. An electrode lead wire 9A is drawn out from the electrode 2, an electrode lead wire 9B is drawn out from the liquid sodium 7, and an external load (not shown) is connected between the lead wires 9A and 9B. Reference numeral 10 is an insulator for electrically insulating the electrode lead 9A from the housing of the power generator.

【0017】多孔性電極2の重力方向下方には空間が形
成され、その下側に凝縮槽4が設けられている。空間は
ほぼ真空に保たれ、加熱槽3中の液体ナトリウム7が固
体電解質1と多孔性電極2とを通化した後、重力の作用
にて下方の凝縮槽4内に溜る構造となっている。凝縮槽
4と加熱槽3とは戻り管11にて接続され、電磁ポンプ
8の作用にて液体ナトリウム7は凝縮槽4から加熱槽3
に戻されるようになっている。また、加熱槽3には加熱
器5が取り付けられ加熱槽3内の液体ナトリウム7は加
熱され、凝縮槽4には冷却器6が取り付けられ凝縮槽3
内の液体ナトリウムは冷却されるようになっている。
A space is formed below the porous electrode 2 in the direction of gravity, and a condensing tank 4 is provided below the space. The space is kept substantially vacuum, and liquid sodium 7 in the heating tank 3 passes through the solid electrolyte 1 and the porous electrode 2 and then is accumulated in the lower condensation tank 4 by the action of gravity. The condensing tank 4 and the heating tank 3 are connected by a return pipe 11, and the liquid sodium 7 is moved from the condensing tank 4 to the heating tank 3 by the action of the electromagnetic pump 8.
It is supposed to be returned to. Further, the heating tank 3 is equipped with a heater 5, the liquid sodium 7 in the heating tank 3 is heated, and the condensing tank 4 is equipped with a cooler 6 and the condensing tank 3 is heated.
The liquid sodium inside is cooled.

【0018】本実施例のアルカリ金属熱電発電装置は、
加熱槽3と凝縮槽4とを熱交換器21にて接続してい
る。この熱交換器21を設けることにより、熱交換器用
に別の冷却系を付加する必要がなく、装置の簡素化が図
られる。本実施例の熱交換器21は、非凝縮性ガスを用
いた自己制御型可変コンダクタンスヒートパイプ(以
下、VCHPという。)である。このVCHP21は、
通常型のヒートパイプの放熱部にガスリザーバ22を設
け、ウイック23がその中まで連続して設けられてい
る。VCHP21内の放熱部(凝縮槽4側)には非凝縮
ガスが滞留しており、ヒートパイプの受熱温度によっ
て、非凝縮ガスの占める領域の長さが変わり、ヒートパ
イプの作動媒体の蒸気流が到達し放熱部として働く部分
の長さが調節されるようになっている。これにより、V
CHP21の受熱部(加熱槽3側)から放熱部への伝熱
量を制御でき、受熱部の温度を一定にするように動作す
る。本実施例では熱交換器としてVCHPを用いたが、
流体ループを用いた一般的な熱交換器でもよい。VCH
P21は、受熱部を加熱槽3の内部に、放熱部を凝縮槽
4の内部にもつように配置する。尚、VCHP21は、
受熱部を加熱槽3に、放熱部を凝縮槽4にそれぞれ熱的
に接合させればよく、その配置は加熱槽3,凝縮槽4の
構造に寄る。
The alkali metal thermoelectric generator of this embodiment is
The heating tank 3 and the condensing tank 4 are connected by a heat exchanger 21. By providing this heat exchanger 21, it is not necessary to add another cooling system for the heat exchanger, and the apparatus can be simplified. The heat exchanger 21 of the present embodiment is a self-controlled variable conductance heat pipe (hereinafter referred to as VCHP) using a non-condensable gas. This VCHP21 is
A gas reservoir 22 is provided in the heat radiating portion of a conventional heat pipe, and a wick 23 is continuously provided therein. The non-condensable gas stays in the heat radiating portion (condensing tank 4 side) in the VCHP 21, and the length of the area occupied by the non-condensing gas changes depending on the heat-receiving temperature of the heat pipe, so that the vapor flow of the working medium of the heat pipe changes. The length of the portion that reaches and acts as a heat dissipation portion is adjusted. This gives V
The amount of heat transferred from the heat receiving portion (heating tank 3 side) of the CHP 21 to the heat radiating portion can be controlled, and the temperature of the heat receiving portion is kept constant. Although VCHP was used as the heat exchanger in this embodiment,
A general heat exchanger using a fluid loop may be used. VCH
P21 is arranged such that the heat receiving portion is inside the heating tank 3 and the heat radiating portion is inside the condensing tank 4. In addition, VCHP21 is
The heat receiving portion may be thermally joined to the heating tank 3 and the heat radiating portion may be thermally joined to the condensing tank 4, and the arrangement depends on the structure of the heating tank 3 and the condensing tank 4.

