JPH05195127A - Highly corrosion resistant alloy for heat exchanger tube of boiler - Google Patents

Highly corrosion resistant alloy for heat exchanger tube of boiler

Info

Publication number
JPH05195127A
JPH05195127A JP905292A JP905292A JPH05195127A JP H05195127 A JPH05195127 A JP H05195127A JP 905292 A JP905292 A JP 905292A JP 905292 A JP905292 A JP 905292A JP H05195127 A JPH05195127 A JP H05195127A
Authority
JP
Japan
Prior art keywords
alloy
corrosion
boiler
resistant alloy
corrosion resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP905292A
Other languages
Japanese (ja)
Inventor
Nobuo Otsuka
伸夫 大塚
Takeo Kudo
赳夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP905292A priority Critical patent/JPH05195127A/en
Publication of JPH05195127A publication Critical patent/JPH05195127A/en
Priority to US08/147,441 priority patent/US5378427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly corrosion resistant alloy for the heat exchanger tube of a boiler especially excellent in resistance to intergranular corrosion as well as resistance to general corrosion and stress corrosion cracking and having high strength at high temp. CONSTITUTION:This highly corrosion resistant alloy has a chemical compsn. consisting of, by weight, <=0.05% C, <=2% Si, <=2.5% Mn, 25-35% Cr, 25-55% Ni, Mo satisfying an inequality 0.3(%)<=Mo(%)<=5.8(%)-Ni(%)/10), 0.1-3.0%, in total, of one or more among Nb, Ti, Zr and V and the balance Fe with inevitable impurities or further contg. 0.1-5.0%, in total, of 0.1-5.0% each of one or more among Cu, Co and W as alloying components. The chemical compsn. may contain 0.1-0.3% N as an alloying component or may further contain <=0.5% Al as an alloying component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、塩化物を含む腐食性
燃焼スラグが付着するような高温環境で使用されるボイ
ラの伝熱管(ボイラチューブ)用の高耐食性合金に関す
る。詳しくは、都市ごみ、産業廃棄物、下水処理汚泥等
(以下、「ごみ」と総称する) を焼却する施設におい
て、エネルギー回収を目的として設置される廃熱ボイ
ラ、製紙工場において黒液を燃焼してソーダを回収する
とともに廃熱を利用して発電を行うためのボイラ等の過
熱器管、再熱器管、蒸発器管および水壁管等のボイラ伝
熱管用として、特に高温高圧下で利用されるオーステナ
イト組織の高Cr高Ni合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high corrosion resistant alloy for a heat transfer tube (boiler tube) of a boiler used in a high temperature environment where corrosive combustion slag containing chloride adheres. Specifically, in a facility that incinerates municipal solid waste, industrial waste, sewage treatment sludge (hereinafter collectively referred to as “garbage”), a waste heat boiler installed for the purpose of energy recovery, and a black liquor is burned at a paper mill. Used for boiler heat transfer pipes such as superheater pipes such as boilers, reheater pipes, evaporator pipes and water wall pipes for recovering soda and using waste heat for power generation, especially under high temperature and high pressure A high-Cr high-Ni alloy with an austenitic structure.

【0002】[0002]

【従来の技術】近年、未利用のエネルギーを積極的に利
用する観点から、都市ごみの有するエネルギーの有効利
用が注目され、既に都市ごみを焼却したときに発生する
廃熱を利用して、地域暖房や焼却施設内の電力を賄うた
めの発電が一部の施設で行われている。また、製紙業界
においては、パルプ製造工程で発生する黒液を燃焼させ
てソーダを回収し、併せて廃熱で発電を行う目的のボイ
ラ(ソーダ回収ボイラという)が利用されるようになっ
てきた。
2. Description of the Related Art In recent years, from the viewpoint of positively utilizing unused energy, the effective use of the energy possessed by municipal solid waste has attracted attention, and the waste heat generated when the municipal solid waste is already incinerated has been utilized to Electricity is generated at some facilities to cover the electricity used in heating and incineration facilities. Further, in the paper manufacturing industry, a boiler (called a soda recovery boiler) has been used for the purpose of burning black liquor generated in the pulp manufacturing process to recover soda and also generating power by waste heat. ..

【0003】上記の廃熱回収システムで廃熱を電気エネ
ルギーに変えて最大限に利用するには、発電効率を上げ
なければならない。そのためには廃熱ボイラーの蒸気条
件を高温高圧化する必要がある。しかし、蒸気の高温化
はボイラ管の管壁温度の高温化をもたらし、管の腐食を
激化させる。また、蒸気の高圧化のためにはボイラ管材
料が高温強度にも優れるものでなければならない。例え
ば、従来のごみ焼却廃熱回収ボイラでは、最も温度の高
い過熱器管の管壁温度でも 200〜350 ℃であったが、今
後はごみ焼却廃熱回収ボイラでもソーダ回収ボイラでも
管壁温度が500℃を超えるような操業条件が採用される
ことが予想される。
In the above waste heat recovery system, in order to convert waste heat into electric energy and make maximum use of it, the power generation efficiency must be increased. For that purpose, it is necessary to increase the steam condition of the waste heat boiler to high temperature and high pressure. However, increasing the temperature of the steam causes the temperature of the wall of the boiler tube to increase, which intensifies the corrosion of the tube. Further, in order to increase the pressure of steam, the boiler tube material must have excellent high temperature strength. For example, in the conventional waste incineration waste heat recovery boiler, the wall temperature of the superheater pipe, which has the highest temperature, was 200 to 350 ° C, but in the future, the pipe wall temperature will be changed between the waste incineration waste heat recovery boiler and the soda recovery boiler. It is expected that operating conditions that exceed 500 ° C will be adopted.

