JPH0518972A - Pre-processing method for immunological measurement reagent - Google Patents

Pre-processing method for immunological measurement reagent

Info

Publication number
JPH0518972A
JPH0518972A JP19734891A JP19734891A JPH0518972A JP H0518972 A JPH0518972 A JP H0518972A JP 19734891 A JP19734891 A JP 19734891A JP 19734891 A JP19734891 A JP 19734891A JP H0518972 A JPH0518972 A JP H0518972A
Authority
JP
Japan
Prior art keywords
reagent
measurement
particle carrier
immunological
insoluble particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19734891A
Other languages
Japanese (ja)
Inventor
Yoshiomi Mori
吉臣 森
Ikunosuke Sakurabayashi
郁之介 櫻林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Chemical Co Ltd
Original Assignee
Eiken Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Chemical Co Ltd filed Critical Eiken Chemical Co Ltd
Priority to JP19734891A priority Critical patent/JPH0518972A/en
Publication of JPH0518972A publication Critical patent/JPH0518972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reagent pre-processing method for immunological measurement which pre-processes a reagent containing an insoluble particle carrier and can yield highly sensible and highly accurate measurements. CONSTITUTION:A reagent for immunological measurement containing an insoluble particle carrier is pre-processed by irradiating the reagent with microwaves so as to quickly scatter the carrier. Therefore, the time required for pre- processing the reagent can be remarkably reduced and the pre-processed reagent is improved in sensitivity and reproducibility as compared with the conventional example. Therefore, immunological measurement can be reduced in measuring time and improved in accuracy and precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗原抗体反応に基づく
免疫学的測定用試薬の前処理方法に関するものである。
具体的には、不溶性粒子担体で構成される免疫学的測定
用試薬の使用にあたり、高感度、高精度な分析を可能と
するための試薬前処理に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pretreating an immunological assay reagent based on an antigen-antibody reaction.
Specifically, the present invention relates to a reagent pretreatment for enabling highly sensitive and highly accurate analysis when using an immunological measurement reagent composed of an insoluble particle carrier.

【0002】[0002]

【従来技術の問題点】免疫学的測定用試薬には、不溶性
粒子担体に免疫学的活性成分を結合させたものがある。
この種の試薬はB/F分離用固相担体として機能する場
合を除けば、主として抗原抗体反応を不溶性粒子担体の
凝集としてとらえる、いわゆる免疫学的粒子凝集反応に
用いられる。不溶性粒子担体の凝集は、目視で定性的に
確認することもできるし、光学測定によって定量的に追
跡することも可能である。この免疫学的粒子凝集反応
は、直接的な検出が困難な抗原と抗体の反応物を不溶性
粒子担体の凝集という形で増幅することによって高感度
に検出するというものである。したがって不溶性粒子担
体の分散状態が測定結果に及ぼす影響は大きい。中でも
光学測定を行う場合には、免疫学的測定用試薬における
不溶性粒子担体の分散状態が、測定結果の再現性、正確
性に重要な影響を与える。不溶性粒子担体は、抗原抗体
反応を行うまでは可能な限り均一に分散している方が好
ましいのである。
2. Description of the Related Art Reagents for immunological measurement include those in which an immunologically active ingredient is bound to an insoluble particle carrier.
This type of reagent is mainly used for so-called immunological particle agglutination reaction, which catches an antigen-antibody reaction as agglutination of an insoluble particle carrier, except for the case where it functions as a solid phase carrier for B / F separation. Aggregation of the insoluble particle carrier can be qualitatively confirmed by visual observation or can be quantitatively monitored by optical measurement. This immunological particle agglutination reaction is to detect with high sensitivity by amplifying a reaction product of an antigen and an antibody, which is difficult to detect directly, in the form of agglutination of an insoluble particle carrier. Therefore, the influence of the dispersed state of the insoluble particle carrier on the measurement results is large. In particular, when performing optical measurement, the dispersion state of the insoluble particle carrier in the immunological measurement reagent has an important influence on the reproducibility and accuracy of the measurement result. The insoluble particle carrier is preferably dispersed as uniformly as possible until the antigen-antibody reaction.

