JPH05184921A - Production of alumina titania composite catalyst carrier - Google Patents

Production of alumina titania composite catalyst carrier

Info

Publication number
JPH05184921A
JPH05184921A JP2205892A JP2205892A JPH05184921A JP H05184921 A JPH05184921 A JP H05184921A JP 2205892 A JP2205892 A JP 2205892A JP 2205892 A JP2205892 A JP 2205892A JP H05184921 A JPH05184921 A JP H05184921A
Authority
JP
Japan
Prior art keywords
titania
alumina
carrier
hydroxycarboxylic acid
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2205892A
Other languages
Japanese (ja)
Inventor
Tetsuo Kamo
哲郎 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2205892A priority Critical patent/JPH05184921A/en
Publication of JPH05184921A publication Critical patent/JPH05184921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a composite catalyst carrier having a high specific surface area by kneading and baking alumina and titania so that the mol ratio of titania to alumina and the mol ratio of a hydroxycarboxylic acid to titania respectively become specific ranges. CONSTITUTION:The mol ratio of titania to alumina is set to 2.0 or less and the mol ratio of a hydroxycarboxylic acid to titania is set to 0.2-2.0. Titanium hydroxycarboxylate and/or a sol of titanium oxide or titanium hydroxide and the hydroxycarboxylic acid are added to aluminum oxide and/or aluminum hydroxide to be kneaded therewith and the kneaded mixture is baked to produce, for example, an alumina titania composite catalyst carrier having a high specific surface area of 200m<2>/g or more. At this time, the number of carbon atoms of the hydroxycarboxylic acid is set to 6 or less. As the hydroxycarboxylic acid, for example, glycolic acid or tartaric acid is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素油の水素化処理
触媒用担体に関する。
TECHNICAL FIELD The present invention relates to a carrier for a hydrotreating catalyst for hydrocarbon oil.

【0002】[0002]

【従来の技術】石油系原油の常圧残油留分や減圧蒸留油
留分等の炭化水素油には硫黄や窒素の化合物が多量に含
まれるため、これらを燃料とすると硫黄の酸化物や窒素
の酸化物を大気に放出することになり好ましくない。そ
のため水素化処理を行い、予め該炭化水素油から硫黄分
を硫化水素として、窒素分をアンモニアとして除去して
いる。この処理に使用されている水素化処理触媒として
は、アルミナを担体とし、これに周期律表第6族金属や
周期律表第8族金属或は双方を担持したものが使用され
ている。これらの触媒が工業的に用いられるにあたり、
触媒の活性の寿命が最も重視されていることは周知であ
る。
2. Description of the Related Art Hydrocarbon oils such as atmospheric residual oil fractions and vacuum distilled oil fractions of petroleum crude oil contain a large amount of sulfur and nitrogen compounds. It is not desirable because it will release oxides of nitrogen to the atmosphere. Therefore, a hydrogenation process is performed to remove the sulfur content from the hydrocarbon oil as hydrogen sulfide and the nitrogen content as ammonia in advance. As the hydrotreating catalyst used in this treatment, there is used a catalyst in which alumina is used as a carrier and a metal of Group 6 or 8 of the Periodic Table is supported on the carrier. When these catalysts are used industrially,
It is well known that the longevity of catalyst activity is of paramount importance.

【0003】ところが含有される該窒素化合物を多く含
む炭化水素油を、前述の触媒をもって水素化処理する場
合、触媒の活性劣化が急速であり、反応開始初期の高活
性が保たれないという好ましくない問題がある。この主
因としては原料油中にはピリジンやキノリンのような強
い塩基性窒素化合物が触媒や担体の表面酸性点に強吸着
し活性表面を不可逆的に覆うことにより起こる。
However, when the hydrocarbon oil containing a large amount of the nitrogen compound contained therein is hydrotreated with the above-mentioned catalyst, the activity of the catalyst is rapidly deteriorated and the high activity at the initial stage of the reaction initiation cannot be maintained, which is not preferable. There's a problem. The main cause of this is that strong basic nitrogen compounds such as pyridine and quinoline are strongly adsorbed on the surface acidic points of the catalyst and the carrier in the feedstock and irreversibly cover the active surface.

