JPH05198806A - Matrix array substrate - Google Patents

Matrix array substrate

Info

Publication number
JPH05198806A
JPH05198806A JP4170341A JP17034192A JPH05198806A JP H05198806 A JPH05198806 A JP H05198806A JP 4170341 A JP4170341 A JP 4170341A JP 17034192 A JP17034192 A JP 17034192A JP H05198806 A JPH05198806 A JP H05198806A
Authority
JP
Japan
Prior art keywords
lines
source
matrix array
gate
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4170341A
Other languages
Japanese (ja)
Other versions
JP2587754B2 (en
Inventor
Toshimoto Kodaira
寿源 小平
Hiroyuki Oshima
弘之 大島
Toshihiko Mano
敏彦 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17034192A priority Critical patent/JP2587754B2/en
Publication of JPH05198806A publication Critical patent/JPH05198806A/en
Application granted granted Critical
Publication of JP2587754B2 publication Critical patent/JP2587754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make the title matrix array increasing the electrostatic breakdown strength by a method wherein resistors are inserted into the parts outside the matrix array region on a signal input side per one multiple respective lines of multiple gate lines or source lines. CONSTITUTION:The aluminum wiring 13 connected to source 9-1 of transistor 2 is extended in the vertical direction to be source line 3 while the other aluminum wiring 13 connected to drain 9-2 of the transisto 2 is connected to a capacitor 6 and a liquid crystal cell 7. On the other hand, MOS type transistors 2 are arranged in matrix source line 3 outside the matrix region of gate line 4 while the other resistors 14 are connected to the outside of the gate lines 4. Accordingly, the resistors 14, 15 can be inserted into the parts outside the matrix array region on a signal input side of gate lines 4 or source lines 3 thereby enabling the electrostatic breakdown strength to be notably increased for manufacturing a highly reliable liquid crystal display.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマトリックスアレーの構
成方法に関するものであり、さらには静電気耐量を高く
したマトリックスアレーの構成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a matrix array, and more particularly to a method for constructing a matrix array having a high electrostatic withstand capability.

【0002】[0002]

【従来の技術】電子装置の年毎の小型化に対し、周辺装
置としての表示装置も、軽量小型化が進み、さらには、
CRTに代わって平面型の表示パネルも各種研究され、
市場にも出回っている。この様な平面型の表示パネルの
構成方法は、特に大容量のパネルではスイッチング素子
を用いたマトリックスアレータイプが大部分を占めてお
り、その代表的なアレーの構成例を示したものが図1a
及びbである。
2. Description of the Related Art As electronic devices have been downsized year by year, display devices as peripheral devices have also been reduced in weight and size.
Various types of flat panel display panels have been studied in place of CRTs,
It is also on the market. A matrix array type using a switching element occupies most of the method of constructing such a flat display panel, especially in a large capacity panel, and a typical example of the array configuration is shown in FIG. 1a.
And b.

【0003】これはアクティブマトリックスアレー液晶
表示装置を例にとったものであり、図1aにおいて、複
数本のソース線3とこれに直交する複数本のゲート線
4、及びこれらのソース線とゲート線の交点に接続され
た非線形素子2より構成されている。これを一方のガラ
ス基板上に形成し、この基板と全面に共通電極を形成し
た基板との間に液晶を介在させて液晶表示パネルを作
る。図1bは図1aの非線形素子2の具体例を示したも
のであり、非線形素子としてMOS型トランジスター5
を用いたものである。トランジスターのソース電極はソ
ース線3と、ゲート電極はゲート線4と接続されてい
る。さらにドレインは電荷蓄積用コンデンサ6と液晶表
示セル7とに接続されている。
This is an example of an active matrix array liquid crystal display device. In FIG. 1a, a plurality of source lines 3 and a plurality of gate lines 4 orthogonal to the source lines 3 and these source lines and gate lines are shown. The non-linear element 2 is connected to the intersection of This is formed on one glass substrate, and a liquid crystal is interposed between this substrate and a substrate having a common electrode formed on the entire surface to form a liquid crystal display panel. FIG. 1b shows a specific example of the non-linear element 2 of FIG. 1a. As the non-linear element, a MOS transistor 5 is used.
Is used. The source electrode and the gate electrode of the transistor are connected to the source line 3 and the gate line 4, respectively. Further, the drain is connected to the charge storage capacitor 6 and the liquid crystal display cell 7.