【0019】多孔性電極2の材料としては、アルカリ金
属7としてナトリウムを選んだ場合、モリブデン,チタ
ン,タングステン,それらの合金や多層膜などを使用す
ることができる。AMTEC運転中は、加熱槽3は90
0〜1300K(ナトリウムの前記の温度における蒸気
圧は5,000〜300,000Pa)に加熱され、凝縮
槽4は400〜800K(ナトリウムの前記の温度にお
ける蒸気圧は0.0002〜300Pa)に冷却され
る。
As the material of the porous electrode 2, when sodium is selected as the alkali metal 7, molybdenum, titanium, tungsten, alloys thereof, multilayer films and the like can be used. During the AMTEC operation, the heating tank 3 has 90
It is heated to 0 to 1300 K (vapor pressure of sodium at the above temperature is 5,000 to 300,000 Pa), and the condensation tank 4 is cooled to 400 to 800 K (vapor pressure of sodium at the above temperature is 0.0002 to 300 Pa). To be done.

【0020】加熱槽3で高温となったアルカリ金属7
(以下、ナトリウムという説明する。)は、固体電解質
1の加熱槽3側の表面でNaイオン(+)と電子(−)
とに分離して電子を放出し、加熱槽3と凝縮槽4のナト
リウムの蒸気圧差を駆動力として、Naイオンが固体電
解質1の中を通過し、凝縮槽4に面した固体電解質1の
表面に達する。固体電解質1の表面で放出された電子
は、電極リード9B→図示しない外部負荷(回路)→電
極リード9Aを通って、多孔性電極2と固体電解質1の
界面に供給され、Naイオンと再結合する。この再結合
によって中性化されたナトリウムは凝縮槽4の空間中に
て蒸発し、低温の凝縮槽4の壁面で凝縮する。凝縮した
液相のナトリウムは戻り管11と搬送手段8(例えば、
電磁ポンプ)によって加熱槽3へ戻され、再び加熱され
る。以上のサイクルを繰り返すことにより、外部負荷に
連続的に電力が供給される。
Alkali metal 7 heated to a high temperature in the heating tank 3
(Hereinafter, referred to as sodium) is Na ions (+) and electrons (-) on the surface of the solid electrolyte 1 on the heating tank 3 side.
The surface of the solid electrolyte 1 facing the condensing tank 4 is that Na ions pass through the solid electrolyte 1 by using the difference in sodium vapor pressure between the heating tank 3 and the condensing tank 4 as a driving force to emit electrons. Reach The electrons emitted on the surface of the solid electrolyte 1 are supplied to the interface between the porous electrode 2 and the solid electrolyte 1 through the electrode lead 9B → external load (circuit) (not shown) → electrode lead 9A, and recombined with Na ions. To do. The sodium neutralized by this recombination evaporates in the space of the condensing tank 4 and condenses on the wall surface of the low temperature condensing tank 4. The condensed liquid-phase sodium is returned to the return pipe 11 and the conveying means 8 (for example,
It is returned to the heating tank 3 by an electromagnetic pump and heated again. By repeating the above cycle, electric power is continuously supplied to the external load.