【0004】この問題の解決法として、特開昭60−2
32248号公報ではゼオライトにチタニアを被覆せし
めることで、劣化の少ない触媒用の担体を提供した。最
近までよく知られて来たように、チタニアはアルミナに
比べ強い酸性質を持つ。前記公報でも述べられているよ
うに、触媒上の活性点上に強く吸着した窒素化合物は更
にチタニア表面に強く引き付けられて、無害な窒素(N
2)へ分解反応させることが出来る。従って触媒活性の
被毒現象を抑制しつつ、水素化脱窒素を行うことが出来
る。
As a solution to this problem, Japanese Patent Laid-Open No. Sho 60-2
In Japanese Patent No. 32248, a carrier for a catalyst which is less deteriorated is provided by coating zeolite with titania. As has been well known until recently, titania has stronger acid properties than alumina. As described in the above publication, the nitrogen compound strongly adsorbed on the active site on the catalyst is further strongly attracted to the titania surface, so that harmless nitrogen (N
2 ) can be decomposed. Therefore, hydrodenitrogenation can be performed while suppressing the poisoning phenomenon of the catalytic activity.

【0005】しかしながらこれにも拘らず、チタニア或
はチタニアを含む担体を調製する上で、チタニアを被覆
したゼオライトの比表面積はγ−Al23に比べて著し
く小さい欠点を持っている。これはチタニアがアルミナ
に較べて極めて凝集しやすい性質を持っているために起
こるものである。この問題の解決法として、チタニア原
料である水酸化チタンの焼成温度を極力低くすることで
比表面積の低下を抑える方法がある。しかし工業的に安
価な水酸化物にはそれぞれ多くの硫酸イオンや塩化物イ
オンが含有されるので、これらの除去のために500℃
以上の温度で焼成しなければならず、この結果比表面積
低下は免れない。
However, in spite of this, in preparing titania or a carrier containing titania, the specific surface area of titania-coated zeolite is remarkably smaller than that of γ-Al 2 O 3 . This occurs because titania has a property of being much more likely to aggregate than alumina. As a solution to this problem, there is a method of suppressing the decrease in specific surface area by making the firing temperature of titanium hydroxide, which is a titania raw material, as low as possible. However, since industrially cheap hydroxides contain a large amount of sulfate and chloride ions, 500 ° C is required to remove them.
It must be fired at the above temperature, and as a result, the specific surface area is unavoidably reduced.

【0006】一方、含浸方法を用いて無機酸化物担体に
チタニアを担持することが出来るが、該方法でも焼成さ
れた後は担持チタニアが島状に凝集し、担体上に高分散
しない。しかも担体表面に完全に被覆するための必要担
持量を一度に含浸することは含浸液のチタン濃度を著し
く上昇させて高粘性となるので含浸が不可能である。以
上のように種々な従来技術を試行しても、工業的な高比
表面積チタニア被覆触媒担体を調製する方法は未だな
い。
On the other hand, although the impregnation method can be used to support titania on the inorganic oxide carrier, even in this method, the supported titania is aggregated into islands after firing and is not highly dispersed on the carrier. In addition, impregnating the carrier surface with the necessary amount of support required to completely coat the carrier at the same time significantly increases the titanium concentration of the impregnating solution and makes it highly viscous, so impregnation is impossible. Even if various conventional techniques are tried as described above, there is still no method for preparing an industrial high specific surface area titania-coated catalyst carrier.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は200
2/g以上の高比表面積を有するアルミナ・チタニア
複合触媒担体の製造方法を提供することにある。
The object of the present invention is 200
It is to provide a method for producing an alumina / titania composite catalyst carrier having a high specific surface area of m 2 / g or more.

【0008】[0008]

【課題を解決するための手段】本発明触媒担体は、アル
ミナに対してチタニアのモル比が2.0以下で、且つ前
記チタニアに対してハイドロオキシカルボン酸のモル比
が0.2〜2.0となるように、チタンのハイドロオキシ
カルボン酸塩及び/又はチタンの酸化物、水酸化物のゾ
ルとハイドロオキシカルボン酸を、アルミニウムの酸化
物及び/又は水酸化物に添加して混練し、焼成する点に
特徴がある。
In the catalyst carrier of the present invention, the molar ratio of titania to alumina is 2.0 or less, and the molar ratio of hydroxycarboxylic acid to titania is 0.2 to 2.2. 0, titanium hydroxycarboxylate and / or titanium oxide, hydroxide sol and hydroxycarboxylic acid are added to aluminum oxide and / or hydroxide and kneaded, It is characterized in that it is fired.

