JPH0519123A - Optical fiber sensor - Google Patents

Optical fiber sensor

Info

Publication number
JPH0519123A
JPH0519123A JP3196985A JP19698591A JPH0519123A JP H0519123 A JPH0519123 A JP H0519123A JP 3196985 A JP3196985 A JP 3196985A JP 19698591 A JP19698591 A JP 19698591A JP H0519123 A JPH0519123 A JP H0519123A
Authority
JP
Japan
Prior art keywords
optical fiber
clad
fiber sensor
core
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3196985A
Other languages
Japanese (ja)
Other versions
JPH0785122B2 (en
Inventor
Kazuya Oga
一也 大賀
Yoshiaki Kurauchi
芳秋 倉内
Takayuki Yanai
▲たか▼之 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SEISAKUSHO YUGEN
Original Assignee
ASAHI SEISAKUSHO YUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SEISAKUSHO YUGEN filed Critical ASAHI SEISAKUSHO YUGEN
Priority to JP3196985A priority Critical patent/JPH0785122B2/en
Publication of JPH0519123A publication Critical patent/JPH0519123A/en
Publication of JPH0785122B2 publication Critical patent/JPH0785122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of org. solvent in water, etc., on a real-time basis with a simple structure at a low cost by forming a chitosan composite film on the surface of the core of an optical fiber as a clad. CONSTITUTION:This sensor is formed with a columnar core 12 and a clad 14 formed on the surface of the core 12. The core 12 is made of plastics or quartz, and the clad is formed as the chitosan-PVA film. When light passes through the optical-fiber sensor 10, the degree of the swelling and contraction of the clad 14 changed with the water/ethanol ratio in a liq. to be tested, and the transmitted light quantity varies with the critical angle due to the density change of the clad 14 at this time. As a result, the ethanol concn. is obtained by measuring the transmitted light quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバを用いて水
中の有機溶媒の濃度等を測定する光ファイバセンサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber sensor for measuring the concentration of organic solvent in water using an optical fiber.

【0002】[0002]

【従来の技術】従来、例えば、酒類中のエタノール定量
には浮秤法が用いられ、酒精計を試料液中に浮遊させて
濃度換算表を参照しつつ濃度測定を行なったり、また、
近時、ガスクロマトグラフ等を用いてより簡便な測定を
行なっている。
2. Description of the Related Art Conventionally, for example, a floating balance method has been used to quantify ethanol in alcoholic beverages, and a liquor meter is suspended in a sample solution to measure the concentration while referring to a concentration conversion table.
Recently, simpler measurements have been performed using gas chromatographs.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、従来
の浮秤法によれば、一度蒸留を行なう必要があり、測定
時間が掛かるとともに、測定作業も煩雑であった。ま
た、ガスクロマトグラフィーによれば、機器が高価なた
め、測定コストが高くなるうえ、これらいずれの方法も
フロー系でリアルタイムに測定することは困難であると
いう問題があった。
However, according to the conventional flotation method, it is necessary to carry out distillation once, which requires a long measuring time, and the measuring work is complicated. Further, according to gas chromatography, since the equipment is expensive, the measurement cost is high, and it is difficult for any of these methods to measure in real time in a flow system.

【0004】本発明は上記従来の問題点に鑑みてなされ
たものであり、その目的は極めて、簡単な構造で、コス
トも安価であり、さらに、簡単な工程で、リアルタイム
に水中の有機溶媒の濃度等を測定することのできる光フ
ァイバセンサを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to have an extremely simple structure and low cost. Furthermore, the organic solvent in water can be prepared in real time by a simple process. An object is to provide an optical fiber sensor capable of measuring the concentration and the like.

【0005】[0005]

【問題点を解決するための手段】上記目的を達成するた
めに、本発明は、光ファイバのコア12の表面にキトサ
ン複合膜をクラッド14として被着させて成る光ファイ
バセンサ10から構成される。
In order to achieve the above object, the present invention comprises an optical fiber sensor 10 in which a chitosan composite film is deposited as a cladding 14 on the surface of an optical fiber core 12. ..