【0021】今ここで、何等かの原因で、AMTEC運
転中に外部負荷が突然開放されたとする。すると、今ま
で電気に変換されていた熱が、加熱槽3内に放出される
ことになってしまう。つまり、急激に加熱槽3内の温度
が上がってしまう。しかし、VCHP21の動作開始温
度をAMTECの定常動作温度以上に設定しておくこと
により、加熱槽3内の温度が定常動作時の温度以上に上
昇したとき、VCHP21が動作を開始し、VCHP2
1は受熱部の温度を一定にするように、加熱槽3で放出
された熱を凝縮槽4へ伝熱するようになり、加熱槽3の
過熱を避けることができる。また、加熱器5の暴走やそ
の他の発電装置に付加される装置の異常動作が原因で、
急に加熱槽3に流入する熱量が増えたときにも、VCH
P21が動作することで、加熱槽の過熱を避けることが
できる。尚、加熱層3の温度が上昇すると、ヒートパイ
プ21内における不活性ガスの界面が放熱部側に押され
て(ヒートパイプ21の不活性ガスの無い部分の温度が
熱輸送により均一になる。)放熱側に押しやられ、加熱
層3と凝縮層4との熱交換が行われる。
Now, it is assumed that the external load is suddenly released during the AMTEC operation for some reason. Then, the heat, which has been converted into electricity, is released into the heating tank 3. That is, the temperature in the heating tank 3 rises rapidly. However, by setting the operation start temperature of the VCHP 21 to be equal to or higher than the steady operation temperature of the AMTEC, when the temperature in the heating tank 3 rises above the temperature at the steady operation, the VCHP 21 starts the operation and the VCHP 2
1 transfers the heat released from the heating tank 3 to the condensing tank 4 so as to keep the temperature of the heat receiving portion constant, so that overheating of the heating tank 3 can be avoided. In addition, due to the runaway of the heater 5 and abnormal operation of other devices added to the power generator,
Even when the amount of heat flowing into the heating tank 3 suddenly increases, VCH
By operating P21, it is possible to avoid overheating of the heating tank. When the temperature of the heating layer 3 rises, the interface of the inert gas in the heat pipe 21 is pushed toward the heat radiating portion (the temperature of the portion of the heat pipe 21 where there is no inert gas becomes uniform due to heat transport). ) The heat is exchanged between the heating layer 3 and the condensation layer 4 by being pushed to the heat radiation side.

【0022】本実施例において、ヒートパイプを固定コ
ンダクタンス型ヒートパイプに置き換えても、ヒートパ
イプの作動媒体の動作開始温度をAMTECの定常運転
温度以上に選ぶことによって、同様の作用が実現でき
る。
In the present embodiment, even if the heat pipe is replaced with a fixed conductance type heat pipe, the same effect can be realized by selecting the operation start temperature of the working medium of the heat pipe to be higher than the steady operating temperature of AMTEC.

【0023】上述した実施例によれば、加熱槽の過熱を
避けることができるので、信頼性の高い発電装置が実現
できる。また、加熱器の暴走やその他の発電装置に付加
される装置の異常動作により加熱槽に急に熱が流入した
ときには、発電の駆動力となる蒸気圧差が大きくなるの
で発電出力の急激な増大が起こるが、本実施例ではヒー
トパイプが熱を凝縮器へ放出するため、凝縮槽内のアル
カリ金属の蒸気圧が高くなり、アルカリ金属の蒸気圧差
を小さくするので、上述の急激な発電出力の変動を抑制
することになる。
According to the above-described embodiment, overheating of the heating tank can be avoided, so that a highly reliable power generation device can be realized. In addition, when heat suddenly flows into the heating tank due to runaway of the heater or abnormal operation of other devices added to the power generation device, the steam pressure difference, which is the driving force for power generation, becomes large, so that the power generation output suddenly increases. However, in this embodiment, since the heat pipe releases heat to the condenser, the vapor pressure of the alkali metal in the condensing tank becomes high and the vapor pressure difference of the alkali metal becomes small, so that the above-mentioned rapid fluctuation of the power generation output occurs. Will be suppressed.

【0024】図2は本発明の第2実施例に係るAMTE
Cの構成図である。本実施例に係るAMTECは、加熱
槽3と凝縮槽4の間の熱交換器21として、制御回路2
4を設けた帰還制御型VCHPを用い、制御回路24に
よりガスリザーバ22に配置されたヒータ25の出力を
制御するようになっている。また、VCHP21の受熱
部に設けた温度センサ26で加熱槽3の温度をモニタ
し、その温度を制御因子とするようになっている。制御
回路24で制御されるヒータ25で、VCHP21のガ
スリザーバ22の温度が変えられ、VCHP21の非凝
縮ガスがVCHP21の放熱部を占める領域の長さを受
熱部の温度に応じて変化させ、ヒートパイプ21の伝熱
量をコントロールする。
FIG. 2 shows an AMTE according to the second embodiment of the present invention.
It is a block diagram of C. The AMTEC according to this embodiment uses the control circuit 2 as the heat exchanger 21 between the heating tank 3 and the condensing tank 4.
The feedback control type VCHP provided with 4 is used to control the output of the heater 25 arranged in the gas reservoir 22 by the control circuit 24. Further, the temperature of the heating tank 3 is monitored by the temperature sensor 26 provided in the heat receiving portion of the VCHP 21, and the temperature is used as a control factor. The temperature of the gas reservoir 22 of the VCHP 21 is changed by the heater 25 controlled by the control circuit 24, and the length of the region in which the non-condensed gas of the VCHP 21 occupies the heat radiation portion of the VCHP 21 is changed according to the temperature of the heat receiving portion. Control the heat transfer amount of 21.