【0009】[0009]

【作用】本発明の作用は明らかではないが、前述のハイ
ドロオキシカルボン酸がアルミナやチタニアに吸着する
ので、焼成時の凝集や焼結が抑制されるからであると考
えられている。しかも混練方法によってハイドロオキシ
カルボン酸はよくアルミナを解こうとするので、生成し
たチタニアの凝集が抑制され、均一な高分散が得られ
る。この結果高比表面積のアルミナ・チタニア触媒担体
を調製出来ると考えられる。
Although the function of the present invention is not clear, it is considered that the above-mentioned hydroxycarboxylic acid is adsorbed on alumina or titania, so that aggregation or sintering during firing is suppressed. Moreover, since the hydroxycarboxylic acid tends to dissolve the alumina well by the kneading method, aggregation of the produced titania is suppressed and uniform high dispersion is obtained. As a result, it is considered that an alumina / titania catalyst carrier having a high specific surface area can be prepared.

【0010】以下本発明の内容について説明する。本発
明方法に用いる酸化チタン、水酸化チタンとしては、酸
化チタンゾル又は水酸化チタンのゾルが用いられるが、
特に水酸化チタンのゾルを用いるのが良い。即ち市販の
ゾルは塩化チタンや硫酸チタンの加水分解で得られた水
酸化チタンの分散溶液であり、非常に微小な結晶子の集
合である。しかも塩化物イオンや硫酸イオンを含まない
ものを用いることが出来るのでこれら不純物を含まない
触媒調製が可能である。
The contents of the present invention will be described below. As titanium oxide and titanium hydroxide used in the method of the present invention, titanium oxide sol or titanium hydroxide sol is used.
It is particularly preferable to use a sol of titanium hydroxide. That is, the commercially available sol is a dispersion solution of titanium hydroxide obtained by hydrolysis of titanium chloride or titanium sulfate, and is a very fine aggregate of crystallites. Moreover, since it is possible to use a substance that does not contain chloride ions or sulfate ions, it is possible to prepare a catalyst that does not contain these impurities.

【0011】チタニアゾル又は水酸化チタンゾル中のチ
タニアのアルミナ水和物に対する添加割合は、アルミナ
に対するチタニアのモル比で2.0以下が良い。2.0を
超えるとチタニア又は水酸化チタンの凝集が著しく高比
表面積が得られないので望ましくない。チタンはハイド
ロオキシカルボン酸の塩の形で添加することも出来、こ
うするとハイドロオキシカルボン酸とチタンを同時に添
加でき、アルミナとの混合が容易である。
The addition ratio of titania to alumina hydrate in the titania sol or titanium hydroxide sol is preferably 2.0 or less in terms of the molar ratio of titania to alumina. When it exceeds 2.0, aggregation of titania or titanium hydroxide is remarkable and a high specific surface area cannot be obtained, which is not desirable. Titanium can also be added in the form of a salt of hydroxycarboxylic acid, which allows the hydroxycarboxylic acid and titanium to be added at the same time and is easy to mix with alumina.

【0012】又ハイドロオキシカルボン酸としては、酒
石酸、クエン酸、グリコール酸、リンゴ酸、乳酸、グル
コン酸等のいずれかを添加しても良いが、好ましくは安
価で分子量が低く、水溶液にして粘性の大きくないグリ
コール酸や酒石酸が選ばれる。これらハイドロオキシカ
ルボン酸は炭素数6以下のものが好ましい。炭素数が6
を超えると粘性が大きくなり、均一な混練が出来なくな
るからである。
As the hydroxycarboxylic acid, any one of tartaric acid, citric acid, glycolic acid, malic acid, lactic acid, gluconic acid and the like may be added, but it is preferably inexpensive and has a low molecular weight and is viscous as an aqueous solution. Glycolic acid or tartaric acid, which does not have a large amount, is selected. These hydroxycarboxylic acids preferably have 6 or less carbon atoms. 6 carbon atoms
If it exceeds, the viscosity will increase and uniform kneading will not be possible.