【0006】[0006]

【作用】光が光ファイバセンサ内を透過する際、被検液
中の水/エタノールの組成比によりキトサン/PVA膜
クラッドの膨潤収縮の程度が変化し、その時のクラッド
の密度変化により臨界角が変化することにより伝搬光量
が変化する。このときの透過光量を測定することによ
り、これに対応した被検液中のエタノール濃度を得るこ
ととなる。
When light passes through the optical fiber sensor, the degree of swelling and contraction of the chitosan / PVA membrane clad changes depending on the composition ratio of water / ethanol in the test solution, and the critical angle changes due to the density change of the clad at that time. The amount of propagating light changes due to the change. By measuring the amount of transmitted light at this time, the ethanol concentration in the test liquid corresponding to this can be obtained.

【0007】[0007]

【実施例】以下、添付図面に基づき、本発明の好適な実
施例を説明する。図1は、本発明の実施例に係る光ファ
イバセンサ10の拡大縦断面説明図であり、図におい
て、この光ファイバセンサは、円柱状のコア12と、こ
のコア12の表面に被着されたクラッド14から形成さ
れる。コア12は、公知のプラスチック系又は石英系の
何れを用いてもよい。クラッド14は、キトサン/PV
A(polyvinyl alcohol)膜として形
成されており、後述のように、試料溶液中の溶媒を含ん
だクラッドの密度変化に対応する溶液の濃度等を測定す
ることとなる。本実施例においては、例えば、長さ40
mm、直径0.8mmの石英コアを用い、クラッド14
を膜厚約1μmに形成している。尚、この光ファイバセ
ンサ10は、図3に示すように、複数本を束ねて長手両
端部のみをエポキシ樹脂16で固着させた状態として用
いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an enlarged vertical cross-sectional explanatory view of an optical fiber sensor 10 according to an embodiment of the present invention. In the figure, the optical fiber sensor is provided with a cylindrical core 12 and a surface of the core 12. It is formed from the clad 14. The core 12 may be made of any known plastic type or quartz type. The clad 14 is chitosan / PV
It is formed as an A (polyvinyl alcohol) film, and the concentration of the solution corresponding to the density change of the clad containing the solvent in the sample solution will be measured as described later. In this embodiment, for example, the length 40
mm, 0.8 mm diameter quartz core, clad 14
Is formed to have a film thickness of about 1 μm. Note that, as shown in FIG. 3, the optical fiber sensor 10 may be used in a state in which a plurality of optical fibers are bundled and only longitudinal ends thereof are fixed with epoxy resin 16.

【0008】図4には、この光ファイバセンサ10を用
いて具体的にセル化した光ファイバセンサセル18の概
略縦断面説明図が示されており、図において、例えば、
テフロンチューブからなる柱体状のセル本体20の断面
略中心位置には長手方向に光ファイバセンサ10が固着
形成され、その光ファイバセンサ10の両端部はセル本
体20から露出している。このセル本体20の内部に
は、光ファイバセンサ10の周縁を間隙D1を配して囲
繞するように、例えばステンレスチューブ等から成る隔
壁22が設けられ、この囲繞された部分に被検液流路2
4を形成している。そして、この隔壁22はセル本体2
0の端部側側方に設けられた入口流路を介して入口26
に接続するとともに、同セル本体20の他端部側側方に
設けた出口流路を介して出口28にも接続し、これによ
って、入口26から流入した被検液は被検液流路24を
流通して出口28から排出される。入口26及び出口2
8には図示しない管が接続されて光ファイバセンサセル
18の近傍に配置された容器内の被検液内に延設され、
かつ図示しないポンプ等を介設させて同容器内の被検液
と、セル本体20内の被検液流路24間で被検液を循環
流通させている。さらに、セル本体20の内部であっ
て、隔壁22の外部側には間隙D2を配して囲繞するよ
うに、恒温水流路30が形成され、各離反するような両
端寄り位置に設けた入口32、及び出口34に連通して
いる。入口32及び出口34には図示しない連通パイ
プ、及びポンプが接続されており、所定温度に保持され
た恒温水等が循環している。したがって、セル本体20
内部に内側から外側にかけて順次、光ファイバセンサ1
0、被検液流路24、恒温水流路30が形成され、基本
的には光ファイバセンサ10、特にそのキトサン複合膜
からなるクラッド14と被検液流路24が光量/濃度検
出部を形成することとなる。この光ファイバセンサセル
18は、上記のようなセル構造に限ることなく、光ファ
イバセンサ10を用いて任意の構造としてもよい。
FIG. 4 shows a schematic vertical cross-sectional explanatory view of an optical fiber sensor cell 18 which is concretely made into cells using the optical fiber sensor 10. In the drawing, for example,
An optical fiber sensor 10 is fixedly formed in the longitudinal direction at a substantially central position of a cross section of a columnar cell body 20 made of a Teflon tube, and both ends of the optical fiber sensor 10 are exposed from the cell body 20. A partition wall 22 made of, for example, a stainless tube is provided inside the cell body 20 so as to surround the periphery of the optical fiber sensor 10 with a gap D1 therebetween, and the test liquid flow path is provided in the surrounded portion. Two
4 is forming. And this partition wall 22 is the cell body 2
0 through the inlet channel provided on the side of the end of the
And to the outlet 28 via an outlet passage provided on the side of the other end of the cell body 20. As a result, the test liquid flowing from the inlet 26 is connected to the test liquid passage 24. Is discharged from the outlet 28. Entrance 26 and exit 2
A tube (not shown) is connected to 8 and extends into the test liquid in the container arranged near the optical fiber sensor cell 18,
In addition, a test liquid in the same container and the test liquid in the cell body 20 are circulated between the test liquid flow path 24 in the cell body 20 by interposing a pump or the like (not shown). Further, inside the cell body 20, on the outer side of the partition wall 22, a constant temperature water channel 30 is formed so as to surround and surround a gap D2, and an inlet 32 provided at a position close to both ends so as to be separated from each other. , And the outlet 34. A communication pipe (not shown) and a pump are connected to the inlet 32 and the outlet 34, and constant temperature water or the like kept at a predetermined temperature is circulated. Therefore, the cell body 20
Inside the optical fiber sensor 1 from inside to outside
0, a test liquid flow path 24, and a constant temperature water flow path 30 are formed. Basically, the optical fiber sensor 10, in particular, the clad 14 formed of the chitosan composite film and the test liquid flow path 24 form a light amount / concentration detection unit. Will be done. The optical fiber sensor cell 18 is not limited to the cell structure as described above, and the optical fiber sensor 10 may be used to have an arbitrary structure.