【0003】一般に免疫学的活性成分を結合した高分子
ラテックス、シリカ、カオリン等の不溶性粒子担体は、
粒子自身の比重によって沈澱し、また粒子同士の吸引力
の作用で保存中に自然凝集を起こす傾向がある。試薬中
の不溶性粒子担体の沈澱は容器中に濃度勾配を生じ、そ
のままでは測定に用いることができない。一方不溶性粒
子担体の自然凝集は、特に光学測定を行うときに試薬ブ
ランク値を高め、再現性不良等の原因となる。
[0003] Generally, insoluble particle carriers such as polymer latex, silica and kaolin to which immunologically active ingredients are bound are
The particles tend to settle due to the specific gravity of the particles themselves, and also tend to spontaneously agglomerate during storage due to the action of the suction force between the particles. The precipitation of the insoluble particle carrier in the reagent causes a concentration gradient in the container and cannot be used as it is for the measurement. On the other hand, the natural aggregation of the insoluble particle carrier increases the reagent blank value, especially when performing optical measurement, and causes poor reproducibility.

【0004】従来は、不溶性粒子担体の沈澱や自然凝集
の影響を除くために測定に先だって振とうしたり、加温
処理を施す等の対策が採られていた。また試薬を凍結乾
燥しておくことによって、これらの影響を除く試みもあ
る。
Conventionally, in order to eliminate the effects of precipitation and spontaneous aggregation of the insoluble particle carrier, measures such as shaking and heating treatment have been taken prior to the measurement. There are also attempts to eliminate these effects by freeze-drying the reagents.

【0005】ところが振とうは沈澱の解消には有効なも
のの、自然凝集に対しては十分な効果を持たず、また操
作の標準化が困難である。一方加温処理は通常37℃前
後で1時間以上というような条件で行われ、時間的な問
題を持つ。試薬の凍結乾燥は、試薬の溶解という付加的
な操作を要求されるうえに、溶解後の不溶性粒子担体の
分散性には十分な信頼性を期待できないことが多い。
However, although shaking is effective in eliminating precipitation, it does not have a sufficient effect on spontaneous aggregation, and standardization of operation is difficult. On the other hand, the heating treatment is usually carried out under the condition that the temperature is around 37 ° C. for 1 hour or more, and has a time problem. The lyophilization of the reagent requires an additional operation of dissolving the reagent, and in many cases, sufficient reliability cannot be expected for the dispersibility of the insoluble particle carrier after the dissolution.

【0006】[0006]

【発明の課題】本発明は、懸濁状態で供給された免疫学
的測定用試薬中の不溶性粒子担体を、より簡便な操作に
よって短時間で均一に分散させるための技術を提供する
ものである。
DISCLOSURE OF THE INVENTION The present invention provides a technique for uniformly dispersing an insoluble particle carrier in a reagent for immunological measurement supplied in a suspended state in a short time by a simpler operation. .

【0007】[0007]

【発明の構成】本発明は、導電性素材を実質的に含有し
ない不溶性粒子担体に固定された免疫学的活性成分から
構成される免疫学的測定用試薬に、マイクロ波を照射す
ることを特徴とする免疫学的測定用試薬の前処理方法で
ある。
The present invention is characterized in that a reagent for immunological measurement comprising an immunologically active component immobilized on an insoluble particle carrier which does not substantially contain a conductive material is irradiated with microwaves. And a method for pretreating an immunological measurement reagent.