【0004】ところでMOS型のトランジスターは静電
気に弱く、しかもゲート絶縁膜が静電気により破壊され
易い。マトリックスアレーのソース線及びゲート線に静
電気が入ると、直接ゲート絶縁膜に静電気の電圧が加わ
るのでアレーのどの位置のトランジスターも静電気が加
わると破壊され易い。さらにアレーを形成する基板はガ
ラスすなわち絶縁体であって、しかも図1aからもわか
るようにソース線及びゲート線ともにマトリックスアレ
ー領域の外側まで電気接続の為に延在させてある。よっ
て静電気に暴露された場合、電荷は導電性のソース又は
ゲート線に集中してしまいこの点からも絶縁基板上のマ
トリックスアレーは静電気に弱い。
By the way, the MOS type transistor is vulnerable to static electricity, and the gate insulating film is easily destroyed by static electricity. When static electricity enters the source line and the gate line of the matrix array, a static electricity voltage is directly applied to the gate insulating film, so that the transistor at any position of the array is easily destroyed when static electricity is applied. Further, the substrate forming the array is glass or an insulator and, as can be seen from FIG. 1a, both the source lines and the gate lines are extended to the outside of the matrix array region for electrical connection. Therefore, when exposed to static electricity, the electric charge concentrates on the conductive source or gate line, and from this point also, the matrix array on the insulating substrate is vulnerable to static electricity.

【0005】さらに絶縁基板であることから基板上に蓄
積した電荷は逃げ難く、人体等の導電体が基板のソース
線、ゲート線に接触した場合瞬時に電荷が逃げこの場合
も破壊につながる。従って基板の取扱いに当たっては、
静電気の発生には十分注意すると共に基板上に蓄積した
電荷は空気中へ自然放電する様な雰囲気を常に保たなけ
ればならない。
Further, since it is an insulating substrate, it is difficult for electric charges accumulated on the substrate to escape, and when a conductor such as a human body comes into contact with the source line and gate line of the substrate, the electric charge instantly escapes, which also leads to destruction. Therefore, when handling the board,
Attention must be paid to the generation of static electricity, and the electric charge accumulated on the substrate must be maintained in an atmosphere such that it spontaneously discharges into the air.

【0006】以上の様に絶縁体であるガラス基板上に非
線形素子を用いたアクティブマトリックスアレーを構成
した場合、非常に静電気に弱く又取扱いもやっかいであ
って、量産上歩留の変動、低下等大きな問題が生ずる。
When an active matrix array using a non-linear element is formed on a glass substrate which is an insulator as described above, it is very sensitive to static electricity and is difficult to handle, and fluctuations in yield and decrease in mass production occur. A big problem arises.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の様な欠
点に鑑みてなされたものであり、その目的は静電気耐量
を高めたマトリックスアレーを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above drawbacks, and an object thereof is to provide a matrix array having an increased electrostatic withstand capability.

【0008】[0008]

【課題を解決するための手段】以上の様な課題を解決す
るため、本発明のマトリックスアレー基板は、複数本の
ゲート線と該ゲート線と直交する複数本のソース線を備
え、該ゲート線と該ソース線の各交点に非線形素子を形
成してなるマトリックスアレー基板において、該複数本
のゲート線又は該複数本のソース線の少なくとも一方に
は、複数の各線毎に、該ゲート線又は該ソース線の信号
入力側のマトリックスアレー領域外に、抵抗器を挿入し
たことを特徴とする。
In order to solve the above problems, the matrix array substrate of the present invention comprises a plurality of gate lines and a plurality of source lines orthogonal to the gate lines. In a matrix array substrate in which a non-linear element is formed at each intersection of the source line and the source line, at least one of the plurality of gate lines or the plurality of source lines has a plurality of gate lines or a plurality of gate lines. A resistor is inserted outside the matrix array region on the signal input side of the source line.

