JPH0518897A - Analysis of cobalt alloy composition - Google Patents

Analysis of cobalt alloy composition

Info

Publication number
JPH0518897A
JPH0518897A JP17293691A JP17293691A JPH0518897A JP H0518897 A JPH0518897 A JP H0518897A JP 17293691 A JP17293691 A JP 17293691A JP 17293691 A JP17293691 A JP 17293691A JP H0518897 A JPH0518897 A JP H0518897A
Authority
JP
Japan
Prior art keywords
sample
solution
cobalt alloy
acid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17293691A
Other languages
Japanese (ja)
Inventor
Naohiko Sado
直彦 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17293691A priority Critical patent/JPH0518897A/en
Publication of JPH0518897A publication Critical patent/JPH0518897A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solving method for cobalt alloys. CONSTITUTION:A method has a first process and a third process. In the first process, a cobalt alloy sample is heated and solved with aqur regia and fluoric acid is added to make it a solution and then boric acid is added to control the sample liquid. And in the third process, solved elements in the sample liquid is quantified using a luminescence spectroscopic analysis method. Another method has the first process and a second process. In the second process, after adding tartaric acid, cobalt alloy sample is heated and solved with aqur regia, fluoric acid is added to make it a solution and then boric acid is added to control the sample liquid. And in the third process, solved elements in the sample liquid is quantified using a luminescence spectroscopic analysis method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体と磁気ヘ
ッド材料の組成分析方法に関する。より詳しくは、コバ
ルト合金系の磁気記録媒体と磁気ヘッド材料の迅速かつ
高精度な組成分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing the composition of a magnetic recording medium and a magnetic head material. More specifically, the present invention relates to a cobalt alloy-based magnetic recording medium and a method of rapidly and accurately analyzing a magnetic head material.

【0002】[0002]

【従来の技術】近年、情報記録の高密度化、大容量化に
対する要求が高まり、磁気ハードディスク装置の小型
化、高線記録密度化と高出力高分解能の媒体の開発な
ど、国内外でその研究開発が盛んに行われている。 磁
気記録の分野では、従来のフェライトヘッドやγ- Fe2O
3 塗膜媒体など酸化物磁性材料からコバルト系金属薄膜
ディスクや高保磁力メタル媒体対応のコバルト系金属薄
膜ヘッドへと大きく転換している。金属薄膜媒体は、媒
体の高保磁力化を容易にし、高密度記録の可能性を拡大
していると言われている。
2. Description of the Related Art In recent years, demands for higher density and larger capacity of information recording have been increased, and researches have been conducted domestically and internationally such as miniaturization of magnetic hard disk drive, development of high linear recording density and high output and high resolution medium. Development is actively done. In the field of magnetic recording, conventional ferrite heads and γ-Fe 2 O
3 We are making major changes from oxide magnetic materials such as coating media to cobalt-based metal thin-film disks and cobalt-based metal thin-film heads compatible with high coercive force metal media. The metal thin film medium is said to facilitate high coercive force of the medium and expand the possibility of high density recording.

【0003】磁気記録は、基体(基板)上に付着した記
録媒体へ磁気ヘッドを用いて情報の記録、再生を行う方
法である。記録は、磁気ヘッドに流す信号電流に対応し
た残留磁化を記録媒体に発生させて行う。また、再生
は、残留磁化より発生する漏れ磁界を磁気ヘッドにより
検出し、これを外部へ信号電流として取り出す。
Magnetic recording is a method of recording and reproducing information using a magnetic head on a recording medium attached on a substrate. Recording is performed by generating remanent magnetization corresponding to the signal current flowing in the magnetic head in the recording medium. In reproducing, the leakage magnetic field generated by the residual magnetization is detected by the magnetic head, and this is taken out as a signal current.

【0004】記録媒体としては情報の記録密度が高く、
記録、消去が容易で再生信号のSN比が高いことが望ま
れる。このため記録媒体としては、保磁力Hc、残留磁
束密度Br 、角形比(残留磁束密度Br /飽和磁束密度
Bs )が大きいことが重要である。
As a recording medium, the information recording density is high,
It is desired that recording and erasing be easy and that the SN ratio of the reproduced signal be high. Therefore, it is important for the recording medium that the coercive force Hc, the residual magnetic flux density Br and the squareness ratio (residual magnetic flux density Br / saturation magnetic flux density Bs) are large.

【0005】磁気記録媒体材料としては、残留磁束密度
Br の大きい金属薄膜、例えば Co-Ni-Cr , Co-Cr-Pt ,
Co-Cr-Ta , Co-Cr-Pt-Hf 系などのコバルト合金材料が
検討されている。
As a magnetic recording medium material, a metal thin film having a large residual magnetic flux density Br, such as Co-Ni-Cr, Co-Cr-Pt,
Co-Cr-Ta and Co-Cr-Pt-Hf-based cobalt alloy materials are being studied.