【0009】図5には、このような光ファイバセンサセ
ル18を用いて被検液の定量を測定する装置全体のブロ
ック構成図が示され、タングステンランプ、レーザ、各
種水銀灯、キセノンランプ等の任意の光源と、各波長の
単色光を取出すモノクロメータと、光ファイバセンサセ
ル18と、光電管等の検出器と、増幅器と、レコーダか
ら構成されている。図6には、図5に示す装置を用いて
被検液のエタノール濃度と、これに対応する光ファイバ
センサ10による吸光度差を検出した検量線図が示さ
れ、両者間にほぼ安定したリニア特性関係があることが
理解される。エタノールに対するこの光ファイバセンサ
の応答は、実験的にも証明されており、例えば、50%
エタノールに対する応答は約90秒で平衡に達し、ま
た、水による再生も約60秒という短時間で元の値に戻
ることが確認されている。また、再現性、耐久性も優
れ、かつ、広いエタノール濃度範囲で使用できることが
立証されている。
FIG. 5 is a block diagram of the entire apparatus for measuring the quantitative amount of a test liquid using the optical fiber sensor cell 18 as described above, which may be a tungsten lamp, a laser, various mercury lamps, a xenon lamp or the like. Of light source, a monochromator for extracting monochromatic light of each wavelength, an optical fiber sensor cell 18, a detector such as a photoelectric tube, an amplifier, and a recorder. FIG. 6 shows a calibration curve obtained by detecting the ethanol concentration of the test liquid using the device shown in FIG. 5 and the difference in absorbance by the optical fiber sensor 10 corresponding to the ethanol concentration. It is understood that there is a relationship. The response of this fiber optic sensor to ethanol has also been experimentally proven, eg 50%.
It has been confirmed that the response to ethanol reaches equilibrium in about 90 seconds, and that regeneration with water returns to the original value in a short time of about 60 seconds. Further, it has been proved that it has excellent reproducibility and durability and can be used in a wide ethanol concentration range.