【0009】[0009]

【実施例】以下図面により本発明を詳細に説明する。図
2はMOS型トランジスターの断面の例を示したもので
ある。ガラス8の表面に半導体物質の多結晶シリコン9
を形成しパターニングする。次にゲート絶縁膜10を少
なくとも多結晶シリコン9をおおって形成し、その上へ
トランジスターのゲート材料11を構成する。このゲー
ト材料11はさらに左右に延在せしめてゲート線4とす
る。次にゲート電極10におおわれていないゲート絶縁
膜を除去し多結晶シリコン9が露出した領域にボロン又
はリンを拡散しトランジスターのソース9−1、ドレイ
ン9−2とする。次に絶縁膜12を全面に形成し、ソー
スとドレイン領域上の絶縁膜12をエッチング除去し図
面のごとくコンタクトホールを開ける。最後にアルミニ
ューム13を形成しパターニングするとMOS型トラン
ジスターの製造が完了する。
The present invention will be described in detail below with reference to the drawings. FIG. 2 shows an example of a cross section of a MOS transistor. Polycrystalline silicon 9 which is a semiconductor material on the surface of glass 8
And patterning. Next, a gate insulating film 10 is formed so as to cover at least polycrystalline silicon 9, and a gate material 11 of a transistor is formed thereon. The gate material 11 is further extended to the left and right to form the gate line 4. Next, the gate insulating film not covered with the gate electrode 10 is removed, and boron or phosphorus is diffused in the region where the polycrystalline silicon 9 is exposed to form the source 9-1 and the drain 9-2 of the transistor. Next, the insulating film 12 is formed on the entire surface, the insulating film 12 on the source and drain regions is removed by etching, and contact holes are opened as shown in the drawing. Finally, the aluminum 13 is formed and patterned to complete the manufacture of the MOS transistor.

【0010】トランジスターのソースに接続したアルミ
ニュームは紙面に垂直方向に延在させてソース線3とす
る。またトランジスターのドレインに接続されたアルミ
ニューム配線13は、図1bに示された様にコンデンサ
ー6と液晶セル7とに接続されている。図2の例のMO
S型トランジスターをマトリックスアレー状に配置しさ
らにソース線、ゲート線のマトリックス領域外部に抵抗
を配置した1例が図3である。
The aluminum connected to the source of the transistor extends in the direction perpendicular to the plane of the drawing to form the source line 3. Also, the aluminum wiring 13 connected to the drain of the transistor is connected to the capacitor 6 and the liquid crystal cell 7 as shown in FIG. 1b. MO in the example of FIG.
FIG. 3 shows an example in which S-type transistors are arranged in a matrix array and resistors are arranged outside the matrix regions of the source lines and gate lines.

【0011】ソース線は3、ゲート線は4、MOS型ト
ランジスターが2であり、ソース線3の外部へ抵抗器1
5を接続し、ゲート線4の外部へ抵抗器14を接続す
る。
The source line is 3, the gate line is 4, and the MOS type transistor is 2. The resistor 1 is connected to the outside of the source line 3.
5 is connected, and the resistor 14 is connected to the outside of the gate line 4.

【0012】ソース線にアルミニュームを用いた場合の
線抵抗は、アルミニューム薄膜の比抵抗は約5×10-6
Ω・mであるので、薄膜を1ミクロンメートルとすると
シート抵抗は5×10-2Ω/口である。表示パネルの大
きさを5センチメートル平方、ソースのアルミニューム
線幅を10ミクロンメートルとすれば、250オームと
なる。
The line resistance when aluminum is used for the source line is about 5 × 10 −6 in the specific resistance of the aluminum thin film.
Since it is Ω · m, the sheet resistance is 5 × 10 −2 Ω / hole when the thin film has a thickness of 1 μm. If the size of the display panel is 5 cm square and the aluminum line width of the source is 10 μm, it is 250 ohms.