【0004】都市ごみの中には多量のプラスチック分が
混入しているから、その燃焼ガスには塩化水素が含まれ
ている。また、燃焼残滓(スラグ)には塩化物が含有さ
れている。従って、ごみ焼却廃熱回収ボイラ用伝熱管で
は、塩化水素ガスによる腐食と、塩化物を含むスラグの
付着による金属材料の腐食損傷が問題となる。この事情
はソーダ回収ボイラでも同じである。
Since a large amount of plastic is mixed in municipal waste, the combustion gas thereof contains hydrogen chloride. Further, chloride is contained in the combustion residue (slag). Therefore, in the heat transfer tube for waste incineration waste heat recovery boiler, there are problems of corrosion due to hydrogen chloride gas and corrosion damage of metal materials due to adhesion of slag containing chloride. This situation is the same for soda recovery boilers.

【0005】前記のような背景から、伝熱管材料として
特に塩化物を含む苛酷な腐食環境に耐える優れた耐食性
と高い高温強度を兼備した材料が強く要求されるに到っ
ている。
From the above-mentioned background, there has been a strong demand for a material having excellent corrosion resistance and high temperature strength which can withstand a severe corrosive environment containing chlorides as a heat transfer tube material.

【0006】超高温高圧化プラントの高温部位、例えば
過熱器管等に使用される材料としては、高温強度に優れ
るオーステナイト組織を有する高耐食性の材料が望まし
い。
As a material used for a high temperature portion of an ultrahigh temperature and high pressure plant, for example, a superheater tube, a material having a high corrosion resistance and having an austenite structure is desirable.

【0007】オーステナイト組織を有する都市ごみ焼却
廃熱ボイラ管用材料は、外国、特に米国において種々の
ものが知られている。例えば、Corrsion, March 9-13,1
987 Paper No.402には、約42%のNiを含む 825合金 (AS
TM B163,B423に記載されているN08825合金) および約66
%のNiを含む 625合金 (ASTM B444 に記載されているN0
6625合金) を都市ごみ焼却廃熱ボイラ管用材料として適
用した事例が報告されており、Niを多量に含むこれらの
高合金鋼は、米国のごみ焼却炉の腐食環境で腐食減肉が
少なく、耐食性に優れていると述べられている。
Various materials for municipal waste incineration waste heat boiler tubes having an austenite structure are known in foreign countries, particularly in the United States. For example, Corrsion, March 9-13,1
987 Paper No. 402 contains 825 alloy (AS
N08825 alloy described in TM B163, B423) and approx. 66
% 625 alloy containing Ni (N0 as described in ASTM B444
(6625 alloy) has been reported to be used as a material for municipal waste incineration waste heat boiler tubes.These high alloy steels containing a large amount of Ni show little corrosion thinning and corrosion resistance in the corrosive environment of US waste incinerators. Is said to be excellent.

【0008】しかし、本発明者らが我が国のごみ焼却廃
熱ボイラおよびソーダ回収ボイラの腐食環境のように、
塩化物を含むスラグが付着する条件で試験した結果で
は、前記825 合金等の従来のオーステナイト系合金に
は、全面腐食や応力腐食割れとともに結晶粒界が選択的
に腐食される粒界腐食が発生する場合がある。
However, the inventors of the present invention, like the corrosive environment of waste incineration waste heat boilers and soda recovery boilers in Japan,
As a result of testing under conditions in which chloride-containing slag adheres, conventional austenitic alloys such as the 825 alloy described above undergo general corrosion and stress corrosion cracking, as well as intergranular corrosion in which grain boundaries are selectively corroded. There is a case.

【0009】本発明者らは、先に、NiとMoの含有量を調
整して応力割れ感受性を低くした合金(特願平3−1885
67号) 、さらにAl添加により全面腐食に対する抵抗性を
高めた合金 (特願平3−161357号) およびMnの多量積極
添加により耐全面腐食性を高めた合金 (特願平3−3103
84号) を開発して特許出願した。しかしながら、前記の
粒界腐食を完全に防止するという点では、これらの発明
の合金も未だ不十分である。ボイラ管は高温高圧下で使
用される構造材料であるから、粒界腐食は状況によって
は管のクラックの起点となり、管の破壊につながるおそ
れがある。従って、特に高温高圧用のボイラ管の材料と
しては粒界腐食に対する感受性はできるだけ低いことが
望ましい。
The inventors of the present invention previously prepared an alloy in which the contents of Ni and Mo are adjusted to reduce the stress cracking susceptibility (Japanese Patent Application No. 3-1885).
67), and an alloy whose resistance to general corrosion has been improved by adding Al (Japanese Patent Application No. 3-161357) and an alloy whose general corrosion resistance has been improved by positive addition of a large amount of Mn (Japanese Patent Application No. 3-3103).
No. 84) was developed and applied for a patent. However, the alloys of these inventions are still insufficient in terms of completely preventing the intergranular corrosion. Since the boiler tube is a structural material used under high temperature and high pressure, intergranular corrosion may become a starting point of cracks in the tube depending on the situation, leading to the destruction of the tube. Therefore, it is desirable that the susceptibility to intergranular corrosion be as low as possible, especially as a material for a boiler tube for high temperature and high pressure.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、前記
の先願発明の合金と同様に高温で優れた強度を示すオー
ステナイト組織を有し、しかも塩化物を含む燃焼スラグ
が付着するような過酷な腐食環境において耐全面腐食
性、耐応力腐食割れ性に優れ、さらに粒界腐食に対して
は前記先願発明の合金に優る十分な抵抗性を有するボイ
ラ伝熱管用材料を提供することにある。
The object of the present invention is to have an austenite structure which exhibits excellent strength at high temperatures as in the case of the alloy of the above-mentioned prior invention, and in which combustion slag containing chloride adheres. To provide a material for a boiler heat transfer tube having excellent general corrosion resistance and stress corrosion cracking resistance in a severe corrosive environment, and having sufficient resistance to intergranular corrosion superior to the alloy of the prior invention. is there.