【0006】磁気ヘッド材料としては、熱的安定性、飽
和磁束密度、耐磨耗性などに優れているCo-Zr-Nb , Co-
Zr-Ta , Co-Zr-Re系などのコバルト合金材料が検討され
ている。
As magnetic head materials, Co-Zr-Nb, Co-, which are excellent in thermal stability, saturation magnetic flux density, wear resistance, etc.
Cobalt alloy materials such as Zr-Ta and Co-Zr-Re are being studied.

【0007】いずれの場合も材料組成は記録特性に影響
するため、成膜に関してその合金材料および薄膜組成の
制御、管理は重要であり、複数の元素からなる磁気記録
媒体、薄膜磁気ヘッドの構成材料組成を迅速に精度よく
定量する方法が求められている。
In any case, since the material composition affects the recording characteristics, it is important to control and manage the alloy material and the thin film composition for film formation. The magnetic recording medium composed of a plurality of elements, the constituent material of the thin film magnetic head. There is a need for a method of rapidly and accurately quantifying the composition.

【0008】前記所望のコバルト合金の分析法としては
特に決まった方法がなく、一般に金属材料成分の標準分
析法は、日本分析化学会編「分析化学便覧」改訂三版(1
981)に述べられている。金属材料によって異なるが、試
料分析成分ごとに溶解処理し、必要に応じて分離操作後
に溶液化したのち各成分ごとに重量法、滴定法、吸光光
度法、原子吸光法などを適用する方法が述べられてい
る。
There is no specific method for analyzing the desired cobalt alloy. Generally, the standard analytical method for metal material components is the third edition (1) of the Analytical Chemistry Handbook, edited by the Japan Society for Analytical Chemistry.
981). Although it varies depending on the metal material, the method of applying the weight method, titration method, absorptiometric method, atomic absorption method, etc. to each component is described after dissolving it for each sample analysis component, making it a solution after separation operation if necessary, and making it a solution Has been.

【0009】[0009]

【発明が解決しようとする課題】しかし、Coが主体で
Ni、Cr、Pt、Ta、Hf、Zr、Nb、Reのう
ち少なくとも一つ以上含まれる合金の溶液化は含有成分
の化学的性質が異なるため、同一の処理が困難であり公
定法がなく、一般化された溶液化の方法はない。
However, when an alloy containing Co as a main component and at least one of Ni, Cr, Pt, Ta, Hf, Zr, Nb, and Re is solubilized, the chemical properties of the components are Since they are different, the same treatment is difficult, there is no official method, and there is no generalized solution method.

【0010】さらに金属薄膜の分析試料は、いずれも膜
厚が1000Å以下の基板付薄膜で取り扱い可能な試料量が
少なく、コバルト合金中の副成分の微量定量分析を考慮
した分析試料調製法と溶液中の元素の測定法に決まった
方法がない。特に本試料の金属薄膜の磁気記録媒体と金
属薄膜ヘッドは薄膜単体では存在せず、基板付の形状で
あり、その影響の有無も考慮しなければならず、分析試
料液の調製をより困難にしている。
Further, the analysis sample of the metal thin film is a thin film with a substrate having a film thickness of 1000Å or less, and the amount of the sample that can be handled is small. There is no fixed method for measuring the elements inside. In particular, the metal thin film magnetic recording medium and the metal thin film head of this sample do not exist as a single thin film, but have a shape with a substrate. ing.

【0011】この発明は、上述の点に鑑みてなされ、そ
の目的はコバルトが主体で、Ni、Cr、Pt、Ta、
Hf、Zr、Nb、Reを副成分として含むコバルト合
金の溶液化方法を開発してコバルト合金の迅速な組成分
析方法を提供することにある。
The present invention has been made in view of the above points, and its purpose is mainly cobalt, and Ni, Cr, Pt, Ta,
An object of the present invention is to provide a rapid composition analysis method for a cobalt alloy by developing a solution method for a cobalt alloy containing Hf, Zr, Nb, and Re as accessory components.

【0012】[0012]