【0025】従って、加熱槽3の温度をセンサ26でモ
ニタしながら、ヒータ25を制御回路24で制御する本
実施例は、第1実施例よりさらに安定な熱コントロール
ができる。更に、AMTECの運転温度条件を変えて
も、ヒータ25の出力量の運転条件に合わせて制御する
だけで、同様の作用が維持できる。また、温度センサ2
6の代わりに圧力センサを加熱槽3に配置し、ガスリザ
ーバ22の温度を制御することでVCHP21を動作さ
せることも可能で、この場合は加熱槽の圧力変化に対し
て追従性をもって制御することが可能である。
Therefore, the present embodiment in which the heater 25 is controlled by the control circuit 24 while the temperature of the heating tank 3 is monitored by the sensor 26 enables more stable heat control than the first embodiment. Further, even if the operating temperature condition of the AMTEC is changed, the same action can be maintained only by controlling according to the operating condition of the output amount of the heater 25. In addition, the temperature sensor 2
It is also possible to operate the VCHP 21 by disposing a pressure sensor in the heating tank 3 instead of 6, and controlling the temperature of the gas reservoir 22. In this case, it is possible to control the VCHP 21 with followability to the pressure change in the heating tank. It is possible.

【0026】図3は本発明の第3実施例に係るAMTE
Cの構成図である。本実施例では、発電装置の電気出力
を出力モニタ27でモニタし、その電圧,電流変化から
ガスリザーバ22の温度を制御する。負荷変動が生じた
ときに起こる加熱槽3内の温度,圧力変化は、電気出力
の電圧,電流をモニタすることで、予測することができ
る。本実施例によれば、実際の電気負荷に応じて制御す
るので、第1,第2実施例に較べて更に制御の追従性が
よくなる。
FIG. 3 shows an AMTE according to the third embodiment of the present invention.
It is a block diagram of C. In this embodiment, the electric output of the power generator is monitored by the output monitor 27, and the temperature of the gas reservoir 22 is controlled based on the voltage and current changes. The temperature and pressure changes in the heating tank 3 that occur when a load change occurs can be predicted by monitoring the voltage and current of the electric output. According to the present embodiment, since the control is performed according to the actual electric load, the control followability is further improved as compared with the first and second embodiments.

【0027】図4は本発明の第4実施例に係るAMTE
Cの構成図ある。前述した各実施例では、VCHP21
を加熱槽3と凝縮槽4との間に渡していたが、本実施例
では、加熱槽3と冷却器6の間に熱交換器21を配置
し、加熱槽3の熱を直接冷却器6に逃がす構成としてい
る。このように、発電装置に付随する冷却器を熱交換に
使用するため、装置の簡素化が図れるという利点があ
る。
FIG. 4 shows an AMTE according to the fourth embodiment of the present invention.
It is a block diagram of C. In each of the embodiments described above, the VCHP21
Was passed between the heating tank 3 and the condensing tank 4, but in the present embodiment, the heat exchanger 21 is arranged between the heating tank 3 and the cooler 6, and the heat of the heating tank 3 is directly cooled by the cooler 6. It is configured to escape to. As described above, since the cooler attached to the power generator is used for heat exchange, there is an advantage that the device can be simplified.

【0028】図5は本発明の第5実施例に係るAMTE
Cの構成図である。本実施例では、VCHP21の作動
媒体として、発電装置の発電に関与する作動媒体である
アルカリ金属7を共用するために、加熱槽3とVCHP
21を一体化させている。加熱槽3の内壁面側にはVC
HP21のウイック23が連続に広がっており、液相の
アルカリ金属7はウイック23によって固体電解質1の
表面に供給される。本実施例においては、加熱槽3と熱
交換器21を一体化させたため、温度,圧力をすばやく
凝縮槽4に逃がすことができ、かつ、発電装置の軽量化
も図れるという利点がある。
FIG. 5 shows an AMTE according to the fifth embodiment of the present invention.
It is a block diagram of C. In the present embodiment, the heating tank 3 and the VCHP are used in order to share the alkali metal 7, which is a working medium involved in power generation of the power generator, as the working medium of the VCHP 21.
21 are integrated. VC is provided on the inner wall surface side of the heating tank 3.
The wick 23 of the HP 21 is continuously spread, and the alkali metal 7 in the liquid phase is supplied to the surface of the solid electrolyte 1 by the wick 23. In this embodiment, since the heating tank 3 and the heat exchanger 21 are integrated, there is an advantage that the temperature and pressure can be quickly released to the condensing tank 4 and the weight of the power generator can be reduced.