【0011】[0011]

【課題を解決するための手段】従来、オーステナイト系
合金の粒界腐食は、合金の結晶粒界に析出するCr炭化
物が塩化物を含むスラグと反応する、析出したCr炭化
物の周辺に生じるCr欠乏層が選択的に腐食される、とい
う二つの原因によるとされていた。ところが、本発明者
らが行った塩化物を含む腐食性燃焼スラグが付着する条
件下での試験では、結晶粒界に実質上Cr炭化物が析出し
ていない合金でも粒界腐食が発生した。
[Means for Solving the Problems] Conventionally, intergranular corrosion of austenitic alloy is caused by Cr deficiency generated around the precipitated Cr carbide in which Cr carbide precipitated at the grain boundary of the alloy reacts with slag containing chloride. It has been attributed to two causes: the layer is selectively corroded. However, in the test conducted by the present inventors under the condition that corrosive combustion slag containing chloride adheres, intergranular corrosion occurs even in an alloy in which Cr carbide is not substantially precipitated at the grain boundaries.

【0012】その原因を追求したところ、結晶粒界に偏
析した不純物元素が塩化物を含む燃焼スラグに選択的に
溶出することでも粒界が腐食することを突きとめた。そ
して、後述するように、Cr、Ni、Moをはじめとする合金
元素の含有量を適正に選んだ上で、Cを0.05%以下と
し、更に合金の結晶粒を小さくすることによって上記の
ような環境下でも粒界腐食の発生をほぼ完全に抑えるこ
とが可能であることを確認した。細粒化すれば結晶粒界
の表面積が増大し、単位面積当たりの不純物の結晶粒界
偏析量が減少して、前記の燃焼スラグへの偏析不純物の
溶出が少なくなり粒界腐食が抑制されるものと考えられ
る。
In pursuit of the cause, it was found that the grain boundaries corrode even when the impurity elements segregated at the grain boundaries are selectively eluted into the combustion slag containing chloride. Then, as will be described later, the content of alloy elements such as Cr, Ni and Mo is properly selected, C is set to 0.05% or less, and the crystal grains of the alloy are further reduced to obtain the above It was confirmed that the occurrence of intergranular corrosion can be suppressed almost completely even in the environment. If the grain size is reduced, the grain boundary surface area increases, and the grain boundary segregation amount of impurities per unit area decreases, and the elution of segregated impurities into the combustion slag is reduced and grain boundary corrosion is suppressed. Thought to be a thing.

【0013】上記の知見を基礎とする本発明は、下記の
化学組成をもち、結晶粒度がASTM番号で7より細粒であ
るボイラ伝熱管用高耐食合金を要旨とする。
The present invention, which is based on the above findings, has as its gist a high corrosion-resistant alloy for boiler heat transfer tubes, which has the following chemical composition and whose grain size is finer than ASTM No. 7:

【0014】(1) 重量%で、C:0.05%以下、Si:2%
以下、Mn: 2.5%以下、Cr:25〜35%、Ni:25〜55%お
よび下記式を満足するMoを含有し、更にNb、Ti、Zrお
よびVのうちから選ばれた1種または2種以上を合計で
0.1〜3.0 %含有し、残部がFeおよび不可避不純物から
なる化学組成。
(1) C: 0.05% or less, Si: 2% by weight
Hereinafter, Mn: 2.5% or less, Cr: 25 to 35%, Ni: 25 to 55%, and Mo that satisfy the following formula are contained, and one or more selected from Nb, Ti, Zr, and V. Seeds or more in total
A chemical composition containing 0.1 to 3.0% and the balance Fe and unavoidable impurities.

【0015】 0.3(%)≦ Mo(%)≦ 5.8(%) −{Ni(%)/10}・・・・・ (2) 合金成分として更にCu、CoおよびWのうちの1種以
上を、それぞれ、または2種以上の合計で 0.1〜5.0 重
量%含有する上記 (1)の化学組成。
0.3 (%) ≦ Mo (%) ≦ 5.8 (%)-{Ni (%) / 10} (2) One or more of Cu, Co and W are further added as alloy components. The chemical composition of (1) above, which contains 0.1 to 5.0% by weight of each or a total of two or more kinds.

【0016】(3) 合金成分として更に、 0.1〜0.3 重量
%のNを含有する上記 (1)または(2)のいずれかの化学
組成。
(3) The chemical composition according to (1) or (2) above, which further contains 0.1 to 0.3% by weight of N as an alloy component.

【0017】(4) 合金成分として更に、 0.5重量%以下
のAlを含有する上記 (1)、(2) または(3) のいずれかの
化学組成。
(4) The chemical composition according to any one of (1), (2) or (3) above, which further contains 0.5% by weight or less of Al as an alloy component.

【0018】[0018]

【作用】本発明の合金は、上記各合金成分の適切な組合
せの総合的な効果として、塩化物を含む燃焼スラグが付
着するような高温腐食環境で用いられる材料、例えば、
ごみ焼却ボイラやソーダ回収ボイラの伝熱管の材料にふ
さわしい優れた性質をもつに到るのであるが、各合金成
分の作用効果とその含有量の限定理由を個々に述べれば
次のとおりである。以下、合金成分の含有量についての
%は全て重量%を意味する。
The alloy of the present invention has, as a total effect of the appropriate combination of the above-mentioned alloy components, a material used in a high temperature corrosive environment where a combustion slag containing chloride adheres, for example,
It has excellent properties suitable for the material of the heat transfer tube of the refuse incineration boiler and the soda recovery boiler. The action effects of each alloy component and the reasons for limiting the content thereof are as follows. Hereinafter, all percentages regarding the content of alloy components mean wt%.

【0019】C:Cは合金中のCrと結合し、結晶粒界に
塊状のCr炭化物として析出すると管の表面に付着した塩
化物を含む燃焼スラグと反応したり、結晶粒界近傍にCr
欠乏層を形成して合金の耐粒界腐食性を劣化させる。従
って、Cの含有量はできるだけ低くするのが望ましい。
0.05%は許容上限値である。
C: C is combined with Cr in the alloy, and if it is precipitated as a lumpy Cr carbide on the grain boundary, it reacts with the combustion slag containing chloride adhering to the surface of the pipe, or Cr near the grain boundary.
It forms a depletion layer to deteriorate the intergranular corrosion resistance of the alloy. Therefore, it is desirable that the C content be as low as possible.
0.05% is the allowable upper limit value.