【0013】これらの物質はチタニアの含有モル比に対
して0.2〜2.0の重量比で添加されるのが望ましい。
2.0を超えるとさらなる比表面積の向上は望めず、又
混練物の粘性を著しく増加させ、混練操作上極めて困難
となるので好ましくない。又、0.2未満ではチタニア
又は水酸化チタンの凝集を抑える効果が低くなり、比表
面積が低下するので好ましくない。
These substances are preferably added in a weight ratio of 0.2 to 2.0 with respect to the titania content molar ratio.
If it exceeds 2.0, further improvement of the specific surface area cannot be expected, and the viscosity of the kneaded product is remarkably increased, which makes the kneading operation extremely difficult, which is not preferable. On the other hand, if it is less than 0.2, the effect of suppressing the aggregation of titania or titanium hydroxide is lowered and the specific surface area is lowered, which is not preferable.

【0014】本発明で用いられるアルミナは酸化物でも
水和物でも良く、効果的に高分散を得ることが出来る。
但し好ましくはチタニアの分散度をより向上させるため
に結晶子径の小さい水和物のアルミナと混練する方法が
望ましい。尚、水和物としてはアルミナベーマイト〔A
lO(OH)〕やアルミナ擬ベーマイトを挙げることが
出来る。混練後は含有された水分と添加剤の炭素質を取
り除くため、含酸素気流中所定の温度での乾燥と焼成が
必要である。即ち本発明は有機化合物を添加して焼成す
る方法であるから、それを完全に除去させるに必要な雰
囲気や焼成温度及び焼成時間を抑制することが肝要であ
る。
The alumina used in the present invention may be an oxide or a hydrate, and it is possible to effectively obtain a high dispersion.
However, a method of kneading with hydrated alumina having a small crystallite size is preferable in order to further improve the degree of dispersion of titania. As the hydrate, alumina boehmite [A
10 (OH)] and alumina pseudo-boehmite can be mentioned. After the kneading, in order to remove the contained water and the carbonaceous material of the additive, it is necessary to dry and bake at a predetermined temperature in an oxygen-containing stream. That is, since the present invention is a method of adding an organic compound and baking, it is important to suppress the atmosphere, the baking temperature and the baking time necessary for completely removing the organic compound.

【0015】[0015]

【実施例】【Example】

実施例1 Al23としての含有率が36.4重量%(以下単に%
という)のアルミナ水和物627gに、チタニア品位1
4.5重量%(以下単に%という)の乳酸チタンアンモ
ニウム水溶液675gを添加し撹拌混練した。これを1
10℃で16時間乾燥した。次いで、600℃まで2時
間かけて昇温し、更に2時間600℃で焼成した。尚焼
成時の雰囲気は毎分1リットルの空気気流下とした。焼
成後の組成物を担体Aとした。担体AのTiO2/Al2
3モル比、ハイドロオキシカルボン酸/TiO2モル
比、焼成後のBET比表面積を表1に示す。
Example 1 The content of Al 2 O 3 was 36.4% by weight (hereinafter simply referred to as%).
Said) to 627 g of alumina hydrate, and titania quality 1
675 g of a 4.5% by weight (hereinafter simply referred to as "%") aqueous ammonium ammonium lactate solution was added and kneaded with stirring. This one
It was dried at 10 ° C. for 16 hours. Then, the temperature was raised to 600 ° C. over 2 hours, and the baking was further performed at 600 ° C. for 2 hours. The atmosphere during firing was under an air flow of 1 liter per minute. The composition after firing was used as a carrier A. Carrier A TiO 2 / Al 2
Table 1 shows the O 3 molar ratio, the hydroxycarboxylic acid / TiO 2 molar ratio, and the BET specific surface area after firing.

【0016】実施例2 Al23としての含有率が36.4%のアルミナ水和物
806gに、チタニア品位14.5%の乳酸チタンアン
モニウム塩の水溶液225gを添加し撹拌混練した。こ
れを実施例1と同条件で乾燥し焼成した。焼成後の組成
物を担体Bとした。担体BのTiO2/Al23モル
比、ハイドロオキシカルボン酸/TiO2モル比、焼成
後のBET比表面積を表1に示す。
Example 2 To 806 g of alumina hydrate having a content as Al 2 O 3 of 36.4%, 225 g of an aqueous solution of titanium ammonium lactate having a titania quality of 14.5% was added and kneaded with stirring. This was dried and fired under the same conditions as in Example 1. The composition after firing was used as a carrier B. Table 1 shows the TiO 2 / Al 2 O 3 molar ratio of the carrier B, the hydroxycarboxylic acid / TiO 2 molar ratio, and the BET specific surface area after firing.