【0029】尚、アルカリ金属としてNaを例に説明し
たが、L(リチウム)やK(カリウム)でも同様の効果
を奏することはいうまでもない。
Although Na has been described as an example of the alkali metal, it is needless to say that L (lithium) and K (potassium) also have the same effect.

【0030】[0030]

【発明の効果】請求項1の発明によれば、急激な負荷変
動があったときなど、突然加熱槽に放出された熱を加熱
槽外に逃がすことができるので、加熱槽,固体電解質,
その接合部などに起こる急激な温度,圧力変化を防止で
きる。
According to the first aspect of the present invention, the heat released to the heating tank can be released to the outside of the heating tank suddenly when there is a sudden load change. Therefore, the heating tank, the solid electrolyte,
It is possible to prevent sudden changes in temperature and pressure at the joints and the like.

【0031】請求項2の発明によれば、加熱槽内の温度
や圧力変化に対して追従性がよくなる。
According to the second aspect of the invention, the ability to follow changes in temperature and pressure in the heating tank is improved.

【0032】請求項3の発明によれば、負荷変動が生じ
たときに起こる加熱槽内の温度,圧力変化を予測した対
応が可能になる。
According to the third aspect of the invention, it is possible to cope with the temperature and pressure changes in the heating tank that occur when a load change occurs.

【0033】請求項4の発明によれば、小型の熱交換器
で伝熱量を大きくでき、高信頼で、コンパクトな発電装
置が実現できる。
According to the invention of claim 4, a small heat exchanger can increase the amount of heat transfer, and a highly reliable and compact power generator can be realized.

【0034】請求項5の発明によれば、加熱槽の温度,
圧力をすばやく逃がすことができ、かつ、発電装置の軽
量化ができる。
According to the invention of claim 5, the temperature of the heating tank,
The pressure can be released quickly, and the weight of the power generator can be reduced.