【0020】Si:Siは、通常、合金の脱酸剤として添加
され、また、一般に耐酸化性を高めるためにも有効な元
素である。しかもオーステナイト組織の合金ではSiの添
加は全面腐食を抑制する効果もある。しかしながら、Si
含有量が過多になると溶接した継手部の高温割れ感受性
が高くなるから、これを避けるためにその含有量を2%
以下とした。
Si: Si is usually added as a deoxidizing agent for alloys, and is generally an effective element for enhancing the oxidation resistance. Moreover, in alloys having an austenitic structure, addition of Si also has the effect of suppressing general corrosion. However, Si
If the content is too high, the susceptibility of the welded joint to high temperature cracking will increase, so in order to avoid this, the content should be 2%.
Below.

【0021】Mn:Mnはオーステナイト形成元素であると
共に、脱酸剤としても利用できる。しかし、その含有量
が 2.5%を超えると耐酸化性および熱間加工性が共に劣
化するから、その含有量を 2.5%以下とした。
Mn: Mn is an austenite forming element and can also be used as a deoxidizing agent. However, if the content exceeds 2.5%, both the oxidation resistance and the hot workability deteriorate, so the content was made 2.5% or less.

【0022】Cr:Crは高温強度および高温での耐酸化性
の改善に優れた効果を示す。しかし、その含有量が25%
未満では前記のような腐食環境下での高温腐食に対する
抵抗性が十分でない。一方、35%を超えて含有させて
も、耐食性向上の効果は増大せず、いたずらに材料価格
を上げるだけになるからその上限を35%とした。
Cr: Cr exhibits excellent effects in improving high temperature strength and oxidation resistance at high temperatures. However, its content is 25%
If it is less than the above range, the resistance to high temperature corrosion in the above corrosive environment is not sufficient. On the other hand, if the content exceeds 35%, the effect of improving the corrosion resistance does not increase, and only the material price is unnecessarily increased, so the upper limit was made 35%.

【0023】Ni:Niはオーステナイト形成元素であり、
高温強度の確保や主として溶融塩化物系の腐食性燃焼ス
ラグによる全面腐食を抑制する重要な成分である。しか
し、Niは高価な元素であるから、材料コストと上記の効
果とのバランスを考慮して上限を55%とした。一方、Ni
含有量が25%より低くなると耐高温腐食性が急激に劣化
することから下限を25%とした。
Ni: Ni is an austenite forming element,
It is an important component that secures high temperature strength and suppresses general corrosion mainly due to molten chloride-based corrosive combustion slag. However, since Ni is an expensive element, the upper limit was set to 55% in consideration of the balance between the material cost and the above effects. On the other hand, Ni
If the content is lower than 25%, the high temperature corrosion resistance deteriorates rapidly, so the lower limit was made 25%.

【0024】Mo:Moは結晶粒界を強化し、粒界腐食に対
する抵抗性を高めるのに有効な成分である。Moは塩素イ
オンを含む水溶液中での耐食性、特に耐応力腐食割れ性
を改善する成分とされており、耐海水腐食材料でもある
前記の 825合金が3%のMoを含有するのもこの理由に基
づいている。ところが、前記のように我が国の都市ごみ
焼却ボイラの腐食環境のように、高濃度の溶融塩化物が
含まれる燃焼スラグが付着する環境では、従来の知見に
反してMoを多量に添加すると応力腐食割れ感受性が高く
なる。しかしながら、本発明者らの研究結果によれば、
Moの応力腐食割れ感受性に対する影響は合金鋼中のNi含
有量に強く依存しており、Moの含有量をNi含有量に応じ
て適切に調整すれば、応力腐食割れ感受性を低くするこ
とが可能である。一方、前記のようにMoは粒界腐食を抑
制する作用をもつ元素であり、その効果を得るには 0.3
%以上の含有量が必要である。上記のような、Moの作用
効果を勘案して定めたのが前記の式、 即ち、 0.3(%)≦ Mo(%)≦ 5.8(%) −{Ni(%)/10}・・・・・ である。Mo(%) が 5.8(%) −{Ni(%)/10 }以下であ
れば合金の応力腐食割れ感受性が高められることはな
い。
Mo: Mo is an effective component for strengthening the grain boundaries and enhancing resistance to intergranular corrosion. Mo is a component that improves corrosion resistance in an aqueous solution containing chloride ions, especially stress corrosion cracking resistance, and this is also because the 825 alloy, which is also a seawater corrosion resistant material, contains 3% Mo. Is based. However, as mentioned above, in the environment where combustion slag containing high concentration of molten chloride is attached, such as the corrosive environment of the municipal solid waste incineration boiler in Japan, contrary to conventional knowledge, when a large amount of Mo is added, stress corrosion occurs. Increases susceptibility to cracking. However, according to the research results of the present inventors,
The effect of Mo on stress corrosion cracking susceptibility strongly depends on the Ni content in alloy steel, and it is possible to reduce stress corrosion cracking susceptibility by appropriately adjusting the Mo content according to the Ni content. Is. On the other hand, as described above, Mo is an element having an action of suppressing intergranular corrosion, and 0.3% is required to obtain the effect.
% Or more content is required. As described above, the above formula is determined in consideration of the action and effect of Mo, that is, 0.3 (%) ≦ Mo (%) ≦ 5.8 (%) − {Ni (%) / 10} ...・ It is. If Mo (%) is 5.8 (%)-{Ni (%) / 10} or less, the stress corrosion cracking susceptibility of the alloy is not enhanced.