【0017】実施例3 Al23としての含有率が36.4%のアルミナ水和物
806gに、チタニア品位14.5%の乳酸チタンアン
モニウム塩の水溶液2428gを添加し撹拌混練した。
充分水分を除去したのち、これを実施例1と同条件で乾
燥し焼成した。焼成後の組成物を担体Cとした。担体C
のTiO2/Al23モル比、ハイドロオキシカルボン
酸/TiO2モル比、焼成後のBET比表面積を表1に
示す。
Example 3 To 806 g of alumina hydrate having an Al 2 O 3 content of 36.4%, 2428 g of an aqueous solution of titanium ammonium lactate having a titania quality of 14.5% was added and kneaded with stirring.
After sufficiently removing water, this was dried and fired under the same conditions as in Example 1. The composition after firing was used as a carrier C. Carrier C
Table 1 shows the TiO 2 / Al 2 O 3 molar ratio, the hydroxycarboxylic acid / TiO 2 molar ratio, and the BET specific surface area after firing.

【0018】実施例4 Al23としての含有率が36.4%のアルミナ水和物
550gにチタニアゾル(チタニア品位14.5%)2
76gを添加し撹拌した。これに炭素数4、カルボン酸
数2の酒石酸38gを添加した水溶液を添加し水分を除
去するために80℃で加熱・撹拌・混練した。この混練
物を110℃で16時間乾燥した。次いで、600℃で
2時間かけて昇温し、更に2時間600℃で焼成した。
尚、焼成時の雰囲気は毎分1リットルの空気気流下とし
た。焼成後の組成物を担体Dとした。担体Dにおいて、
酒石酸のチタニアに対する添加モル比、TiO2/Al2
3モル比、焼成後のBET比表面積を表1に示す。
Example 4 550 g of alumina hydrate having an Al 2 O 3 content of 36.4% was added to titania sol (titania quality 14.5%) 2.
76 g was added and stirred. An aqueous solution containing 38 g of tartaric acid having 4 carbon atoms and 2 carboxylic acids was added thereto, and heated, stirred, and kneaded at 80 ° C. to remove water. The kneaded product was dried at 110 ° C. for 16 hours. Then, the temperature was raised at 600 ° C. over 2 hours, and the baking was further performed at 600 ° C. for 2 hours.
The atmosphere during firing was an air flow of 1 liter per minute. The composition after baking was used as a carrier D. In carrier D,
Addition molar ratio of tartaric acid to titania, TiO 2 / Al 2
Table 1 shows the O 3 molar ratio and the BET specific surface area after firing.

【0019】実施例5 実施例4において用いられた酒石酸量を137gとする
他は、実施例4と同条件で担体を調製した。得られた組
成物を担体Eとした。担体Eにおいて、酒石酸のチタニ
アに対する添加モル比、TiO2/Al23モル比、焼
成後のBET比表面積を表1に示す。
Example 5 A carrier was prepared under the same conditions as in Example 4, except that the amount of tartaric acid used in Example 4 was 137 g. The obtained composition was used as a carrier E. Table 1 shows the addition molar ratio of tartaric acid to titania, the TiO 2 / Al 2 O 3 molar ratio, and the BET specific surface area after firing in the carrier E.

【0020】実施例6 実施例4において用いた酒石酸に代えて34gの炭素数
4、カルボン酸数2のリンゴ酸を用いた他は、実施例4
と同条件で担体を調製した。得られた組成物を担体Fと
した。担体Fにおいて、リンゴ酸のチタニアに対する添
加モル比、TiO2/Al23モル比、焼成後のBET
比表面積を表1に示す。
Example 6 Example 4 was repeated except that 34 g of malic acid having 4 carbon atoms and 2 carboxylic acids was used in place of tartaric acid used in Example 4.
A carrier was prepared under the same conditions as above. The obtained composition was used as a carrier F. In the carrier F, the molar ratio of malic acid to titania added, the TiO 2 / Al 2 O 3 molar ratio, and the BET after firing
The specific surface area is shown in Table 1.

【0021】実施例7 実施例4において用いた酒石酸に代えて53gの炭素数
6、カルボン酸数3のクエン酸を用いた他は、実施例4
と同条件で担体を調製した。得られた組成物を担体Gと
した。担体Gにおいて、クエン酸のチタニアに対する添
加モル比、TiO2/Al23モル比、焼成後のBET
比表面積を表1に示す。
Example 7 Example 4 was repeated except that 53 g of citric acid having 6 carbon atoms and 3 carboxylic acids was used in place of tartaric acid used in Example 4.
A carrier was prepared under the same conditions as above. The obtained composition was used as a carrier G. In carrier G, the molar ratio of citric acid to titania, the TiO 2 / Al 2 O 3 molar ratio, the BET after firing,
The specific surface area is shown in Table 1.