【0010】次に、図5に示す装置を用いて或る種の酒
類を被検液とする場合の濃度検出の作用を説明すると、
前述したように、光ファイバセンサセル18には、所定
温度(例えば25℃±0.1℃)に設定された恒温水が
被検液流路24内を循環流通している。そして、光源か
ら放出された光は、モノクロメータを透過中に単色光の
みが取出され、この単色光が、セル18内の光ファイバ
センサ10に至る。ここで、被検液中の水/エタノール
の組成比によりキトサン/PVA膜クラッドの膨潤収縮
の程度が変化し、その密度変化にともなうクラッドの屈
折率の変化は下記の式で示される臨界角θcの変化を引
き起こし、そのため伝搬光量が変化するものである。s
inθc=n2 /n1 (n1 =コアの屈折率、n2
クラッドの屈折率)即ち、図7において、aの角度で入
ってきた光は臨界角がbの場合、伝搬するが、エタノー
ルと接することでクラッドが収縮して屈折率が上がると
臨界角がcに変化する。この場合aの角度で進む光の一
部はクラッド内に進入し、伝搬されないことになり、透
過光量は減少する。これによってエタノールの濃度に対
応した伝搬光量は、検出器内で光電変換され、信号増幅
後、レコーダに記録されることとなる。そして、予め作
成した検量線を参照して、その光量に対応した被検液の
濃度を知ることとなる。尚、エタノール濃度を直読出来
るような機器構成とすることは任意に行なってもよい。
Next, the action of concentration detection when a certain kind of alcoholic beverage is used as a test liquid using the apparatus shown in FIG.
As described above, in the optical fiber sensor cell 18, constant temperature water set at a predetermined temperature (for example, 25 ° C. ± 0.1 ° C.) circulates in the test liquid flow path 24. Then, as for the light emitted from the light source, only monochromatic light is extracted while passing through the monochromator, and the monochromatic light reaches the optical fiber sensor 10 in the cell 18. Here, the degree of swelling / shrinking of the chitosan / PVA film clad changes depending on the composition ratio of water / ethanol in the test solution, and the change in the refractive index of the clad due to the change in density changes the critical angle θc represented by the following equation. Is caused, and the amount of propagation light changes accordingly. s
in θc = n 2 / n 1 (n 1 = refractive index of core, n 2 =
(Refractive index of clad) That is, in FIG. 7, light that has entered at an angle of a propagates when the critical angle is b, but when contacting with ethanol causes the cladding to contract and the refractive index to increase, the critical angle becomes c. Changes to. In this case, a part of the light traveling at the angle a enters the clad and is not propagated, so that the amount of transmitted light decreases. As a result, the amount of propagating light corresponding to the concentration of ethanol is photoelectrically converted in the detector, amplified, and recorded in the recorder. Then, the concentration of the test liquid corresponding to the amount of light is known by referring to the calibration curve created in advance. It should be noted that the device configuration capable of directly reading the ethanol concentration may be arbitrarily performed.

【0011】本発明に係る光ファイバセンサによれば、
酒類中のエタノールの濃度測定のほか、水中のエタノー
ル以外の水可溶性有機溶媒(メタノール、イソプロピル
アルコール等の各種アルコール、ジオキサン、アセトニ
トリル等)の定量等を行なうことが可能である。さら
に、キトサンのアミノ基のプロトン解離平衡が、キトサ
ンの形態変化を引き起こすことから、有機酸(各種カル
ボン酸やカルボキシル基を有する化合物)の分析にも使
用することが出来る。
According to the optical fiber sensor of the present invention,
In addition to measuring the concentration of ethanol in alcoholic beverages, it is possible to perform quantitative determination of water-soluble organic solvents other than ethanol in water (various alcohols such as methanol and isopropyl alcohol, dioxane and acetonitrile). Furthermore, since the proton dissociation equilibrium of the amino group of chitosan causes a morphological change of chitosan, it can be used for analysis of organic acids (various carboxylic acids and compounds having a carboxyl group).