【0025】Nb、Ti、ZrおよびV:Nb、Ti、ZrおよびV
(これらを便宜的に第1群元素という)はいずれも炭化
物を形成しやすいので、合金鋼中のCを固定してCr炭化
物の析出を抑制し、高温強度の向上および粒界腐食に対
する抵抗性を高めるのに役立つ。オーステナイト組織の
合金の場合には、結晶粒界に析出するCr炭化物が管表面
に付着する腐食性の溶融塩化合物と反応して粒界腐食を
発生させる一因となるが、C、PおよびSiを低く抑えた
上でこれらの元素を添加すれば耐粒界腐食性は一段と向
上する。これらの元素の含有量が1種または2種以上の
合計で 0.1%未満の場合は添加の効果が現れず、3%を
超えて含有させても効果が飽和し、コストのみが上昇す
る。
Nb, Ti, Zr and V: Nb, Ti, Zr and V
Since all of these (for convenience, are referred to as Group 1 elements) easily form carbides, they fix C in the alloy steel to suppress precipitation of Cr carbides, improve high temperature strength and resistance to intergranular corrosion. Help to increase. In the case of alloys having an austenite structure, Cr carbides that precipitate at grain boundaries react with corrosive molten salt compounds that adhere to the surface of the pipe, which causes grain boundary corrosion. The intergranular corrosion resistance is further improved by adding these elements after keeping the value low. If the total content of one or more of these elements is less than 0.1%, the effect of addition does not appear, and if the content exceeds 3%, the effect is saturated and only the cost increases.

【0026】本発明合金は、上記の成分の外に、次の元
素を必要に応じて含有することができる。
In addition to the above components, the alloy of the present invention may contain the following elements, if necessary.

【0027】Cu、CoおよびW:Cu、CoおよびW(これら
を便宜的に第2群元素という)は、固溶強化により合金
の高温強度を向上させる作用があり、必要に応じて1種
または2種以上を添加することができる。1種または2
種以上の合計含有量が 0.1%未満の場合は添加の効果が
顕著でない。一方、5%を超える範囲ではコスト上昇に
見合う効果の増大は殆どない。
Cu, Co and W: Cu, Co and W (these are referred to as second group elements for convenience) have the action of improving the high temperature strength of the alloy by solid solution strengthening. Two or more kinds can be added. 1 or 2
If the total content of at least one species is less than 0.1%, the effect of addition is not remarkable. On the other hand, in the range exceeding 5%, there is almost no increase in the effect commensurate with the cost increase.

【0028】N(窒素):Nはオーステナイト組織の安
定化に寄与する。また、高温強度を高める作用も有する
ので、必要に応じて 0.1%以上含有させることができ
る。しかし、本発明合金の組成範囲では、通常の溶製法
で 0.3%を超える含有量にすることは困難である。
N (nitrogen): N contributes to stabilization of the austenite structure. Further, since it also has the effect of increasing the high temperature strength, it can be contained in an amount of 0.1% or more, if necessary. However, in the composition range of the alloy of the present invention, it is difficult to make the content exceed 0.3% by the usual melting method.

【0029】Al:Alは合金の脱酸をすみやかに進め、合
金の熱間加工性を向上させる目的で添加することができ
る。しかし、Alが過剰に残ってその含有量が 0.5%を超
えると高温で長時間使用した場合に金属間化合物Ni3Al
が析出しクリープ延性を劣化させるから、その含有量は
0.5%以下にとどめるのが望ましい。本発明の合金は、
例えば、電気炉で溶製し、VODまたはAODで精錬し
た後ビレットとし、このビレットを1100〜1200℃に加熱
して熱間押出法で製管して素管を得、この素管を加工度
20%前後で冷間抽伸して所定寸法の管とする。熱処理
は、細粒組織を得るために、従来一般に行われる1050〜
1200℃で加熱して急冷する溶体化処理に代えて、これよ
り低温域の 950以上で1050℃未満の温度に加熱した後に
急冷する溶体化処理を施す。
Al: Al can be added for the purpose of promptly deoxidizing the alloy and improving the hot workability of the alloy. However, if Al remains in excess and its content exceeds 0.5%, the intermetallic compound Ni 3 Al will remain when used at high temperature for a long time.
Precipitates and deteriorates the creep ductility, so its content is
It is desirable to keep it below 0.5%. The alloy of the present invention is
For example, it is melted in an electric furnace and refined with VOD or AOD to form a billet. The billet is heated to 1100 to 1200 ° C. to produce a raw pipe by a hot extrusion method, and this raw pipe is processed.
Cold draw at around 20% to make a tube with a specified size. The heat treatment is generally performed to obtain a fine grain structure from 1050 to
Instead of the solution treatment of heating at 1200 ° C and quenching, the solution treatment of heating to a temperature of 950 or higher in the lower temperature range below 1050 ° C and then quenching is performed.

【0030】上記の製造方法に代えて、ビレットの加熱
温度を1200℃を超えて1300℃までの高温とし、炭化物を
完全に固溶させた後、熱間押出法で製管して素管を得、
この素管を30%前後の高加工度で加工して所定寸法の管
とし、その後の熱処理は1050〜1250℃での加熱の後に急
冷する溶体化処理としてもよい。この方法でも炭化物を
微細に析出させて細粒組織とすることができる。
Instead of the above-mentioned manufacturing method, the billet is heated to a temperature higher than 1200 ° C. up to 1300 ° C., the solid solution of the carbide is completely obtained, and then the hot-extrusion method is used to produce a raw tube. Get
This raw pipe may be processed at a high workability of about 30% to obtain a pipe having a predetermined size, and the subsequent heat treatment may be a solution treatment of heating at 1050-1250 ° C and then rapidly cooling. Also by this method, carbide can be finely precipitated to form a fine grain structure.

【0031】熱処理の後、デスケールして最終的に製品
伝熱管とする。なお、他の材料製の管と本発明合金製の
管とを組み合わせて二重管(クラッド管)として利用す
ることもできる。
After the heat treatment, descaling is performed to finally obtain a product heat transfer tube. It should be noted that a tube made of another material and a tube made of the alloy of the present invention can be combined and used as a double tube (clad tube).