【0008】本発明による前処理方法の対象となる免疫
学的測定用試薬とは、より具体的には次のようなものを
指す。まず、不溶性粒子担体中に導電性素材を含まない
こと。前処理にマイクロ波を利用するので、金属等の導
電気性素材を含むものはマイクロ波の照射対象として好
ましくない。しかし現在利用されている不溶性粒子担体
の多くは、ポリスチレンやゼラチン等の高分子重合体、
コレステロールやレシチン等の脂質、シリカ、ガラス、
顔料、細菌菌体や動物血球等の天然粒子で構成されてい
るため、現実にはほとんど全ての免疫学的測定用試薬に
対して適用可能と言うことができる。逆に本発明の前処
理に不適当な不溶性粒子担体とは、たとえば磁気による
B/F分離を目的とした磁性体封入ラテックス粒子等
で、どちらかというと例外的な試薬であるといえよう。
More specifically, the immunological assay reagents to be subjected to the pretreatment method of the present invention are as follows. First, the conductive material should not be included in the insoluble particle carrier. Since the microwave is used for the pretreatment, a material containing a conductive gas material such as metal is not preferable as a microwave irradiation target. However, most of the insoluble particle carriers currently used are high-molecular polymers such as polystyrene and gelatin,
Lipids such as cholesterol and lecithin, silica, glass,
Since it is composed of pigments, natural particles such as bacterial cells and animal blood cells, it can be said that it is actually applicable to almost all immunological measurement reagents. On the contrary, the insoluble particle carrier unsuitable for the pretreatment of the present invention is, for example, magnetic substance-enclosed latex particles for the purpose of magnetic B / F separation, and it can be said that it is an exceptional reagent.

【0009】これら不溶性粒子担体は、表面に抗原、ハ
プテン、抗体、抗体断片、それらの変性物等の免疫学的
活性成分を、物理吸着や化学結合によって担持してお
り、直接凝集、受身凝集、凝集阻止等の各種分析系に利
用される。抗原成分としては天然由来のもの、化学合成
したもの、遺伝子操作によって得られた組み換え抗原等
が、また抗体としてはモノクローナル抗体やその断片等
が利用できることは言うまでもない。
[0009] These insoluble particle carriers carry immunologically active components such as antigens, haptens, antibodies, antibody fragments, and modified products thereof on their surfaces by physical adsorption or chemical bonding, and direct aggregation, passive aggregation, It is used in various analytical systems such as aggregation prevention. It goes without saying that naturally derived antigens, chemically synthesized antigens, recombinant antigens obtained by genetic engineering, etc. can be used as the antigen component, and monoclonal antibodies and fragments thereof, etc. can be used as the antibodies.

【0010】このような免疫学的測定用試薬を、ガラ
ス、合成樹脂等のマイクロ波透過性容器に入れて市販の
マイクロ波加熱装置によりマイクロ波照射を行う。マイ
クロ波とは、周波数が300MHz から300GHz (波長
が1m から1mm)の電磁波につけられた通称であり、こ
の波長帯はテレビ放送等の各種通信用に広く利用されて
いる。家庭用の電子レンジや癌の温熱療法等は、このよ
うな電磁波をエネルギーとして誘電体の加熱に応用した
もので、使用する周波数はISM周波数帯として国際的
に定められている。わが国では2450MHz 帯が主に利
用されている(高周波の基礎と応用、東京電気大学出版
局)。マイクロ波のこのような性質から、免疫学的活性
成分に対しても破壊作用を及ぼすように思われるが、意
外にも実際には非常に良好な不溶性粒子担体分散効果を
示すのである。
Such an immunological measurement reagent is placed in a microwave permeable container such as glass or synthetic resin, and microwave irradiation is carried out by a commercially available microwave heating device. Microwave is a common name given to electromagnetic waves having a frequency of 300 MHz to 300 GHz (wavelength of 1 m to 1 mm), and this wavelength band is widely used for various communications such as television broadcasting. Household microwave ovens, cancer thermotherapy, and the like apply such electromagnetic waves to the heating of dielectrics as energy, and the frequency to be used is internationally defined as the ISM frequency band. In Japan, the 2450MHz band is mainly used (basic and applied high frequency, Tokyo Denki University Press). This property of microwaves seems to have a destructive effect on the immunologically active ingredient, but surprisingly, it actually shows a very good insoluble particle carrier dispersion effect.