【0012】(実験例) (1)直径1mmの石英コア・石英クラッド光ファイバ
の両端をポリ塩化ビニールで被覆した後フッ化水素酸に
室温で45分浸漬して中央部のクラッドのみを剥離し、
その後、露出したコア表面を3−グリシドキシプロピル
トリメトキシシランで化学処理し、その上にキトサン複
合膜を被覆した。得られたファイバ1本をセル本体の中
央にセットし、これを紫外可視分光光度計で500nm
での透過光量の違いを測定して、図6に示すようなエタ
ノール濃度と光量との関係を示す検量線図を得た。ま
た、20、25、30度の焼酎について、それぞれ1
9.8、25.8、35.6%のエタノール濃度値を得
た。 (2)直径0.23mmの石英コア・プラスチッククラ
ッド光ファイバで、中央部のクラッドのみを燃やして剥
離した後、キトサン複合膜を被覆して光ファイバセンサ
を形成した。得られた光ファイバセンサ10本束ねてそ
の両端部のみをエポキシ樹脂で固めてセルにセットして
用い、図8に示す検量線図を得た。
(Experimental example) (1) A quartz core / quartz clad optical fiber having a diameter of 1 mm was coated with polyvinyl chloride on both ends and then immersed in hydrofluoric acid at room temperature for 45 minutes to remove only the central clad. ,
Then, the exposed core surface was chemically treated with 3-glycidoxypropyltrimethoxysilane, and a chitosan composite film was coated thereon. Place one of the obtained fibers in the center of the cell body, and measure it with an ultraviolet-visible spectrophotometer at 500 nm.
The difference in the amount of transmitted light was measured to obtain a calibration curve showing the relationship between the ethanol concentration and the amount of light as shown in FIG. For shochu at 20, 25 and 30 degrees, 1
Ethanol concentration values of 9.8, 25.8 and 35.6% were obtained. (2) With a quartz core / plastic clad optical fiber having a diameter of 0.23 mm, only the central clad was burned and peeled off, and then a chitosan composite film was coated to form an optical fiber sensor. The obtained 10 optical fiber sensors were bundled, and only both ends thereof were fixed with an epoxy resin and set in a cell to be used to obtain a calibration curve diagram shown in FIG.

【0013】[0013]

【発明の効果】以上説明したように、請求項1に係る光
ファイバセンサによれば、単に、光ファイバのコアの表
面にキトサン複合膜をクラッドとして被着させることと
しているので、極めて簡単な構造で、コストも安価であ
り、さらに、簡単な工程で、リアルタイムに水中の有機
溶媒の濃度等を測定することが可能であるという効果を
奏する。
As described above, according to the optical fiber sensor of the first aspect, since the chitosan composite film is simply deposited as the cladding on the surface of the core of the optical fiber, the structure is extremely simple. In addition, the cost is low, and the concentration of the organic solvent in water can be measured in real time by a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る光ファイバセンサの拡大
縦断面説明図である。
FIG. 1 is an enlarged vertical cross-sectional explanatory view of an optical fiber sensor according to an embodiment of the present invention.

【図2】同光ファイバセンサの端面図である。FIG. 2 is an end view of the optical fiber sensor.

【図3】複数本の光ファイバセンサを束ねて長手両端部
のみをエポキシ樹脂で固着させた場合の拡大端面図であ
る。
FIG. 3 is an enlarged end view showing a case where a plurality of optical fiber sensors are bundled and only longitudinal ends thereof are fixed with epoxy resin.

【図4】本発明の実施例に係る光ファイバセンサを用い
た光ファイバセンサセルの概略縦断面説明図である。
FIG. 4 is a schematic vertical cross-sectional explanatory view of an optical fiber sensor cell using the optical fiber sensor according to the embodiment of the invention.

【図5】光ファイバセンサセルを用いた装置全体のブロ
ック構成図である。
FIG. 5 is a block configuration diagram of an entire apparatus using an optical fiber sensor cell.

【図6】被検液のエタノール濃度と吸光度差との検量線
図である。
FIG. 6 is a calibration curve diagram of the ethanol concentration of a test liquid and the absorbance difference.

【図7】コアとクラッドとの境界面での光の伝搬作用を
説明する説明図である。
FIG. 7 is an explanatory diagram illustrating a light propagation action at a boundary surface between a core and a clad.

【図8】実験例に係る被検液のエタノール濃度と吸光度
差との検量線図である。
FIG. 8 is a calibration curve diagram of ethanol concentration and absorbance difference of a test liquid according to an experimental example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/02 A 7036−2K (72)発明者 大賀 一也 大分市大字横瀬3114番地110 (72)発明者 倉内 芳秋 大分市ひばりケ丘3丁目9番3号 (72)発明者 柳井 ▲たか▼之 山口県下関市長府松小田西町6番6号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location G02B 6/02 A 7036-2K (72) Inventor Kazuya Oga Oita-shi Oji City 3114-110 110 ) Inventor Yoshiaki Kurauchi 3-9-3 Hibarigaoka, Oita-shi (72) Inventor Yanai ▲ Taka ▼ No. 6 Matsumatsuda-nishicho, Shibuseki City, Yamaguchi Prefecture

Claims (1)