【0032】[0032]

【実施例】表1(1) 〜(5) に化学組成を示す符号 1〜40
の合金を真空溶解炉で17kgずつ溶製し、インゴットに鋳
造した後、1100℃の温度に加熱し、熱間鍛造および熱間
圧延して15mm厚のビレットにした。次いで、1100℃の温
度で軟化焼鈍した後、冷間圧延して10.5mm厚の板にし
た。その後、符号1〜9の合金については、それぞれ95
0 ℃、975 ℃および1200℃の各温度30分間加熱して水冷
する溶体化処理を施して結晶粒度を変化させた。表1の
符号の、およびはそれぞれ1200℃、975℃および
950℃で加熱し水冷した溶体化処理材である。符号10〜3
5の合金はすべて溶体化温度を 975℃に統一して熱処理
した。これらの熱処理後の結晶粒度を表1に併記した。
[Examples] In Tables 1 (1) to (5), reference numerals 1 to 40 showing chemical compositions
The alloy was melted in a vacuum melting furnace in an amount of 17 kg each, cast into an ingot, heated to a temperature of 1100 ° C., hot forged and hot rolled into a 15 mm thick billet. Then, after softening annealing at a temperature of 1100 ° C., it was cold-rolled into a plate having a thickness of 10.5 mm. After that, for alloys 1-9, 95
The crystal grain size was changed by subjecting to solution treatment of heating at 0 ° C, 975 ° C and 1200 ° C for 30 minutes and cooling with water. The and of the symbols in Table 1 are 1200 ℃, 975 ℃ and
It is a solution heat treated material that was heated at 950 ° C and cooled with water. Code 10 to 3
All alloys of No. 5 were heat-treated at the same solution temperature of 975 ℃. The grain sizes after these heat treatments are also shown in Table 1.

【0033】上記溶体化処理後のそれぞれの板の中央部
から2mm厚×10mm幅×10mm長さの腐食試験片と、図1に
示す寸法形状の応力割れ試験片を切り出し、後述の塩化
物を含む燃焼スラグ付着を模擬した高温腐食試験を行っ
た。併せて、表1(5) の符号36〜40に示す組成の合金の
前記と同じ寸法の試験片を市販ボイラ管の肉厚中央部か
ら切り出し、同じ試験に供した。なお、表1(5) 中の符
号36はASTMのB163に記載のあるNO8825合金、符号37はSU
S304、符号38は SUS316L、符号39はSUS 310S、符号40は
ASTMのB622に記載されているN08320鋼に、それぞれ相当
するものである。
After the solution treatment, a corrosion test piece having a thickness of 2 mm, a width of 10 mm and a length of 10 mm and a stress cracking test piece having a dimension and shape shown in FIG. A high temperature corrosion test simulating the adhesion of combustion slag containing was conducted. At the same time, test pieces of alloys having the compositions shown by reference numerals 36 to 40 in Table 1 (5) and having the same dimensions as described above were cut out from the center portion of the wall thickness of a commercial boiler tube and subjected to the same test. In Table 1 (5), reference numeral 36 is NO8825 alloy described in ASTM B163, and reference numeral 37 is SU.
S304, code 38 is SUS316L, code 39 is SUS 310S, code 40 is
They correspond to N08320 steel described in ASTM B622, respectively.

【0034】高温腐食試験は、下記およびの2条件
で行った。
The high temperature corrosion test was conducted under the following two conditions.

【0035】 ごみ焼却ボイラの腐食性環境を模擬し
た試験 モル%で、10%NaCl−10%KCl −15%FeCl2 −15%PbCl
2 −18.75 %Na2SO4−18.75 %K2SO4 −12.5%Fe2O3
合成灰を前記試験片の両面に30mg/cm2の割合で塗付し、
これを0.15%HCl −300ppmSO2 − 7.5%O2− 7.5%CO2
−20%H2O − bal.N2 のガス気流中において 550℃の温
度で20時間加熱。
Test simulating the corrosive environment of a refuse incineration boiler: 10% NaCl-10% KCl-15% FeCl 2 -15% PbCl in mol%
2 -18.75% Na 2 SO 4 -18.75 % K coating subjected at a rate of 30 mg / cm 2 Synthesis ash of 2 SO 4 -12.5% Fe 2 O 3 on both surfaces of the test piece,
0.15% HCl −300ppm SO 2 − 7.5% O 2 − 7.5% CO 2
−20% H 2 O − Heated at 550 ° C for 20 hours in gas stream of bal.N 2 .

【0036】ソーダ回収ボイラの腐食性環境を模擬し
た試験 モル%で20%NaCl−22.5%Na2SO4−22.5%K2SO4 −20%
Na2CO3−15%Fe2O3 の合成灰を前記試験片の両面に30mg
/cm2の割合で塗付し、これを0.25%SO2 − 1%O2−15%
CO2 −bal.N2のガス気流中において 600℃の温度で20時
間加熱。
[0036] 20% NaCl-22.5% in the test mole percent corrosive environment simulating a soda recovery boiler Na 2 SO 4 -22.5% K 2 SO 4 -20%
30 mg of synthetic ash of Na 2 CO 3 -15% Fe 2 O 3 was applied to both sides of the test piece.
/ coating subjected at a rate of cm 2, which 0.25% SO 2 - 1% O 2 -15%
Heated at a temperature of 600 ° C for 20 hours in a gas stream of CO 2 -bal.N 2 .

【0037】耐食性は、試験後の試験片を脱スケールし
て重量測定を行い、試験前後の重量変化から腐食減量を
求めて評価した。
The corrosion resistance was evaluated by descaling the test piece after the test, measuring the weight, and determining the corrosion weight loss from the weight change before and after the test.