【0035】請求項6の発明によれば、発電装置の簡素
化が図られる。特に、加熱槽から凝縮器へ伝熱する熱交
換器を設けることで、加熱器の暴走やその他の発電装置
に付加される装置の異常動作により加熱槽に急に熱が流
入し、発電出力の急激な増大が起こった場合には、熱を
凝縮器へ放出するため、凝縮槽内のアルカリ金属の蒸気
圧が高くなり、発電の駆動力となるアルカリ金属の蒸気
圧差を小さくできるため、急激な発電出力の変動を抑制
することができる。
According to the invention of claim 6, the power generator can be simplified. In particular, by providing a heat exchanger that transfers heat from the heating tank to the condenser, heat suddenly flows into the heating tank due to runaway of the heater and abnormal operation of other devices added to the power generator, and When a sudden increase occurs, heat is released to the condenser, so the vapor pressure of the alkali metal in the condensing tank becomes high, and the vapor pressure difference of the alkali metal that is the driving force for power generation can be made small. It is possible to suppress fluctuations in power generation output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るアルカリ金属熱電発
電装置の構成図はである。
FIG. 1 is a configuration diagram of an alkali metal thermoelectric generator according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係るアルカリ金属熱電発
電装置の構成図はである。
FIG. 2 is a configuration diagram of an alkali metal thermoelectric generator according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係るアルカリ金属熱電発
電装置の構成図はである。
FIG. 3 is a configuration diagram of an alkali metal thermoelectric generator according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係るアルカリ金属熱電発
電装置の構成図はである。
FIG. 4 is a configuration diagram of an alkali metal thermoelectric generator according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例に係るアルカリ金属熱電発
電装置の構成図はである。
FIG. 5 is a configuration diagram of an alkali metal thermoelectric generator according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…多孔性電極、3…加熱槽、4…凝
縮槽、5…加熱器、6…冷却器、7…アルカリ金属、8
…搬送手段、9…電極リード、10…絶縁手段、11…
Naもどり管、21…可変コンダクタンスヒートパイプ
(VCHP)、22…ガスリザーバ、23…ウイック、
24…制御回路、25…ヒータ、26…センサ、27…
出力モニタ。
1 ... Solid electrolyte, 2 ... Porous electrode, 3 ... Heating tank, 4 ... Condensing tank, 5 ... Heater, 6 ... Cooler, 7 ... Alkali metal, 8
... conveying means, 9 ... electrode leads, 10 ... insulating means, 11 ...
Na return pipe, 21 ... Variable conductance heat pipe (VCHP), 22 ... Gas reservoir, 23 ... Wick,
24 ... Control circuit, 25 ... Heater, 26 ... Sensor, 27 ...
Output monitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 久道 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisamu Inoue 1168 Moriyama-cho, Hitachi-shi, Ibaraki Prefecture Hiritsu Seisakusho Energy Laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 発電に関与する作動媒体にて満たされ該
作動媒体に対して導電性を持つ固体電解質にて遮蔽され
た加熱槽と、前記固体電解質の前記作動媒体に接する側
と反対側に設けられた多孔性電極と、前記固体電解質と
前記多孔性電極とを透過した前記作動媒体を凝縮し蓄積
する凝縮槽とを備える熱電変換にて発電を行う発電装置
において、前記加熱槽の温度が設定温度以上になったと
き該加熱槽内の熱を外部に輸送する熱交換器を設けたこ
とを特徴とする発電装置。
1. A heating tank filled with a working medium involved in power generation and shielded by a solid electrolyte having conductivity with respect to the working medium, and a side of the solid electrolyte opposite to a side in contact with the working medium. In a power generation device that performs power generation by thermoelectric conversion including a provided porous electrode and a condensation tank that condenses and accumulates the working medium that has passed through the solid electrolyte and the porous electrode, the temperature of the heating tank is A power generator comprising a heat exchanger for transporting the heat in the heating tank to the outside when the temperature exceeds a set temperature.
【請求項2】 請求項1において、加熱槽の温度または
圧力を制御因子として、前記熱交換器による熱輸送量を
制御する制御手段を備えることを特徴とする発電装置。
2. The power generator according to claim 1, further comprising control means for controlling the amount of heat transport by the heat exchanger using the temperature or pressure of the heating tank as a control factor.
【請求項3】 請求項1において、電気出力を制御因子
として、前記熱交換器による熱輸送量を制御する制御手
段を備えることを特徴とする発電装置。
3. The power generator according to claim 1, further comprising control means for controlling the amount of heat transport by the heat exchanger using the electric output as a control factor.
【請求項4】 請求項1乃至請求項3のいずれかにおい
て、熱交換器がヒートパイプであることを特徴とする発
電装置。
4. The power generator according to any one of claims 1 to 3, wherein the heat exchanger is a heat pipe.
【請求項5】 請求項4において、ヒートパイプの作動
流体を発電に関与する作動媒体と共用する構成としたこ
とを特徴とする発電装置。
5. The power generator according to claim 4, wherein the working fluid of the heat pipe is shared with a working medium involved in power generation.
【請求項6】 請求項1において、熱交換器の熱的接続
先が、凝縮槽または該凝縮槽に付属する冷却器であるこ
とを特徴とする発電装置。
6. The power generator according to claim 1, wherein the thermal connection destination of the heat exchanger is a condensing tank or a cooler attached to the condensing tank.
【請求項7】 固体電解質壁を有し加熱されたアルカリ
金属を内部に収納する加熱槽と、前記固体電解質壁の外
側に密着された多孔質電極と、前記固体電解質壁及び多
孔質電極内を透過してきた前記アルカリ金属の陽イオン
と外部負荷から供給される電子とが再結合して中性化さ
れた前記アルカリ金属を凝縮する凝縮槽とを備え、前記
加熱槽内から引き出された電極リードを前記外部負荷に
接続し熱電交換にて発電された電力を前記外部負荷に供
給するアルカリ金属熱電発電装置において、前記加熱槽
の温度が定常動作温度以上になったとき動作を開始して
加熱槽の熱を外部に輸送するヒートパイプを加熱槽に熱
的に接続したことを特徴とするアルカリ金属熱電発電装
置。
7. A heating tank having a solid electrolyte wall for containing a heated alkali metal therein, a porous electrode adhered to the outside of the solid electrolyte wall, and the solid electrolyte wall and the inside of the porous electrode. An electrode lead drawn out from the inside of the heating tank is provided with a condensing tank for condensing the neutralized alkali metal by recombination of the cations of the alkali metal that have permeated and electrons supplied from an external load. In the alkali metal thermoelectric power generator for supplying electric power generated by thermoelectric exchange to the external load by connecting to the external load, the heating tank is started when the temperature of the heating tank reaches or exceeds a steady operating temperature. An alkali metal thermoelectric power generator characterized in that a heat pipe for transporting the heat of the above is thermally connected to a heating tank.