【0011】本発明に利用するマイクロ波も、基本的に
は同じ電磁波である。しかし本発明においてはマイクロ
波を加熱のための手段としてではなく、免疫学的測定用
試薬の前処理工程に利用するものである。したがって本
発明に好適なマイクロ波は、周波数については同じ帯域
を用いるが、出力の点では数十W から数百W 程度、更に
具体的には50〜500W 程度のものが利用しやすい。
これは本発明におけるマイクロ波の照射効果が主として
出力、照射時間、試薬量等に支配されるため、出力があ
まり大きくなると照射時間のわずかな変動が大きな影響
を持つようになり、結果として処理の再現性を確保しに
くくなることが予想されるためである。また極端な場合
には、ほんのわずかな照射にもかかわらず試薬の変性を
起こすような温度上昇につながる可能性もあるので、本
発明に用いるマイクロ波の出力は低い方が扱い易いとい
える。
The microwaves used in the present invention are basically the same electromagnetic waves. However, in the present invention, the microwave is not used as a means for heating, but is used for the pretreatment step of the reagent for immunological measurement. Therefore, the microwaves suitable for the present invention use the same band in terms of frequency, but from the viewpoint of output, it is easy to use microwaves of about several tens W to several hundred W, more specifically about 50 to 500 W.
This is because the microwave irradiation effect in the present invention is mainly controlled by the output, the irradiation time, the reagent amount, etc., so that when the output becomes too large, a slight variation in the irradiation time has a large effect, and as a result, the processing This is because it may be difficult to ensure reproducibility. Further, in an extreme case, there is a possibility of leading to a temperature rise that causes denaturation of the reagent despite the slightest irradiation, so it can be said that the lower the microwave output used in the present invention, the easier it is to handle.

【0012】マイクロ波照射の条件を更に具体的に示せ
ば、ポリスチレンラテックス粒子を不溶性粒子担体とし
て0.1%程度含有する免疫学的測定用試薬5mlに対
し、周波数2450MHz 、出力100W のマイクロ波を
照射する場合、30秒から1分程度で十分な効果を得る
ことができる。出力や照射時間は、試薬量、試薬中の水
分含量等にも左右されるので、不必要な温度上昇を起こ
さない範囲内で、十分な効果が期待できる条件を適宜設
定してやればよい。マイクロ波の照射にあたっては、赤
外線温度センサー等によって温度を管理すれば、試薬の
変性や分散媒の蒸発等につながる不必要な温度上昇を容
易に防止することができるので便利である。
More specifically, the conditions of microwave irradiation will be described. To 5 ml of an immunological measuring reagent containing polystyrene latex particles as an insoluble particle carrier of about 0.1%, a microwave having a frequency of 2450 MHz and an output of 100 W is applied. In the case of irradiation, a sufficient effect can be obtained in about 30 seconds to 1 minute. The output and the irradiation time depend on the amount of the reagent, the water content in the reagent, and the like, so that the conditions under which a sufficient effect can be expected may be appropriately set within a range that does not cause an unnecessary temperature rise. When irradiating the microwaves, it is convenient to control the temperature with an infrared temperature sensor or the like, because it is possible to easily prevent an unnecessary temperature rise that leads to denaturation of the reagent and evaporation of the dispersion medium.

【0013】本発明による前処理は、光学的測定用をは
じめとして、スライド凝集反応用、マイクロタイター法
用等の幅広い免疫学的測定用試薬に対して有効である
が、光学測定を行う場合にはその効果が最も大きい。
The pretreatment according to the present invention is effective for a wide range of immunological assay reagents such as optical assay, slide agglutination reaction, microtiter method, etc. Has the greatest effect.