【課題を解決するための手段】上述の目的はこの発明に
よれば、第一の工程と、第三の工程を有し、第一の工程
は王水を用いてコバルト合金試料を加熱溶解したあとフ
ッ酸を加えて溶液化し次いでホウ酸を加えて試料液を調
製するものであり、第三の工程は発光分光分析方法を用
いて前記試料液中の溶解元素を定量するものであるこ
と、または第二の工程と、第三の工程を有し、第二の工
程は酒石酸を添加したのち王水を用いてコバルト合金試
料を加熱溶解し、さらにフッ酸を加えて溶液化し次いで
ホウ酸を加えて試料液を調製するものであり、第三の工
程は発光分光分析方法を用いて前記試料液中の溶解元素
を定量するものであるとすることにより達成される。前
記酒石酸は、オキシカルボン酸で他にシュウ酸、クエン
酸等も用いることができる。コバルト合金はコバルト主
体で副成分としては、Ni、Cr、Pt、Ta、Hf、
Zr、Nb、Re等のうち少なくとも一つが含まれる。
According to the present invention, the above-mentioned object has a first step and a third step, and the first step heat-melts a cobalt alloy sample using aqua regia. After that, hydrofluoric acid is added to form a solution and then boric acid is added to prepare a sample solution, and the third step is to quantify a dissolved element in the sample solution using an emission spectroscopic analysis method, Alternatively, it has a second step and a third step. The second step is to add tartaric acid and then heat-dissolve a cobalt alloy sample using aqua regia, and further add hydrofluoric acid to form a solution and then add boric acid. In addition, a sample solution is prepared, and the third step is achieved by quantifying the dissolved element in the sample solution by using an emission spectroscopic analysis method. The tartaric acid is an oxycarboxylic acid, and oxalic acid, citric acid, etc. can be used in addition to the above. Cobalt alloys are mainly composed of cobalt, and as auxiliary components, Ni, Cr, Pt, Ta, Hf,
At least one of Zr, Nb, Re and the like is included.

【0013】[0013]

【作用】コバルト合金試料は、Co-Ni-Cr, Co-Cr-Pt, Co
-Cr-Pt-Hf, Co-Zr-Nb,Co-Zr-Ta, Co-Zr-Re系で石英基板
付である場合が多い。いずれの合金系であっても前記試
料調製工程のいずれかの方法によって溶液化される。特
にコバルト合金試料中のNbは、酒石酸によって水酸化
物生成防止のためのマスキング剤として作用する。ま
た、フッ酸を用いる試料調製法では溶液中の過剰のフッ
酸はホウ酸によってマスキングされるのでプラズマ発光
分光分析法による試料溶液中の多元素同時定量分析法の
適用が可能となる。
[Function] Cobalt alloy samples are Co-Ni-Cr, Co-Cr-Pt, Co
-Cr-Pt-Hf, Co-Zr-Nb, Co-Zr-Ta, Co-Zr-Re system is often equipped with a quartz substrate. Whichever alloy system is used, it is made into a solution by any method of the sample preparation step. In particular, Nb in the cobalt alloy sample acts as a masking agent for preventing hydroxide formation by tartaric acid. Further, in the sample preparation method using hydrofluoric acid, excess hydrofluoric acid in the solution is masked by boric acid, so that the simultaneous multielement quantitative analysis method in the sample solution by plasma emission spectroscopy can be applied.

【0014】[0014]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。分析試料液調製法について述べる。図1は、本発
明の実施例に係る分析試料液調製手順を示す流れ図であ
る。分析試料は金属薄膜の磁気記録媒体または薄膜ヘッ
ドで、コバルトが主体で他にNi、Cr、Pt、Ta、
Hf、Zr、Nb、Reなどが含まれたスパッタ法等に
よる成膜後の石英基板付のコバルト合金薄膜である。
Embodiments of the present invention will now be described with reference to the drawings. A method for preparing an analytical sample solution will be described. FIG. 1 is a flow chart showing an analytical sample liquid preparation procedure according to an example of the present invention. The analysis sample is a magnetic recording medium of a metal thin film or a thin film head, and is mainly composed of cobalt, Ni, Cr, Pt, Ta,
It is a cobalt alloy thin film with a quartz substrate after film formation by a sputtering method or the like containing Hf, Zr, Nb, Re and the like.

【0015】溶液化の方法は、王水(塩酸:硝酸= 3:
1)による溶解であるが、難溶解性のZr、Ta、Nb
を含むコバルト合金に対してはフッ酸を添加して溶解さ
せ、Nbを含むコバルト合金には予め酒石酸を加えてお
き水酸化物の生成を防止して溶液化する。
The solution is formed by aqua regia (hydrochloric acid: nitric acid = 3: 3).
Dissolved by 1) but hardly soluble Zr, Ta, Nb
Hydrofluoric acid is added to the cobalt alloy containing Al to dissolve it, and tartaric acid is added to the cobalt alloy containing Nb in advance to form a solution by preventing the formation of hydroxide.

【0016】さらに、後に述べる溶解液中の元素の定量
工程でのプラズマ発光分光分析において、通常の石英製
トーチでプラズマ炎を発生させて分析できるように試料
液中の過剰のフッ酸をホウ酸でマスキングし、フッ酸に
よる石英トーチの腐食防止も防いでいる。
Further, in the plasma emission spectroscopic analysis in the step of quantifying the elements in the solution which will be described later, excess hydrofluoric acid in the sample solution is converted into boric acid so that a plasma flame can be generated by an ordinary quartz torch for analysis. Masking is also done to prevent the quartz torch from being corroded by hydrofluoric acid.