【0013】このソース線に抵抗を接続する方法を図4
に示す。図2のゲート11を形成するのと同時に図4の
15の位置に抵抗器を作り込む。11のゲート材料が多
結晶シリコンの場合1000度のプレデポジションでボ
ロン又はリンを拡散したとするとシート抵抗(膜厚は3
000オングストロームとする)は50〜100Ω/口
となる。従って幅10ミクロンメートル長さ200ミク
ロンで1キロオーム以上の抵抗ができる。
FIG. 4 shows a method of connecting a resistor to this source line.
Shown in. At the same time that the gate 11 shown in FIG. 2 is formed, a resistor is formed at the position 15 shown in FIG. When the gate material of 11 is polycrystalline silicon, if boron or phosphorus is diffused at a predeposition of 1000 degrees, the sheet resistance (thickness is 3
000 angstrom) is 50 to 100 Ω / mouth. Therefore, with a width of 10 μm and a length of 200 μm, a resistance of 1 kΩ or more can be obtained.

【0014】ここで本発明者が行った実験結果より静電
気保護抵抗器の効果について述べる。実験は100ピコ
ファラッドのコンデンサーに各種電圧で電荷を蓄積しこ
れを各ソース線に放電させこれにより破壊したトランジ
スターの数を数えた。図5がその結果であり、横軸へ1
00ピコファラッドのコンデンサーへ充電した電圧であ
り、縦軸はトランジスターの破壊数である。
Here, the effect of the electrostatic protection resistor will be described based on the results of experiments conducted by the present inventor. In the experiment, charges were accumulated in a capacitor of 100 picofarads at various voltages, the charges were discharged to each source line, and the number of transistors destroyed thereby was counted. Figure 5 shows the result, 1 on the horizontal axis.
It is the voltage charged in the capacitor of 00 picofarads, and the vertical axis is the number of breakdowns of the transistor.

【0015】まず抵抗器をいれない場合は300ボルト
で破壊が生じ、充電電圧を高めると急速に破壊されるト
ランジスターの数も増加する。これに対し、抵抗を5キ
ロオーム挿入した場合破壊の生ずる電圧は約2倍に増大
し又、破壊開始電圧より電圧を増加した場合の破壊数の
増加速度も減少する。このグラフより外部挿入抵抗の抵
抗値が1キロオーム近辺よりその効果が現れ始め、抵抗
値を増加させればさせる程破壊耐量が増加する。これは
抵抗により受けた静電気がマトリックス領域に達する時
間が遅れ、さらにはトランジスターに印加される電圧の
上昇速度が遅くなった為であると考えられる。ちなみに
保護抵抗を付けずに10秒程度の時間で線へ印加電圧を
0ボルトから80ボルトまで高めても全く破壊が生じな
いということからも破壊は電圧の絶対値によるのではな
く、静電気のトランジスターに加わる電圧の上昇速度が
重要であることがわかる。このような保護抵抗はソース
線のみならずゲート線に接続してもその効果は同じであ
り、図4における抵抗器はMOSトランジスターのゲー
ト材料で構成するのみならず、図2における多結晶シリ
コン9の層を用いても製造可能であり又効果になんら変
わることはない。
First, when the resistor is not used, breakdown occurs at 300 V. When the charging voltage is increased, the number of transistors that are destroyed rapidly increases. On the other hand, when a resistance of 5 kΩ is inserted, the breakdown voltage increases about twice, and the increase rate of the breakdown number decreases when the voltage is increased from the breakdown start voltage. From this graph, the effect begins to appear when the resistance value of the external insertion resistance is in the vicinity of 1 kilo ohm, and as the resistance value is increased, the breakdown resistance increases. It is considered that this is because the time taken for the static electricity received by the resistor to reach the matrix region was delayed, and further, the rising speed of the voltage applied to the transistor was slowed. By the way, even if the applied voltage to the wire is increased from 0 to 80 V in about 10 seconds without a protective resistor, no breakdown occurs. Therefore, the breakdown does not depend on the absolute value of the voltage, but on the electrostatic transistor. It can be seen that the rate of rise of the voltage applied to is important. Even if such a protection resistor is connected not only to the source line but also to the gate line, its effect is the same. Therefore, not only the resistor in FIG. 4 is made of the gate material of the MOS transistor but also the polycrystalline silicon 9 in FIG. It is possible to manufacture even with the use of the above layer and the effect is not changed at all.