【0014】[0014]

【発明の作用】本発明におけるマイクロ波照射は、免疫
学的測定用試薬中の不溶性粒子担体の分散を促進する作
用を有する。実施例の結果からも分かるように、マイク
ロ波照射によって加温操作では達成することができな
い、非常に良好な分散促進効果を得られる。このこと
は、マイクロ波が単なる加熱作用を持つのみではなく、
マイクロ波に固有の分散促進作用が存在することを示し
ている。以下、実施例に基づいて本発明を詳しく説明す
る。
The microwave irradiation of the present invention has a function of promoting the dispersion of the insoluble particle carrier in the immunological measurement reagent. As can be seen from the results of the examples, a very good dispersion promoting effect, which cannot be achieved by the heating operation by the microwave irradiation, can be obtained. This means that microwaves not only have a heating effect,
It is shown that the microwave has an inherent dispersion promoting effect. Hereinafter, the present invention will be described in detail based on examples.

【0015】[0015]

【実施例】【Example】

実施例1.マイクロ波照射の影響 抗ヒト絨毛性ゴナドトロピン(hCG)抗体結合ラテッ
クス粒子担体を含む試薬にマイクロ波を照射し、不溶性
粒子担体の分散に及ぼす効果を調査した。1−1.hC
G測定用試薬の調製抗hCG抗体のアンモニウム緩衝溶
液(抗体濃度:0.1mg/ml )10mlに、平均粒径が
0.236μのポリスチレンラテックス粒子分散液(ダ
ウ・ケミカル製、固形分濃度:10重量%)1mlを加
え、37℃に加温して1時間かくはんした後、2〜4℃
に冷却下30分間10000rpm で遠心分離を行った。
上清を傾斜除去し、沈澱した抗hCG抗体結合ラテック
スをアンモニウム緩衝液で遠心洗浄後、0.5%ウシ血
清アルブミン(BSA)含有アンモニウム緩衝液で10
mlに懸濁し、hCG測定用試薬を得た。このhCG測定
試薬を2〜10℃に6ヶ月静置した。
Example 1. Effect of Microwave Irradiation A reagent containing an anti-human chorionic gonadotropin (hCG) antibody-bound latex particle carrier was irradiated with microwaves, and the effect on the dispersion of the insoluble particle carrier was investigated. 1-1. hC
Preparation of Reagent for G Measurement In 10 ml of ammonium buffer solution of anti-hCG antibody (concentration of antibody: 0.1 mg / ml), polystyrene latex particle dispersion liquid having an average particle diameter of 0.236 μ (manufactured by Dow Chemical Co., solid content concentration: 10) 1% by weight), heated to 37 ° C and stirred for 1 hour, then 2-4 ° C
It was centrifuged at 10000 rpm for 30 minutes under cooling.
The supernatant was decanted, and the precipitated anti-hCG antibody-bound latex was washed by centrifugation with an ammonium buffer and then washed with an ammonium buffer containing 0.5% bovine serum albumin (BSA).
It was suspended in ml to obtain a reagent for hCG measurement. This hCG measuring reagent was allowed to stand at 2 to 10 ° C for 6 months.