【0017】以下に分析試料調製手順について述べる。
図1において、試料は石英基板付コバルト合金膜で膜厚
が1000Å以下、面積が約4cm2 以下、膜重量100 〜10
00μg レベルの場合が多い。試料を容器のビーカー(容
量:50 ml)に 採取し、50%王水を 4ml加えて時計
皿を蓋にして加熱溶解する。
The analytical sample preparation procedure will be described below.
In FIG. 1, the sample is a cobalt alloy film with a quartz substrate, the film thickness is 1000 Å or less, the area is about 4 cm 2 or less, and the film weight is 100 to 10
Often at the 00 μg level. Collect the sample in a beaker (capacity: 50 ml) in a container, add 4 ml of 50% aqua regia, and heat and dissolve with the watch glass as the lid.

【0018】特にZr、Ta、Nbを含むコバルト合金
系の試料は王水添加後にフッ酸を用いるため、容器は四
フッ化エチレン樹脂製ビーカーやポリプロピレン製など
耐フッ酸性の樹脂製各種容器が用いられる。
In particular, since cobalt alloy samples containing Zr, Ta and Nb use hydrofluoric acid after addition of aqua regia, various containers made of hydrofluoric acid-resistant resins such as beakers made of tetrafluoroethylene resin and polypropylene are used as containers. To be

【0019】Nbを含むコバルト合金には酒石酸を添加
するが、この場合、濃度が 0.01g/mlのものを調製し
ておき、分析試料量に応じて採取し滴下するようにし
た。通常は数mlのレベルで滴下される。この酒石酸
〔COOHCH(OH)CH(OH)COOH〕はオキシカルボン酸の一つで
Nbと錯イオンを形成して水酸化物沈澱生成の防止に役
立つ。他のオキシカルボン酸としては、例えばシュウ
酸、クエン酸等も用いることができる。
Tartaric acid is added to the cobalt alloy containing Nb. In this case, a cobalt alloy having a concentration of 0.01 g / ml was prepared and sampled and dropped according to the amount of the analysis sample. Usually, it is added dropwise at a level of several ml. This tartaric acid [COOHCH (OH) CH (OH) COOH] is one of oxycarboxylic acids and forms a complex ion with Nb to help prevent the formation of hydroxide precipitate. As the other oxycarboxylic acid, for example, oxalic acid, citric acid or the like can be used.

【0020】次にフッ酸を添加する場合は、加熱を停止
し放冷後に 25%フッ酸を 1〜2 ml加えて難溶解性のZ
r、Ta、Nbを溶解する。溶解液中の過剰のフッ酸は
ホウ酸を添加してマスキングすることによって分析測定
時の石英トーチの腐食防止に役立つ。これは、次式によ
って説明されるが、低温では石英などを侵さないテトラ
フルオロホウ酸(HBF4 )の生成によるためである。 4HF + H3BO3 → HBF4 + 3H2
When hydrofluoric acid is added next, the heating is stopped, and after cooling, 1 to 2 ml of 25% hydrofluoric acid is added to the hardly soluble Z
Dissolve r, Ta and Nb. Excess hydrofluoric acid in the solution is useful for preventing corrosion of the quartz torch during analytical measurement by adding boric acid to mask it. This is due to the formation of tetrafluoroboric acid (HBF 4 ) that does not attack quartz at low temperatures, which is explained by the following equation. 4HF + H 3 BO 3 → HBF 4 + 3H 2 O

【0021】ホウ酸は4 %溶液を予め調製しておく。添
加量はフッ酸使用量で決まるが通常前記フッ酸試料量に
対し 20 〜30mlを加える場合が多い。次いで、基板を取
上げ・洗浄を行い液量を調整するが、本法では50 mlに
定容し分析試料液が調製される。
A 4% solution of boric acid is prepared in advance. The amount to be added depends on the amount of hydrofluoric acid used, but usually 20 to 30 ml is often added to the sample amount of hydrofluoric acid. Next, the substrate is picked up and washed to adjust the liquid volume. In this method, the volume is adjusted to 50 ml to prepare the analytical sample liquid.