【0016】さらに本発明の応用は上記説明の様な液晶
表示パネルのみならず他の表示パネルにも応用可能であ
るが、その効果は絶縁基板上マトリックスアレーを構成
したものが最も有効である。適用可能なマトリックスア
レーは、同一基板上にソース線とゲート線がある場合の
みならず一方の基板にソース線、他の基板にゲート線を
構成したマトリックスアレーであっても有効であるがそ
の場合は非線形素子の接続されている線に静電保護を施
さなければならない。
Further, the application of the present invention can be applied not only to the liquid crystal display panel as described above but also to other display panels, but the effect is most effective when the matrix array is formed on the insulating substrate. Applicable matrix array is effective not only when the source line and the gate line are on the same substrate, but also when the source line is formed on one substrate and the gate line is formed on the other substrate. Must provide electrostatic protection to the wire to which the non-linear element is connected.

【0017】[0017]

【発明の効果】以上の如く、複数本のゲート線と該ゲー
ト線と直交する複数本のソース線を備え、該ゲート線と
該ソース線の各交点に非線形素子を形成してなるマトリ
ックスアレー基板において、該複数本のゲート線又は該
複数本のソース線の少なくとも一方には、複数の各線毎
に、該ゲート線又は該ソース線の信号入力側のマトリッ
クスアレー領域外に、抵抗器を挿入したことにより、静
電大量が大幅に向上し、静電気による非線形素子の破壊
が非常に少なくなり、信頼性の高い液晶表示装置の提供
が可能となり、更に該抵抗器を多結晶Si層により形成
した場合は、高抵抗の抵抗器が得られ、かつ非線形素子
を構成しているゲート電極である多結晶Siを利用で
き、抵抗器を作ってもコストアップにならないという効
果を有するものである。
As described above, a matrix array substrate having a plurality of gate lines and a plurality of source lines orthogonal to the gate lines and forming a non-linear element at each intersection of the gate lines and the source lines. In at least one of the plurality of gate lines or the plurality of source lines, a resistor is inserted for each of the plurality of lines outside the matrix array region on the signal input side of the gate line or the source line. As a result, the large amount of static electricity is significantly improved, the breakdown of the non-linear element due to static electricity is greatly reduced, and it is possible to provide a highly reliable liquid crystal display device. Furthermore, when the resistor is formed of a polycrystalline Si layer. Has an effect that a high-resistance resistor can be obtained, and polycrystalline Si which is a gate electrode forming a non-linear element can be used, and the cost does not increase even if the resistor is made. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 マトリックスアレーの従来における構成例を
示す図。
FIG. 1 is a diagram showing a conventional configuration example of a matrix array.

【図2】 MOS型トランジスターの構成例の断面図。FIG. 2 is a cross-sectional view of a configuration example of a MOS transistor.

【図3】 本発明を実施した場合のマトリックスアレー
の構成例を示す図。
FIG. 3 is a diagram showing a configuration example of a matrix array when the present invention is implemented.

【図4】 本発明の保護抵抗の構成例の断面図。FIG. 4 is a cross-sectional view of a configuration example of a protective resistor of the present invention.

【図5】 保護抵抗の効果を表す実験データ。FIG. 5 is experimental data showing the effect of protection resistance.