【0016】1−2.hCG測定用試薬の前処理 1−1で調製後6ヶ月間静置保存したhCG測定用試薬
5mlをガラス製サンプル瓶に採り、2450MHz 、出力
100W および50W のマイクロ波を照射して一定時間
毎にhCG測定用試薬を0.5%BSA含有アンモニウ
ム緩衝液で20倍に希釈して750nmにおける吸光度
(光路長:5mm)を測定し分散促進効果を追跡した。な
おマイクロ波照射中の温度は、赤外線温度センサーを利
用して37℃に保った。一方対照として、同じく5mlの
hCG測定用試薬を試験管に採り、37℃の水浴中で加
温しながら一定時間毎に同じ条件で吸光度測定した。結
果は表1に示すとおりである。
1-2. Pretreatment of hCG measuring reagent 5 ml of hCG measuring reagent, which had been stored for 6 months after preparation in 1-1, was placed in a glass sample bottle and irradiated with microwaves of 2450MHz, output of 100W and 50W at regular intervals. The hCG measurement reagent was diluted 20 times with an ammonium buffer containing 0.5% BSA, and the absorbance at 750 nm (optical path length: 5 mm) was measured to trace the dispersion promoting effect. The temperature during microwave irradiation was kept at 37 ° C. using an infrared temperature sensor. On the other hand, as a control, 5 ml of the reagent for measuring hCG was also put in a test tube, and the absorbance was measured under the same conditions at regular intervals while heating in a water bath at 37 ° C. The results are shown in Table 1.

【0017】[0017]

【表1】 出力100W のマイクロ波を照射したものは、1分間の
処理で十分な分散効果を得ることができ、安定な吸光度
を示すようになった。しかし37℃加温のものでは試薬
ブランクが安定するまでに約1時間を要した。マイクロ
波の出力を50W にした場合には100W に比べ多少効
果は劣るが、加温操作よりもはるかに良好な分散効促進
果を示した。
[Table 1] Those irradiated with microwaves having an output of 100 W were able to obtain a sufficient dispersion effect in a treatment for 1 minute and exhibited stable absorbance. However, in the case of heating at 37 ° C, it took about 1 hour for the reagent blank to stabilize. When the microwave output was set to 50 W, the effect was slightly inferior to that of 100 W, but it showed a much better dispersion effect promoting effect than the heating operation.

【0018】実施例2.マイクロ波照射による測定結果
への影響 抗ヒトC反応性蛋白(CRP)抗体結合ラテックス粒子
担体を含む試薬にマイクロ波を照射し、実際の測定結果
に及ぼす効果を調査した。 2−1.CRP測定用試薬の調製 抗CRP抗体のアンモニウム緩衝溶液(抗体濃度:0.
2mg/ml )10mlに、平均粒径が0.109μのポリス
チレンラテックス粒子分散液(ダウ・ケミカル製、固形
分濃度:10重量%)1mlを加え、37℃に加温して1
時間かくはんした後、2〜4℃に冷却下30分間100
00rpm で遠心分離を行った。上清を傾斜除去し、沈澱
した抗CRP抗体結合ラテックスをアンモニウム緩衝液
で遠心洗浄後、0.5%BSA含有アンモニウム緩衝液
で100mlに希釈し、CRP測定用試薬を得た。このC
RP測定用試薬を2〜10℃に6ヶ月静置した。
Example 2. Effect of Microwave Irradiation on Measurement Results Microwave was irradiated to a reagent containing an anti-human C-reactive protein (CRP) antibody-bound latex particle carrier, and the effect on actual measurement results was investigated. 2-1. Preparation of CRP measurement reagent Ammonium buffer solution of anti-CRP antibody (antibody concentration: 0.
2 mg / ml) 1 ml of polystyrene latex particle dispersion liquid having an average particle diameter of 0.109μ (Dow Chemical, solid content concentration: 10% by weight) was added to 10 ml, and the mixture was heated to 37 ° C. to 1
After stirring for 100 minutes, cool to 2-4 ° C for 100 minutes for 30 minutes.
Centrifugation was performed at 00 rpm. The supernatant was decanted, and the precipitated anti-CRP antibody-bound latex was washed by centrifugation with an ammonium buffer and then diluted to 100 ml with an ammonium buffer containing 0.5% BSA to obtain a reagent for CRP measurement. This C
The reagent for RP measurement was allowed to stand at 2 to 10 ° C for 6 months.