【0022】次に試料液中の元素の測定方法について述
べる。液中の元素の測定は発光線を用い、多元素の測定
が可能なプラズマ発光分光分析法とした。図2は本発明
の実施例に係る試料液中の元素を測定するプラズマ発光
分光分析装置の構成図である。この分析計は、高周波電
源部4、試料導入部2、光源部1、分光部5、測光部6
およびデータ処理部7からなり、光源部にアルゴンガス
8が送られ励起温度が 6000 〜 8000Kの高温のアルゴ
ンプラズマが用いられる。試料液は、試料導入部のネブ
ライザーからプラズマ炎中に導入されて発光させ、発光
線は分光器で測定線の選別を行って光電子増倍管6で光
電検出が行われる。
Next, a method for measuring the elements in the sample liquid will be described. The emission line was used for the measurement of the elements in the liquid, and the plasma emission spectroscopic analysis method capable of measuring the multiple elements was adopted. FIG. 2 is a configuration diagram of a plasma emission spectroscopic analyzer for measuring elements in a sample liquid according to an example of the present invention. This analyzer comprises a high frequency power supply unit 4, a sample introduction unit 2, a light source unit 1, a spectroscopic unit 5, and a photometric unit 6.
And a data processing unit 7, argon gas 8 is sent to the light source unit, and high-temperature argon plasma having an excitation temperature of 6000 to 8000K is used. The sample liquid is introduced into the plasma flame from the nebulizer of the sample introduction part to emit light, and the emission line is selected by the spectroscope for the measurement line and photoelectrically detected by the photomultiplier tube 6.

【0023】溶液化されたコバルト合金の試料液3が供
されて各元素の発光線が測定される。ここで、プラズマ
発光分光分析における感度の低下や妨害になる干渉には
次のものがあげられる。
The solution 3 of the cobalt alloy solution is provided and the emission lines of the respective elements are measured. Here, the following are examples of interference that causes a decrease in sensitivity and interference in plasma emission spectroscopy.

【0024】1)物理干渉 「試料の粘性、表面張力、
密度などの物理的性質の変化によるもの」 2)化学干渉 「試料中の難解離性化合物の生成などの
化学的性質の変化によるもの」 3)イオン干渉「試料中にアルカリ金属類などイオン化
し易い元素が多く含まれた時、プラズマ内のイオン化平
衡が変化するもの」 4)分光干渉 「プラズマガス成分やブラズマ中の他の
分子や原子による発光スペクトルが目的とする分析スペ
クトルと重なって分析に影響することによるもの」 等
である。
1) Physical interference "Sample viscosity, surface tension,
"Due to changes in physical properties such as density" 2) Chemical interference "Due to changes in chemical properties such as formation of hardly dissociable compounds in the sample" 3) Ion interference "Easily ionize alkali metals such as in the sample""Ionization equilibrium in plasma changes when a large amount of elements are included" 4) Spectral interference "Emission spectrum of plasma gas components and other molecules and atoms in plasma overlaps with the target analysis spectrum and affects analysis. It is due to doing so. "

【0025】1)〜3)項は、試料調製時の試薬の種類
と量が関係する。4)項は、分析波長を選定することで
影響を避けることができる。ここでは、前記分析試料液
調製時に用いた酸の種類と量を管理してこれに相当する
量を標準試料液に添加し、液組成の整合を行って用いる
ようにしたため、分析上の干渉は除外できた。このよう
にして次の測定条件で各元素の発光線の強度と濃度との
関係から最小自乗法により検量線が作成される。
The items 1) to 3) relate to the type and amount of the reagent at the time of sample preparation. The effect of item 4) can be avoided by selecting the analysis wavelength. Here, since the type and amount of the acid used during the preparation of the analytical sample solution was controlled, and an amount equivalent to this was added to the standard sample solution so that the composition of the solution was adjusted and used, there is no interference in analysis. I was able to exclude it. In this way, a calibration curve is created by the method of least squares from the relationship between the intensity and the concentration of the emission line of each element under the following measurement conditions.

【0026】測定条件 分析元素と波長: Co 238.892 nm 、 Ni 221.647
nm 、 Cr 267.716nm 、Pt 214.423 nm 、 Ta
240.063 nm 、 Hf 264.141 nm 、Zr 339.198 nm
、 Nb 309.418 nm 、 Re 221.426 nm 積分時間: 1秒 積分回数: 3回 RFパワー: 1.39KW 測光高さ: 11.1mm
Measurement conditions Analytical element and wavelength: Co 238.892 nm, Ni 221.647
nm, Cr 267.716 nm, Pt 214.423 nm, Ta
240.063 nm, Hf 264.141 nm, Zr 339.198 nm
, Nb 309.418 nm, Re 221.426 nm Integration time: 1 second Integration frequency: 3 times RF power: 1.39 KW Photometric height: 11.1 mm

【0027】図3はNi(11)とCo(12)の検量
関係を示す線図である。図4はCr(21)とPt(2
2)とHf(23)の検量関係を示す線図である。図5
はTa(24)とZr(25)の検量関係を示す線図で
ある。図6はRe(31)とNb(32)の検量関係を
示す線図である。
FIG. 3 is a diagram showing the calibration relationship between Ni (11) and Co (12). Figure 4 shows Cr (21) and Pt (2
It is a diagram which shows the calibration relationship of 2) and Hf (23). Figure 5
FIG. 4 is a diagram showing a calibration relationship between Ta (24) and Zr (25). FIG. 6 is a diagram showing the calibration relationship between Re (31) and Nb (32).