【特許請求の範囲】 【請求項1】 光ファイバのコアの表面にキトサン複合
膜をクラッドとして被着させて成る光ファイバセンサ。
Claim: What is claimed is: 1. An optical fiber sensor comprising a chitosan composite film deposited as a cladding on the surface of an optical fiber core.
JP3196985A 1991-07-10 1991-07-10 Optical fiber sensor Expired - Lifetime JPH0785122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196985A JPH0785122B2 (en) 1991-07-10 1991-07-10 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196985A JPH0785122B2 (en) 1991-07-10 1991-07-10 Optical fiber sensor

Publications (2)

Publication Number Publication Date
JPH0519123A true JPH0519123A (en) 1993-01-29
JPH0785122B2 JPH0785122B2 (en) 1995-09-13

Family

ID=16366914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196985A Expired - Lifetime JPH0785122B2 (en) 1991-07-10 1991-07-10 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPH0785122B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028395A1 (en) * 1993-06-02 1994-12-08 Hoechst Aktiengesellschaft Optical sensor for detection of chemical species
US6134045A (en) * 1997-07-17 2000-10-17 The United States Of America As Represented By The Secretary Of The Air Force Chitosan optical materials
JP2010223817A (en) * 2009-03-24 2010-10-07 Soka Univ Ethanol sensor and ethanol measurement system using the same
CN102879136A (en) * 2011-07-11 2013-01-16 广东海洋大学 Chitosan film high performance optical fiber pressure sensing head and manufacturing method of chitosan film high performance optical fiber pressure sensing head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028395A1 (en) * 1993-06-02 1994-12-08 Hoechst Aktiengesellschaft Optical sensor for detection of chemical species
US5640234A (en) * 1993-06-02 1997-06-17 Hoechst Aktiengesellschaft Optical sensor for detection of chemical species
US6134045A (en) * 1997-07-17 2000-10-17 The United States Of America As Represented By The Secretary Of The Air Force Chitosan optical materials
JP2010223817A (en) * 2009-03-24 2010-10-07 Soka Univ Ethanol sensor and ethanol measurement system using the same
CN102879136A (en) * 2011-07-11 2013-01-16 广东海洋大学 Chitosan film high performance optical fiber pressure sensing head and manufacturing method of chitosan film high performance optical fiber pressure sensing head
CN102879136B (en) * 2011-07-11 2014-08-06 广东海洋大学 Chitosan film high performance optical fiber pressure sensing head and manufacturing method of chitosan film high performance optical fiber pressure sensing head

Also Published As

Publication number Publication date
JPH0785122B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US5444807A (en) Micro chemical analysis employing flow through detectors
US6385380B1 (en) Hollow optical waveguide for trace analysis in aqueous solutions
JPH05240774A (en) Optical cell and optical detecting device and sample separating/detecting device using them
JP2002530667A (en) Dual path length device for light absorption detection.
JPH05506510A (en) Online process control monitoring system
FI95322C (en) Spectroscopic measuring sensor for analyzing media
US4475813A (en) Divergent light optical systems for liquid chromatography
US3431424A (en) Optical fluid sampling device
EP0089157A1 (en) Optical detector cell
CN1095543C (en) All wavelength surface plasma excimer resonance photochemical sensor
US5600433A (en) Optical fiber waist refractometer
JPH0519123A (en) Optical fiber sensor
Carey et al. Optical sensors for high acidities based on fluorescent polymers
WO2010134834A1 (en) Hydrocarbon dew point measuring method and device for implementing same
Schelle et al. Physical characterization of lightguide capillary cells
Mitsushio et al. Simplification and evaluation of a gold-deposited SPR optical fiber sensor
Xu et al. A glycerol assisted light-emitting diode-induced fluorescence detector for capillary flow systems
Benoit et al. Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors
Chen et al. Light-sheet skew-ray enhanced pump-absorption for sensing
Jarvis et al. Critical-angle measurement of refractive index of absorbing materials: an experimental study
TsUNODA et al. Long capillary cell with the use of successive total reflection at outer cell surface for liquid absorption spectrometry
JP3991072B2 (en) Refractive index sensor, refractive index measuring apparatus, and manufacturing method of refractive index sensor
Skogerboe et al. Stray light rejection in fiber-optic probes
JP3100247B2 (en) Alcohol concentration measurement method
CN100494980C (en) Automatic analysis recorder of liquid UV light