【0019】2−2.CRP測定用試薬の前処理および
測定 2−1で調製後6ヶ月間静置保存したCRP測定用試薬
10mlをガラス製サンプル瓶に採り、2450MHz 、出
力100W のマイクロ波を1分間照射してから実際にC
RP含有血清の測定を行った。なおマイクロ波照射中の
温度は、赤外線温度センサーを利用して37℃に保っ
た。一方対照として、同じく10mlのCRP測定用試薬
を試験管に採り、37℃の水浴中で10分間、および3
0分間の加温後測定を行うもの、ならびに加温処理も行
わずそのまま測定に用いるものを用意した。CRP測定
操作は次のとおりである。各処理を行った後のCRP測
定用試薬1mlに対し、CRP含有血清(50ng/ml )を
200μl 添加し、かくはんした後40秒後から140
秒間の585nmにおける吸光度変化(光路長:5mm)を
測定した。測定は、各処理に対してそれぞれ10回繰り
返し再現性を比較した。結果を表2に示す。
2-2. Pretreatment and measurement of CRP measurement reagent 10 ml of CRP measurement reagent, which had been stored for 6 months after preparation in 2-1 was put into a glass sample bottle and irradiated with microwave of 2450MHz, output of 100W for 1 minute To C
The RP-containing serum was measured. The temperature during microwave irradiation was kept at 37 ° C. using an infrared temperature sensor. On the other hand, as a control, similarly, 10 ml of CRP measurement reagent was placed in a test tube, and the mixture was kept in a 37 ° C water bath for 10 minutes and 3
There were prepared a sample to be measured after heating for 0 minutes and a sample to be used for the measurement as it is without heating treatment. The CRP measurement operation is as follows. 200 μl of CRP-containing serum (50 ng / ml) was added to 1 ml of the CRP measurement reagent after each treatment, and after stirring 40 seconds later to 140
The change in absorbance at 585 nm for a second (optical path length: 5 mm) was measured. The measurement was repeated 10 times for each treatment and the reproducibility was compared. The results are shown in Table 2.

【0020】[0020]

【表2】 マイクロ波照射したものは、未処理、あるいは37℃1
0分間加温したものに比べて吸光度の変化量(平均値)
が大きく、また再現性(標準偏差と変動係数)にも優れ
ている。37℃で30分間加温したものに比べても、再
現性の点で優位性を示している。
[Table 2] Microwave-irradiated, untreated, or 37 ℃ 1
Amount of change in absorbance (average value) compared to the one heated for 0 minutes
Is large, and the reproducibility (standard deviation and coefficient of variation) is excellent. Compared to the one heated at 37 ° C. for 30 minutes, it is superior in terms of reproducibility.

【0021】[0021]

【発明の効果】本発明によれば、免疫学的測定用試薬の
前処理をきわめて短時間に、しかも効果的に行うことが
できる。実施例中にも示したとおり、本発明による前処
理方法は処理時間の大幅な短縮を可能とする。この時間
短縮効果を数字で示せば、37℃加温による従来法の1
/30から1/60となり、本発明による前処理方法の
効果の大きさを見ることができる。しかも、このような
短時間の処理にもかかわらず前処理した免疫学的測定用
試薬の感度、再現性等は、従来法による処理と同等、あ
るいはそれ以上である。以上のように本発明は、免疫学
的測定用試薬による測定時間の短縮、精度、正確性の向
上に貢献するものである。
According to the present invention, the pretreatment of the immunological measurement reagent can be effectively performed in a very short time. As shown in the examples, the pretreatment method according to the present invention enables a significant reduction in treatment time. If you show the effect of shortening this time by numbers, it is 1
From / 30 to 1/60, the magnitude of the effect of the pretreatment method according to the present invention can be seen. Moreover, the sensitivity, reproducibility and the like of the immunological measurement reagent pretreated despite the treatment for such a short time are equal to or higher than those of the treatment by the conventional method. As described above, the present invention contributes to shortening of measurement time, improvement of accuracy, and accuracy of immunological measurement reagents.