【請求項8】 固体電解質壁を有し加熱されたアルカリ
金属を内部に収納する加熱槽と、前記固体電解質壁の外
側に密着された多孔質電極と、前記固体電解質壁及び多
孔質電極内を透過してきた前記アルカリ金属の陽イオン
と外部負荷から供給される電子とが再結合して中性化さ
れた前記アルカリ金属を凝縮する凝縮槽とを備え、前記
加熱槽内から引き出された電極リードを前記外部負荷に
接続し熱電交換にて発電された電力を前記外部負荷に供
給するアルカリ金属熱電発電装置において、受熱部が前
記加熱槽内部に熱的に接続され、放熱部が前記凝縮槽側
に熱的に接続され、該放熱部に不活性ガスを供給するガ
スリザーバを有する可変コンダクタンスヒートパイプ
と、前記ガスリザーバの温度を前記加熱槽内部の温度に
応じて制御し前記放熱部の長さを制御して該可変コンダ
クタンスヒートパイプの伝熱量を制御する制御手段とを
備えることを特徴とするアルカリ金属熱電発電装置。
8. A heating tank having a solid electrolyte wall for containing a heated alkali metal therein, a porous electrode adhered to the outside of the solid electrolyte wall, and the solid electrolyte wall and the inside of the porous electrode. An electrode lead drawn out from the inside of the heating tank is provided with a condensing tank for condensing the neutralized alkali metal by recombination of the cations of the alkali metal that have permeated and electrons supplied from an external load. In the alkali metal thermoelectric generator which supplies electric power generated by thermoelectric exchange to the external load, the heat receiving part is thermally connected to the inside of the heating tank, and the heat radiating part is on the condensing tank side. A variable conductance heat pipe having a gas reservoir thermally connected to the heat radiating part and supplying an inert gas to the heat radiating part, and controlling the temperature of the gas reservoir according to the temperature inside the heating tank to radiate the heat. An alkali metal thermoelectric generator comprising: a control unit configured to control a length of a portion to control a heat transfer amount of the variable conductance heat pipe.
【請求項9】 固体電解質壁を有し加熱されたアルカリ
金属を内部に収納する加熱槽と、前記固体電解質壁の外
側に密着された多孔質電極と、前記固体電解質壁及び多
孔質電極内を透過してきた前記アルカリ金属の陽イオン
と外部負荷から供給される電子とが再結合して中性化さ
れた前記アルカリ金属を凝縮する凝縮槽とを備え、前記
加熱槽内から引き出された電極リードを前記外部負荷に
接続し熱電交換にて発電された電力を前記外部負荷に供
給するアルカリ金属熱電発電装置において、受熱部が前
記加熱槽内部に熱的に接続され、放熱部が前記凝縮槽側
に熱的に接続され、該放熱部に不活性ガスを供給するガ
スリザーバを有する可変コンダクタンスヒートパイプ
と、前記ガスリザーバの温度を前記外部負荷に供給され
る電力に応じて制御し前記放熱部の長さを制御して該可
変コンダクタンスヒートパイプの伝熱量を制御する制御
手段とを備えることを特徴とするアルカリ金属熱電発電
装置。
9. A heating bath having a solid electrolyte wall for containing a heated alkali metal therein, a porous electrode adhered to the outside of the solid electrolyte wall, and the solid electrolyte wall and the inside of the porous electrode. An electrode lead drawn out from the inside of the heating tank is provided with a condensing tank for condensing the neutralized alkali metal by recombination of the cations of the alkali metal that have permeated and electrons supplied from an external load. In the alkali metal thermoelectric generator which supplies electric power generated by thermoelectric exchange to the external load, the heat receiving part is thermally connected to the inside of the heating tank, and the heat radiating part is on the condensing tank side. A variable conductance heat pipe having a gas reservoir thermally connected to the heat radiating section and supplying an inert gas to the heat radiating section, and controlling the temperature of the gas reservoir according to the electric power supplied to the external load. An alkali metal thermoelectric generator comprising: a control unit that controls the length of the heat radiating unit to control the amount of heat transfer of the variable conductance heat pipe.
【請求項10】 固体電解質壁を有し加熱されたアルカ
リ金属を内部に収納する加熱槽と、前記固体電解質壁の
外側に密着された多孔質電極と、前記固体電解質壁及び
多孔質電極内を透過してきた前記アルカリ金属の陽イオ
ンと外部負荷から供給される電子とが再結合して中性化
された前記アルカリ金属を凝縮する凝縮槽とを備え、前
記加熱槽内から引き出された電極リードを前記外部負荷
に接続し熱電交換にて発電された電力を前記外部負荷に
供給するアルカリ金属熱電発電装置において、前記加熱
槽に連通する管路を該加熱槽から引き出して前記凝縮槽
を貫通させ、貫通させた端部にガスリザーバを設けて該
ガスリザーバに不活性ガスを充填し、該ガスリザーバと
前記管路と前記加熱槽とで前記アルカリ金属を作動流体
に兼用した可変コンダクタンスヒートパイプを構成した
ことを特徴とするアルカリ金属熱電発電装置。
10. A heating tank having a solid electrolyte wall for containing heated alkali metal therein, a porous electrode adhered to the outside of the solid electrolyte wall, and the solid electrolyte wall and the inside of the porous electrode. An electrode lead drawn out from the inside of the heating tank is provided with a condensing tank for condensing the neutralized alkali metal by recombination of the cations of the alkali metal that have permeated and electrons supplied from an external load. In the alkali metal thermoelectric power generator for supplying electric power generated by thermoelectric exchange to the external load by connecting to the external load, a pipe line communicating with the heating tank is pulled out from the heating tank to penetrate the condensing tank. , A variable reservoir in which a gas reservoir is provided at the penetrating end, the gas reservoir is filled with an inert gas, and the alkali metal is also used as a working fluid in the gas reservoir, the pipeline, and the heating tank. An alkali metal thermoelectric power generation device characterized by comprising a dactance heat pipe.
JP762992A 1992-01-20 1992-01-20 Generator Pending JPH05199779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP762992A JPH05199779A (en) 1992-01-20 1992-01-20 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP762992A JPH05199779A (en) 1992-01-20 1992-01-20 Generator