【0028】いずれも直線性の良好な検量線が得られ
た。この時の実験式は次の通りである。液中の元素濃度
の単位は mg/lである。 X(Co)= 2.455×10-6y + 6.161×10-6
相関係数= 0.999 X(Ni)= 3.760×10-6y − 5.575×10-3
相関係数= 0.999 X(Cr)= 6.152×10-7y − 3.347×10-2
相関係数= 0.999 X(Pt)= 8.269×10-6y − 1.562×10-1
相関係数= 0.999 X(Hf)= 1.238×10-6y − 3.872×10-2
相関係数= 0.999 X(Ta)= 1.029×10-5y − 3.033×10-2
相関係数= 0.999 X(Zr)= 3.124×10-7y − 1.418×10-2
相関係数= 0.999 X(Re)= 3.032×10-6y − 4.664×10-3
相関係数= 0.999 X(Nb)= 2.264×10-6y − 1.873×10-2
相関係数= 0.999 ここでyは発光強度である。発光強度と各元素の液中濃
度との相関係数は、0.999 で良好であることが分かる。
図3、図4の検量線は、Ni、Co、Cr、Pt、H
fの場合 0 〜10 mg/lの範囲を示し、図5、図6の検
量線は、Ta、Zr、Re、Nbの場合 0 〜 2 mg/l
の範囲を示した。
A calibration curve with good linearity was obtained in all cases. The empirical formula at this time is as follows. The unit of the element concentration in the liquid is mg / l. X (Co) = 2.455 × 10 -6 y + 6.161 × 10 -6
Correlation coefficient = 0.999 X (Ni) = 3.760 × 10 -6 y − 5.575 × 10 -3
Correlation coefficient = 0.999 X (Cr) = 6.152 x 10 -7 y-3.347 x 10 -2
Correlation coefficient = 0.999 X (Pt) = 8.269 × 10 -6 y - 1.562 × 10 -1
Correlation coefficient = 0.999 X (Hf) = 1.238 × 10 -6 y − 3.872 × 10 -2
Correlation coefficient = 0.999 X (Ta) = 1.029 × 10 -5 y − 3.033 × 10 -2
Correlation coefficient = 0.999 X (Zr) = 3.124 × 10 -7 y-1.418 × 10 -2
Correlation coefficient = 0.999 X (Re) = 3.032 × 10 -6 y − 4.664 × 10 -3
Correlation coefficient = 0.999 X (Nb) = 2.264 × 10 -6 y − 1.873 × 10 -2
Correlation coefficient = 0.999 where y is the emission intensity. It can be seen that the correlation coefficient between the emission intensity and the concentration of each element in the liquid is 0.999, which is good.
The calibration curves of FIGS. 3 and 4 are Ni, Co, Cr, Pt, and H.
In the case of f, the range of 0 to 10 mg / l is shown, and the calibration curves of FIGS. 5 and 6 are 0 to 2 mg / l in the case of Ta, Zr, Re and Nb.
The range is shown.

【0029】次に先の調製法で標準液を調合した試料を
用い、前記検量線を適用して繰り返し分析精度の検討を
行った結果を表1、表2に示す。
Next, Table 1 and Table 2 show the results of repeated examination of the analytical precision by using the sample prepared by preparing the standard solution by the above-mentioned preparation method and applying the calibration curve.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】液中濃度10ppm以下のレベルで繰り返
し精度は変動係数で1%以下である事がわかる。次に実
試料の分析に適用した結果について述べる。 図1の分
析試料液調製法を適用し前記の検量線を用いてコバルト
合金系スパッタ膜の組成分析を行った結果を表3、表4
に示す。 結果はの単位はat%で示し、成膜に用いた
ターゲットの公称組成値を付記した。
It can be seen that the repeatability is 1% or less in terms of the coefficient of variation when the concentration in the liquid is 10 ppm or less. Next, the results applied to the analysis of actual samples will be described. Table 3 and Table 4 show the results of the composition analysis of the cobalt alloy-based sputtered film using the analytical curve prepared by applying the analytical sample liquid preparation method of FIG.
Shown in. The unit of the result is at%, and the nominal composition value of the target used for film formation is added.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】分析所要時間は、試料調製は10〜20分程度
で完全な溶液化ができ、試料液中の元素の測定は、数分
で完了することから迅速化される。このようにしてこの
発明は精度の高い方法で、かつ迅速に測定ができるので
コバルトが主体の合金の組成評価に適用できる。
The time required for analysis is 10 to 20 minutes for sample preparation, and a complete solution can be obtained, and the measurement of elements in the sample solution is completed in a few minutes, which speeds up the process. In this way, the present invention can be applied to compositional evaluation of cobalt-based alloys because it can be measured with high accuracy and quickly.