Claims (2)

【整理番号】 P−000247 【特許請求の範囲】[Reference number] P-000247 [Claims] 【請求項1】導電性素材を実質的に含有しない不溶性粒
子担体に固定された免疫学的活性成分から構成される免
疫学的測定用試薬に、マイクロ波を照射することを特徴
とする免疫学的測定用試薬の前処理方法
1. An immunology characterized by irradiating microwaves to an immunological measurement reagent composed of an immunologically active component immobilized on an insoluble particle carrier which does not substantially contain a conductive material. For pretreatment of reagents for quantitative measurement
【請求項2】免疫学的測定用試薬が、ラテックス粒子担
体に免疫学的活性成分を結合させたものであることを特
徴とする請求項1の免疫学的測定用試薬の前処理方法
2. The pretreatment method for an immunological measuring reagent according to claim 1, wherein the immunological measuring reagent is a latex particle carrier to which an immunologically active component is bound.
JP19734891A 1991-07-12 1991-07-12 Pre-processing method for immunological measurement reagent Pending JPH0518972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19734891A JPH0518972A (en) 1991-07-12 1991-07-12 Pre-processing method for immunological measurement reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19734891A JPH0518972A (en) 1991-07-12 1991-07-12 Pre-processing method for immunological measurement reagent

Publications (1)

Publication Number Publication Date
JPH0518972A true JPH0518972A (en) 1993-01-26

Family

ID=16372991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19734891A Pending JPH0518972A (en) 1991-07-12 1991-07-12 Pre-processing method for immunological measurement reagent

Country Status (1)

Country Link
JP (1) JPH0518972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138961A (en) * 1993-11-22 1995-05-30 Denka Gureesu Kk Air conveying wet type sprayed mortar
JPH0734047U (en) * 1993-11-27 1995-06-23 建設基礎エンジニアリング株式会社 Slope protection structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138961A (en) * 1993-11-22 1995-05-30 Denka Gureesu Kk Air conveying wet type sprayed mortar
JPH0734047U (en) * 1993-11-27 1995-06-23 建設基礎エンジニアリング株式会社 Slope protection structure

Similar Documents

Publication Publication Date Title
US4174952A (en) Immunoassay by light scattering intensity anisotropy measurements
US4080264A (en) Immunoassay by light scattering spectroscopy
US5434088A (en) Method of and kit for energy transfer immunoassay with colloidal particles
EP0045103B1 (en) Method for the determination of antigens with the aid of two or more monoclonal antibodies
JPH08505231A (en) Immunoassay based on light scattering without agglomeration of particles themselves
JPS6314783B2 (en)
US5534441A (en) Optically measuring an immunologically active material by degree of agglutination of an antigen-antibody reaction product
US5679581A (en) Method for measuring an immunologically active material and apparatus suitable for practicing said method
US4690908A (en) Measuring reagent kit for determining an antigen, antibody or antigen-antibody complex
JPS60259965A (en) Immunological reaction apparatus
US4164558A (en) Method for optimizing reagents for agglutination reactions
US4569919A (en) Immunologic latex agglutination process
JPS61265571A (en) Immunoassay method in centrifugal field using complementary particle having different specific gravity
JPH0518972A (en) Pre-processing method for immunological measurement reagent
JP2603843B2 (en) Measuring method of antigen or antibody
JPH0643161A (en) Method for accelerating antigen antibody reaction
JP2000221196A (en) Immunological assay
US4350677A (en) Reagent for optimizing agglutination
JPS5847256A (en) Measuring method for antigen-antibody reaction
US5466611A (en) Method for the determination of antigens or antibodies in the presence of an immune complex
JPH026023B2 (en)
JPH0783929A (en) Measuring method for concentration of antigen or antibody
JP3328053B2 (en) Determination of antibody or antigen concentration by immunoagglutination
JPH079427B2 (en) Method for measuring antigen or antibody concentration
JP2745705B2 (en) Antigen / antibody assay