【符号の説明】[Explanation of symbols]

2 非線形素子 3 ソース線 4 ゲート線 5 MOS型トランジスター 6 コンデンサ 7 液晶表示セル 8 ガラス 9 多結晶シリコン 10 ゲート電極 11 ゲート材料 12 絶縁膜 13 アルミニューム 14、15 抵抗器 2 Non-Linear Element 3 Source Line 4 Gate Line 5 MOS Transistor 6 Capacitor 7 Liquid Crystal Display Cell 8 Glass 9 Polycrystalline Silicon 10 Gate Electrode 11 Gate Material 12 Insulation Film 13 Aluminum 14, 15 Resistor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月29日[Submission date] July 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【発明の効果】以上の如く、複数本のゲート線と該ゲー
ト線と直交する複数本のソース線を備え、該ゲート線と
該ソース線の各交点に非線形素子を形成してなるマトリ
ックスアレー基板において、該複数本のゲート線又は該
複数本のソース線の少なくとも一方には、複数の各線毎
に、該ゲート線又は該ソース線の信号入力側のマトリッ
クスアレー領域外に、抵抗器を挿入したことにより、
電耐量が大幅に向上し、静電気による非線形素子の破壊
が非常に少なくなり、信頼性の高い液晶表示装置の提供
が可能となり、更に該抵抗器を多結晶Si層により形成
した場合は、高抵抗の抵抗器が得られ、かつ非線形素子
を構成しているゲート電極である多結晶Siを利用で
き、抵抗器を作ってもコストアップにならないという効
果を有するものである。
As described above, a matrix array substrate having a plurality of gate lines and a plurality of source lines orthogonal to the gate lines and forming a non-linear element at each intersection of the gate lines and the source lines. In at least one of the plurality of gate lines or the plurality of source lines, a resistor is inserted for each of the plurality of lines outside the matrix array region on the signal input side of the gate line or the source line. by, static
The withstand voltage is greatly improved, the breakdown of the non-linear element due to static electricity is extremely small, and it is possible to provide a highly reliable liquid crystal display device. Furthermore, when the resistor is formed of a polycrystalline Si layer, it has a high resistance. The above-mentioned resistor can be obtained, and polycrystalline Si, which is the gate electrode constituting the non-linear element, can be used. Therefore, even if the resistor is made, the cost does not increase.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数本のゲート線と該ゲート線と直交す
る複数本のソース線を備え、該ゲート線と該ソース線の
各交点に非線形素子を形成してなるマトリックスアレー
基板において、該複数本のゲート線又は該複数本のソー
ス線の少なくとも一方には、複数の各線毎に、該ゲート
線又は該ソース線の信号入力側のマトリックスアレー領
域外に、抵抗器を挿入したことを特徴とするマトリック
スアレー基板。
1. A matrix array substrate comprising a plurality of gate lines and a plurality of source lines orthogonal to the gate lines, wherein a nonlinear element is formed at each intersection of the gate lines and the source lines. At least one of the plurality of gate lines or the plurality of source lines, a resistor is inserted for each of the plurality of lines outside the matrix array region on the signal input side of the gate line or the source line. Matrix array substrate.
JP17034192A 1992-06-29 1992-06-29 Matrix array substrate Expired - Lifetime JP2587754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17034192A JP2587754B2 (en) 1992-06-29 1992-06-29 Matrix array substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17034192A JP2587754B2 (en) 1992-06-29 1992-06-29 Matrix array substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57118254A Division JPS599959A (en) 1982-07-07 1982-07-07 Matrix array substrate

Publications (2)

Publication Number Publication Date
JPH05198806A true JPH05198806A (en) 1993-08-06
JP2587754B2 JP2587754B2 (en) 1997-03-05

Family

ID=15903136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17034192A Expired - Lifetime JP2587754B2 (en) 1992-06-29 1992-06-29 Matrix array substrate

Country Status (1)