Publications (1)

Publication Number Publication Date
JPH05199779A true JPH05199779A (en) 1993-08-06

Family

ID=11671125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP762992A Pending JPH05199779A (en) 1992-01-20 1992-01-20 Generator

Country Status (1)

Country Link
JP (1) JPH05199779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007850B1 (en) * 2008-07-25 2011-01-14 한국에너지기술연구원 AMTEC apparatus with heat pipe
KR20150129974A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 Alkali metal thermal to Electric Converter and manipulating method the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007850B1 (en) * 2008-07-25 2011-01-14 한국에너지기술연구원 AMTEC apparatus with heat pipe
KR20150129974A (en) * 2014-05-12 2015-11-23 한국에너지기술연구원 Alkali metal thermal to Electric Converter and manipulating method the same

Similar Documents

Publication Publication Date Title
US6419389B1 (en) X-ray generating system having a phase change material store located in the coolant in an x-ray radiator housing
US4012770A (en) Cooling a heat-producing electrical or electronic component
JP2015502054A (en) Electronic device with cooling action by liquid metal spreader
JPH02125457A (en) Heat transfer device
US5492570A (en) Hybrid thermal electric generator
JP2010259238A (en) Regenerative power managing system
JP4687305B2 (en) Thermoelectric generator
JPH03235682A (en) Alkaline metal thermoelectric generation set
JP2008294129A (en) Thermionic generating element, and thermionic generating device with thermionic generating element
CA1133577A (en) Internal geometry of alkali metal thermoelectric generator devices
JPH05199779A (en) Generator
JP5066319B2 (en) Electrochemical converter
JP3453159B2 (en) Thermoelectric generator
JP2008218513A (en) Cooling device
JP2007005589A (en) Thermionic generator
JP4147299B2 (en) Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element
JP3787625B2 (en) Thermoelectric converter
El Genk et al. Recent advances in vapor-anode, multi-tube, alkali metal thermal-to-electric conversion cells for space power
RU2629320C1 (en) Electronic heat pipe
JP2013143792A (en) Electric power generation system
JPH06253561A (en) Alkaline metal thermoelectric generator
JPH06163089A (en) Alkali metal thermoelectric generating device
JP2008244320A (en) Cooling apparatus
JP2866926B2 (en) Power generator
JP2637442B2 (en) Thermoelectric converter