【0038】耐粒界腐食性は、脱スケールした腐食試験
片の表面部分を 100倍または 500倍の光学顕微鏡で断面
をミクロ観察して評価した。ごみ焼却ボイラの腐食環境
で問題になる応力腐食割れに対する感受性の試験は、図
2に示すように治具1で前記応力腐食割れ試験片2にそ
れぞれの合金の 0.2%耐力相当の応力を負荷し、この状
態で試験片2の表面に前記の高温腐食試験で用いたの
と同じ合成灰を塗布した後、同じガス気流中で 400℃の
温度に20時間保持する試験である。試験温度を 400℃と
したのはオーステナイト組織の合金の応力腐食割れ感受
性は 400℃付近で最も高くなるという本発明者の知見が
あったからである。応力腐食割れの有無は、半円ノッチ
部の断面ミクロ観察で調べた。
The intergranular corrosion resistance was evaluated by microscopically observing the cross section of the surface portion of the descaled corrosion test piece with an optical microscope of 100 times or 500 times. As shown in Fig. 2, the stress corrosion cracking susceptibility test, which is a problem in the corrosive environment of the refuse incineration boiler, is performed by applying a stress equivalent to 0.2% proof stress of each alloy to the stress corrosion cracking test piece 2 with the jig 1 as shown in Fig. 2. In this state, the surface of the test piece 2 is coated with the same synthetic ash as used in the high temperature corrosion test, and then the temperature is kept at 400 ° C. for 20 hours in the same gas stream. The test temperature was set to 400 ° C. because the inventors of the present invention found that the stress corrosion cracking susceptibility of the alloy having an austenitic structure was highest at around 400 ° C. The presence or absence of stress corrosion cracking was examined by microscopic observation of the cross section of the semicircular notch.

【0039】[0039]

【表1(1)】 [Table 1 (1)]

【0040】[0040]

【表1(2)】 [Table 1 (2)]

【0041】[0041]

【表1(3)】 [Table 1 (3)]

【0042】[0042]

【表1(4)】 [Table 1 (4)]

【0043】[0043]

【表1(5)】 [Table 1 (5)]

【0044】表2 (1)〜(3) に、ごみ焼却ボイラの腐食
環境を模擬した前記の腐食試験結果を示す。符号1〜
9の合金ではそれぞれおよびが結晶粒の小さい本発
明合金である。また、符号10〜35の合金も全て本発明合
金である。
Tables (1) to (3) show the results of the above corrosion test simulating the corrosive environment of the refuse incineration boiler. Reference numbers 1 to
In the alloy of No. 9, each of and is the alloy of the present invention having a small crystal grain. Further, the alloys of 10 to 35 are all alloys of the invention.

【0045】符号1〜9の〜の粒界最大浸食深さを
見ればわかるように、同じ化学組成の合金でも結晶粒度
によって粒界腐食の程度は大きく異なる。結晶粒の大き
さがASTM番号で7より大きい本発明の細粒合金の最大粒
界浸食深さは、いずれも 5μm 以下となっており、比較
合金 (符号36〜40) のそれに較べて著しく浅い。
As can be seen from the grain boundary maximum erosion depths of 1 to 9, even in alloys having the same chemical composition, the degree of intergranular corrosion greatly varies depending on the grain size. The maximum grain boundary erosion depths of the fine grain alloys of the present invention, each of which has a grain size larger than ASTM No. 7, is 5 μm or less, which is significantly shallower than that of the comparative alloys (symbols 36 to 40). ..

【0046】本発明合金は、耐全面腐食性においても比
較合金のいずれにも勝り、応力腐食割れ感受性も低い。
The alloy of the present invention is superior in general corrosion resistance to any of the comparative alloys and has low susceptibility to stress corrosion cracking.

【0047】以上の結果から、本発明合金はごみ焼却ボ
イラ用伝熱管の材料として極めて優れたものであると言
える。
From the above results, it can be said that the alloy of the present invention is extremely excellent as a material for heat transfer tubes for refuse incineration boilers.

【0048】表3 (1)〜(3) は前記のソーダ回収ボイ
ラの腐食環境を模擬した試験の結果である。この試験で
も、前述のの条件による試験と同様に、ASTM番号が7
より大きい細粒の本発明合金の耐粒界腐食性は著しく優
れ、最大粒界浸食深さは、いずれも 400倍の光学顕微鏡
では観測可能なぎりぎりのレベルである 2.5μm 以下と
なっている。また、耐全面腐食性でも比較合金をはるか
に凌ぐ。
Tables 3 (1) to (3) are the results of tests simulating the corrosive environment of the soda recovery boiler. In this test, the ASTM number is 7 as in the test under the above conditions.
The intergranular corrosion resistance of the alloy of the present invention having a larger fine grain is remarkably excellent, and the maximum intergranular erosion depth is 2.5 μm or less, which is the barely observable level with an optical microscope of 400 times. In addition, the general corrosion resistance far exceeds that of the comparative alloy.

【0049】[0049]

【表2(1)】 [Table 2 (1)]

【0050】[0050]

【表2(2)】 [Table 2 (2)]

【0051】[0051]

【表2(3)】 [Table 2 (3)]

【0052】[0052]

【表3(1)】 [Table 3 (1)]

【0053】[0053]

【表3(2)】 [Table 3 (2)]

【0054】[0054]

【表3(3)】 [Table 3 (3)]

【0055】[0055]

【発明の効果】実施例の試験結果からも明らかなよう
に、本発明合金はごみ焼却ボイラおよびソーダ回収ボイ
ラの伝熱管が曝されるきわめて特殊で苛酷な腐食環境中
でも優れた耐全面腐食性と耐応力腐食割れを有し、しか
も粒界腐食に対しても強い抵抗性を示す合金である。こ
の合金はオーステナイト組織であるため、高温強度は勿
論のこと、加工性および溶接性にも優れている。また、
Ni含有量は55%まででよいから、既存のNi基合金に比較
して安価でもある。
As is clear from the test results of the examples, the alloy of the present invention has excellent general corrosion resistance even in a very special and severe corrosive environment to which the heat transfer tubes of the refuse incineration boiler and the soda recovery boiler are exposed. It is an alloy that has stress corrosion cracking resistance and that also exhibits strong resistance to intergranular corrosion. Since this alloy has an austenite structure, it is excellent not only in high temperature strength but also in workability and weldability. Also,
Since the Ni content may be up to 55%, it is cheaper than existing Ni-based alloys.