【0036】[0036]

【発明の効果】この発明によれば第一の工程と、第三の
工程を有し、第一の工程は王水を用いてコバルト合金試
料を加熱溶解したあとフッ酸を加えて溶液化し次いでホ
ウ酸を加えて試料液を調製するものであり、第三の工程
は発光分光分析方法を用いて前記試料液中の溶解元素を
定量するものであり、または第二の工程と、第三の工程
を有し、第二の工程は酒石酸を添加したのち王水を用い
てコバルト合金試料を加熱溶解し、さらにフッ酸を加え
て溶液化し次いでホウ酸を加えて試料液を調製するもの
であり、第三の工程は発光分光分析方法を用いて前記試
料液中の溶解元素を定量するものであるので、Coが主
体で、Ni、Cr、Pt、Ta、Hf、Zr、Nb、R
eを副成分として含むコバルト合金 例えば Co-Ni-Cr
、Co-Cr-Pt、 Co-Cr-Pt-Hf、 Co-Zr-Nb 、Co-Zr-Ta、Z
r-Reの試料を完全に溶液化することができ、プラズマ発
光分光分析法を適用してコバルト合金中の多元素を迅速
かつ高精度に測定することが可能となる。
According to the present invention, there are a first step and a third step. The first step is to heat and dissolve a cobalt alloy sample using aqua regia, and then add hydrofluoric acid to form a solution, Boric acid is added to prepare a sample solution, the third step is to quantify dissolved elements in the sample solution using an emission spectroscopy method, or the second step and the third step. The second step is to prepare a sample solution by adding tartaric acid, heating and dissolving a cobalt alloy sample using aqua regia, further adding hydrofluoric acid to form a solution, and then adding boric acid. Since the third step is to quantify the dissolved element in the sample solution by using an emission spectroscopic analysis method, Co is the main component and Ni, Cr, Pt, Ta, Hf, Zr, Nb, R
Cobalt alloy containing e as an accessory component, eg Co-Ni-Cr
, Co-Cr-Pt, Co-Cr-Pt-Hf, Co-Zr-Nb, Co-Zr-Ta, Z
The r-Re sample can be completely dissolved, and plasma emission spectroscopy can be applied to measure the multi-elements in the cobalt alloy quickly and with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る分析試料液調製手順を示
す流れ図
FIG. 1 is a flow chart showing a procedure for preparing an analytical sample liquid according to an example of the present invention.

【図2】本発明の実施例に係る試料液中の元素を測定す
るプラズマ発光分光分析装置の構成図
FIG. 2 is a configuration diagram of a plasma emission spectroscopic analyzer for measuring an element in a sample liquid according to an example of the present invention.

【図3】Ni(11)とCo(12)の検量関係を示す
線図
FIG. 3 is a diagram showing a calibration relationship between Ni (11) and Co (12).

【図4】Cr(21)とPt(22)とHf(23)の
検量関係を示す線図
FIG. 4 is a diagram showing a calibration relationship among Cr (21), Pt (22) and Hf (23).

【図5】Ta(24)とZr(25)の検量関係を示す
線図
FIG. 5 is a diagram showing a calibration relationship between Ta (24) and Zr (25).

【図6】Re(31)とNb(32)の検量関係を示す
線図
FIG. 6 is a diagram showing a calibration relationship between Re (31) and Nb (32).

【符号の説明】[Explanation of symbols]

1 プラズマ炎 2 ネブライザー 3 試料液 4 高周波電源部 5 分光器 6 検出器 7 データ処理部 8 アルゴンガス 1 plasma flame 2 nebulizer 3 sample liquid 4 High frequency power supply 5 spectroscope 6 detector 7 Data processing unit 8 Argon gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第一の工程と、第三の工程を有し、 第一の工程は王水を用いてコバルト合金試料を加熱溶解
したあとフッ酸を加えて溶液化し次いでホウ酸を加えて
試料液を調製するものであり、 第三の工程は発光分光分析方法を用いて前記試料液中の
溶解元素を定量するものであることを特徴とするコバル
ト合金の組成分析方法。
1. A first step and a third step, wherein the first step comprises heating and dissolving a cobalt alloy sample using aqua regia, adding hydrofluoric acid to form a solution, and then adding boric acid. A method for preparing a sample solution, wherein the third step is a method for quantifying dissolved elements in the sample solution using an emission spectroscopic analysis method.
【請求項2】 第二の工程と、第三の工程を有し、 第二の工程は酒石酸を添加したのち王水を用いてコバル
ト合金試料を加熱溶解し、さらにフッ酸を加えて溶液化
し次いでホウ酸を加えて試料液を調製するものであり、 第三の工程は発光分光分析方法を用いて前記試料液中の
溶解元素を定量するものであることを特徴とするコバル
ト合金の組成分析方法。
2. The method comprises a second step and a third step, wherein the second step is to add tartaric acid, and then heat-melt the cobalt alloy sample using aqua regia, and further add hydrofluoric acid to form a solution. Next, boric acid is added to prepare a sample solution, and the third step is to quantify the dissolved elements in the sample solution by using an emission spectroscopic analysis method. Method.
JP17293691A 1991-07-15 1991-07-15 Analysis of cobalt alloy composition Pending JPH0518897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17293691A JPH0518897A (en) 1991-07-15 1991-07-15 Analysis of cobalt alloy composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17293691A JPH0518897A (en) 1991-07-15 1991-07-15 Analysis of cobalt alloy composition