Country Link
JP (1) JP2587754B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071912B2 (en) 1997-10-28 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Display panel drive circuit and display panel
KR100692434B1 (en) * 1999-08-31 2007-03-09 샤프 가부시키가이샤 Liquid crystal display
JP2008171919A (en) * 2007-01-10 2008-07-24 Seiko Epson Corp Semiconductor device, electro-optical device, and electronic apparatus
JP2008300755A (en) * 2007-06-04 2008-12-11 Ips Alpha Technology Ltd Display device
JP2013042143A (en) * 2008-12-24 2013-02-28 Semiconductor Energy Lab Co Ltd Semiconductor device
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9184189B2 (en) 2009-03-27 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153588A (en) * 1980-04-25 1981-11-27 Toshiba Corp Storage device
JPH0354475A (en) * 1989-07-24 1991-03-08 Tamagawa Seiki Co Ltd Gas rate sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153588A (en) * 1980-04-25 1981-11-27 Toshiba Corp Storage device
JPH0354475A (en) * 1989-07-24 1991-03-08 Tamagawa Seiki Co Ltd Gas rate sensor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071912B2 (en) 1997-10-28 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Display panel drive circuit and display panel
KR100698793B1 (en) * 1997-10-28 2007-12-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display panel
KR100692434B1 (en) * 1999-08-31 2007-03-09 샤프 가부시키가이샤 Liquid crystal display
US7342617B2 (en) 1999-08-31 2008-03-11 Sharp Kabushiki Kaisha Liquid crystal display comprising an electrostatic protection element formed between adjacent bus lines
JP2008171919A (en) * 2007-01-10 2008-07-24 Seiko Epson Corp Semiconductor device, electro-optical device, and electronic apparatus
JP2008300755A (en) * 2007-06-04 2008-12-11 Ips Alpha Technology Ltd Display device
US9443888B2 (en) 2008-12-24 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device including transistor and resistor incorporating hydrogen in oxide semiconductor
US9202827B2 (en) 2008-12-24 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
JP2013042143A (en) * 2008-12-24 2013-02-28 Semiconductor Energy Lab Co Ltd Semiconductor device
US9941310B2 (en) 2008-12-24 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Driver circuit with oxide semiconductor layers having varying hydrogen concentrations
US9184189B2 (en) 2009-03-27 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9177969B2 (en) 2013-01-30 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9331108B2 (en) 2013-01-30 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9659977B2 (en) 2013-01-30 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9917116B2 (en) 2013-01-30 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device
US9939692B2 (en) 2013-06-05 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device

Also Published As

Publication number Publication date
JP2587754B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US5373377A (en) Liquid crystal device with shorting ring and transistors for electrostatic discharge protection
US5736732A (en) Induced charge prevention in semiconductor imaging devices
TW438991B (en) Manufacturing method of thin film device, active matrix substrate, liquid crystal display device, active matrix substrate and the preventive method of static charge destruction of an active device in LCD
JPS63133124A (en) Discharge protecting circuit network for transducer array
US4609930A (en) Thin film transistor
US6088073A (en) Display device with destaticizing elements and an electrostatic pulse delaying element connected to each of the destaticizing elements
US5483366A (en) LCD with hige capacitance pixel having an ITO active region/poly SI pixel region electrical connection and having poly SI selection line extensions along pixel edges
TW473625B (en) Active matrix type liquid crystal display device and method for fabricating the same
JP3013624B2 (en) Semiconductor integrated circuit device
JPH03134628A (en) Active matrix liquid crystal display element
JPH05198806A (en) Matrix array substrate
JP3217336B2 (en) Semiconductor device
JPS63175832A (en) Active matrix liquid crystal display device
JP2001352069A (en) Electrostatic protection circuit
JPH0567953B2 (en)
US5534722A (en) Insulator substrate for a light valve device having an electrostatic protection region
JPH0354475B2 (en)
JPH05142568A (en) Liquid crystal display device
JPH0814667B2 (en) Method for manufacturing semiconductor device
KR100236612B1 (en) Manufacturing method of storage capacity element in active matrix liquid crystal display device
JPH04100270A (en) Static electricity protective circuit
JPH0239570A (en) Input protecting circuit
JP2002116701A (en) Image display device
JP2720612B2 (en) Method of manufacturing thin film transistor array substrate
CN106909004A (en) One kind coheres pad, display panel, display device and its electrostatic protection method