【0056】本発明合金からなる管を上記のボイラの高
温部位、例えば過熱器管等に使用することによって、廃
熱を充分に利用する高温高圧のボイラとすることが可能
となり、エネルギー回収効率を高め、従来以上に効率よ
く電力エネルギーとして取り出すことができる。
By using the tube made of the alloy of the present invention in the high temperature part of the boiler, for example, the superheater tube, it becomes possible to make a high temperature and high pressure boiler that makes full use of waste heat and to improve energy recovery efficiency. It is possible to increase the efficiency and extract it as electric power energy more efficiently than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温腐食試験で腐食減量の測定に用いた腐食試
験片の形状を示す平面図および側面図である。
FIG. 1 is a plan view and a side view showing a shape of a corrosion test piece used for measuring a corrosion weight loss in a high temperature corrosion test.

【図2】応力腐食割れ試験で使用した治具と試験片の取
付け方法を示す側面図である。
FIG. 2 is a side view showing a method of attaching a jig and a test piece used in a stress corrosion cracking test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.05%以下、Si:2%以
下、Mn: 2.5%以下、Cr:25〜35%、Ni:25〜55%およ
び下記式を満足するMoを含有し、更にNb、Ti、Zrおよ
びVのうちから選ばれた1種または2種以上を合計で
0.1〜3.0 %含有し、残部がFeおよび不可避不純物から
なり、結晶粒度がASTM番号で7より細粒であるボイラ伝
熱管用高耐食合金。 0.3(%)≦ Mo(%)≦ 5.8(%) −{Ni(%)/10}・・・・・
1. By weight%, C: 0.05% or less, Si: 2% or less, Mn: 2.5% or less, Cr: 25 to 35%, Ni: 25 to 55% and Mo satisfying the following formula are contained. , And one or more selected from Nb, Ti, Zr and V in total.
A high corrosion resistant alloy for boiler heat transfer tubes, containing 0.1 to 3.0%, the balance being Fe and unavoidable impurities, and having a grain size finer than ASTM No. 7. 0.3 (%) ≦ Mo (%) ≦ 5.8 (%) − {Ni (%) / 10} ・ ・ ・ ・ ・
【請求項2】合金成分として更にCu、CoおよびWのうち
から選ばれた1種または2種以上を合計で 0.1〜5.0 重
量%含有する請求項1のボイラ伝熱管用高耐食合金。
2. The high corrosion resistant alloy for a boiler heat transfer tube according to claim 1, further comprising 0.1 to 5.0% by weight in total of one or more selected from Cu, Co and W as an alloy component.
【請求項3】合金成分として更にN: 0.1〜0.3 重量%
を含有する請求項1または2のボイラ伝熱管用高耐食合
金。
3. N: 0.1 to 0.3% by weight as an alloy component
A high corrosion-resistant alloy for boiler heat transfer tubes according to claim 1 or 2, which contains.
【請求項4】合金成分として更に 0.5重量%以下のAlを
含有する請求項1、2または3のボイラ伝熱管用高耐食
合金。
4. The high corrosion resistant alloy for a boiler heat transfer tube according to claim 1, further comprising 0.5% by weight or less of Al as an alloy component.
JP905292A 1991-03-13 1992-01-22 Highly corrosion resistant alloy for heat exchanger tube of boiler Pending JPH05195127A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP905292A JPH05195127A (en) 1992-01-22 1992-01-22 Highly corrosion resistant alloy for heat exchanger tube of boiler
US08/147,441 US5378427A (en) 1991-03-13 1993-11-05 Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP905292A JPH05195127A (en) 1992-01-22 1992-01-22 Highly corrosion resistant alloy for heat exchanger tube of boiler

Publications (1)

Publication Number Publication Date
JPH05195127A true JPH05195127A (en) 1993-08-03

Family

ID=11709867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP905292A Pending JPH05195127A (en) 1991-03-13 1992-01-22 Highly corrosion resistant alloy for heat exchanger tube of boiler

Country Status (1)

Country Link
JP (1) JPH05195127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815848B2 (en) 2006-05-08 2010-10-19 Huntington Alloys Corporation Corrosion resistant alloy and components made therefrom
JP2014084493A (en) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
WO2017002523A1 (en) * 2015-07-01 2017-01-05 新日鐵住金株式会社 Austenitic heat-resistant alloy and welded structure
CN115261700A (en) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 Corrosion-resistant alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815848B2 (en) 2006-05-08 2010-10-19 Huntington Alloys Corporation Corrosion resistant alloy and components made therefrom
JP2014084493A (en) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
WO2017002523A1 (en) * 2015-07-01 2017-01-05 新日鐵住金株式会社 Austenitic heat-resistant alloy and welded structure
JPWO2017002523A1 (en) * 2015-07-01 2018-03-29 新日鐵住金株式会社 Austenitic heat resistant alloys and welded structures
CN115261700A (en) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 Corrosion-resistant alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP4656251B1 (en) Ni-based alloy material
EP0819775B1 (en) A nickel-based alloy excellent in corrosion resistance and workability
KR20100060026A (en) Austenitic stainless steel
US5378427A (en) Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP2002069591A (en) High corrosion resistant stainless steel
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JP3864437B2 (en) High Mo nickel base alloy and alloy tube
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
JPH05195127A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler
JPH0570895A (en) Highly corrosion resistant alloy steel for heat transfer tube for waste incineration waste heat boiler
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JP2817456B2 (en) High alloy steel for waste incineration waste heat boiler tubes
EP0155011B1 (en) High-strength alloy for industrial vessels
JPS6363610B2 (en)
JP3779043B2 (en) Duplex stainless steel
JP4290260B2 (en) Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes
JPS6363609B2 (en)
JPH08120392A (en) Austenitic corrosion resistant alloy for high efficiency rubbish power generating boiler superheater tube
JPH05148587A (en) High corrosion-resistant alloy for waste incineration boiler heat transfer tube
JP2643709C (en)
JP2001152293A (en) HIGH Cr FERRITIC HEAT RESISTING STEEL
GB1570026A (en) Iron-nickel-chromium alloys