Publications (1)

Publication Number Publication Date
JPH0518897A true JPH0518897A (en) 1993-01-26

Family

ID=15951097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17293691A Pending JPH0518897A (en) 1991-07-15 1991-07-15 Analysis of cobalt alloy composition

Country Status (1)

Country Link
JP (1) JPH0518897A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037464B2 (en) 2002-08-08 2006-05-02 Japan Nuclear Cycle Development Institute Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
US7273584B2 (en) 2003-09-01 2007-09-25 Japan Nuclear Cycle Development Institute Method of manufacturing oxide dispersion strengthened martensitic steel excellent in high-temperature strength having residual α-grains
JP2010078381A (en) * 2008-09-24 2010-04-08 Sumitomo Metal Mining Co Ltd Method for high-precision analysis of metal elements by inductively-coupled plasma emission spectral analysis method
CN102445426A (en) * 2011-09-28 2012-05-09 中国一拖集团有限公司 Method for determining cobalt content in hard alloy product
CN112557377A (en) * 2020-11-27 2021-03-26 承德建龙特殊钢有限公司 Method for testing content of niobium in ferromolybdenum
CN113588398A (en) * 2021-07-13 2021-11-02 中国船舶重工集团公司第七二五研究所 Method for digesting cobalt-chromium-molybdenum alloy sample

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037464B2 (en) 2002-08-08 2006-05-02 Japan Nuclear Cycle Development Institute Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
US7273584B2 (en) 2003-09-01 2007-09-25 Japan Nuclear Cycle Development Institute Method of manufacturing oxide dispersion strengthened martensitic steel excellent in high-temperature strength having residual α-grains
JP2010078381A (en) * 2008-09-24 2010-04-08 Sumitomo Metal Mining Co Ltd Method for high-precision analysis of metal elements by inductively-coupled plasma emission spectral analysis method
CN102445426A (en) * 2011-09-28 2012-05-09 中国一拖集团有限公司 Method for determining cobalt content in hard alloy product
CN112557377A (en) * 2020-11-27 2021-03-26 承德建龙特殊钢有限公司 Method for testing content of niobium in ferromolybdenum
CN113588398A (en) * 2021-07-13 2021-11-02 中国船舶重工集团公司第七二五研究所 Method for digesting cobalt-chromium-molybdenum alloy sample

Similar Documents

Publication Publication Date Title
Eckertova Physics of thin films
CA1122399A (en) Corrosion resistant magnetic recording media
US20090086358A1 (en) Method and system for magnetic recording using self-organized magnetic nanoparticles
CN100421155C (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus
JPS605443A (en) Magneto-optical recording medium
JPH0518897A (en) Analysis of cobalt alloy composition
Matlak et al. Nanostructure, structural stability, and diffusion characteristics of layered coatings for heat-assisted magnetic recording head media
Süzer et al. X-ray photoelectron spectroscopic characterization of Au collected with atom trapping on silica for atomic absorption spectrometry
Skogerboe et al. Evaluation of the Microwave-induced Plasma for Multielement Emission Spectrometric Analyses
Prieto et al. Magneto-optics of Gd and Tb in the soft X-ray resonance regions
Hercules Challenges in surface analysis
Leskelä et al. Thermoanalytical methods in the study of inorganic thin films
Grant et al. The status of reference data, reference materials and reference procedures in surface analysis
JP2616177B2 (en) Ceramic composition analysis method
Bagguley et al. Pulsed field Zeeman studies of Ce3+ in LaCl3
Behrndt et al. A comparison between the evaporation characteristics of a crucible and a ring source
Sanz-Medel et al. Inductively coupled plasma emission spectrometry in the analysis of rare earth-transition metal ultra-thin magnetic films
Berkey et al. Sodium corrosion and mass transfer analysis with an ion probe mass spectrometer
JPH06331323A (en) Measurement of thickness of protective layer of magnetic recording medium
Swann Corrosion studies of magnetically active alloys
Xu et al. Substrate induced DLC film thickness variations
Backer-Meurke Finite-size effect in CoAlZr/AlZr multilayers
Challener Mean field analysis of the magneto‐optical properties of TbFeCo
Bonnenberg et al. 1.2. 1.2. 4 Atomic magnetic moment, magnetic moment density, g and g’factor: 1.2. 1.2 Magnetic properties
Brabson Ultraviolet/visible absorption spectroscopy