【0022】実施例8 実施例4において用いた酒石酸に代えて76gの炭素数
2、カルボン酸数1のグリコール酸を用いた他は、実施
例4と同条件で担体を調製した。得られた組成物を担体
Hとした。担体Hにおいて、グリコール酸のチタニアに
対する添加モル比、TiO2/Al23モル比、焼成後
のBET比表面積を表1に示す。
Example 8 A carrier was prepared under the same conditions as in Example 4, except that 76 g of glycolic acid having 2 carbon atoms and 1 carboxylic acid was used instead of tartaric acid used in Example 4. The obtained composition was used as a carrier H. Table 1 shows the addition molar ratio of glycolic acid to titania, the TiO 2 / Al 2 O 3 molar ratio, and the BET specific surface area after firing in the carrier H.

【0023】比較例1 Al23の含有率が36.4%のアルミナ水和物806
gに、チタニア品位67.0%の水酸化チタン186g
を添加し撹拌混練した。これを実施例1と同条件で乾燥
し焼成した。焼成後の組成物を担体R−1とした。担体
R−1のTiO2/Al23モル比、焼成後のBET比
表面積を表1に示す。
Comparative Example 1 Alumina hydrate 806 having an Al 2 O 3 content of 36.4%
g, titanium oxide 186g with titania quality of 67.0%
Was added and kneaded with stirring. This was dried and fired under the same conditions as in Example 1. The composition after firing was used as a carrier R-1. Table 1 shows the TiO 2 / Al 2 O 3 molar ratio of the carrier R-1 and the BET specific surface area after firing.

【0024】比較例2 実施例1で用いた同じアルミナ水和物824g(Al2
3の含有率36.4%)と、水酸化チタン(チタニア品
位67%)70gを混合し適量の水を加えて混練した。
これを110℃で16時間空気気流下で乾燥した。次い
で、乾燥後のものを空気気流下、2時間600℃で焼成
した。この組成物を担体R−2とした。該組成物のTi
2/Al23モル比、焼成後のBET比表面積を表1
に示す。
Comparative Example 2 824 g of the same alumina hydrate used in Example 1 (Al 2
O 3 content of 36.4%) and 70 g of titanium hydroxide (titania quality 67%) were mixed and an appropriate amount of water was added and kneaded.
This was dried at 110 ° C. for 16 hours under an air stream. Then, the dried product was fired at 600 ° C. for 2 hours in an air stream. This composition was used as carrier R-2. Ti of the composition
Table 1 shows the O 2 / Al 2 O 3 molar ratio and the BET specific surface area after firing.
Shown in.

【0025】比較例3 Al23の含有率が36.4%のアルミナ水和物550
gに、チタニアゾル(チタニア品位14.5%)276
gを添加し撹拌した。この混練物を110℃で16時間
乾燥した。次いで、600℃で2時間かけて昇温し、更
に2時間600℃で焼成した。焼成後の組成物を担体R
−3とした。担体R−3において、TiO2/Al23
モル比、焼成後のBET比表面積を表1に示す。
Comparative Example 3 Alumina hydrate 550 having an Al 2 O 3 content of 36.4%
g, titania sol (titania quality 14.5%) 276
g was added and stirred. The kneaded product was dried at 110 ° C. for 16 hours. Then, the temperature was raised at 600 ° C. over 2 hours, and the baking was further performed at 600 ° C. for 2 hours. The composition after firing is used as a carrier R
-3. In the carrier R-3, TiO 2 / Al 2 O 3
Table 1 shows the molar ratio and the BET specific surface area after firing.

【0026】比較例4 実施例4において用いたチタニアゾルの添加量を248
4gとし、酒石酸を342gとした他は、実施例4と同
条件で担体を調製した。得られた組成物を担体R−4と
した。担体R−4において、酒石酸のチタニアに対する
添加モル比、TiO2/Al23モル比、焼成後のBE
T比表面積を表1に示す。
Comparative Example 4 The titania sol used in Example 4 was added in an amount of 248.
A carrier was prepared under the same conditions as in Example 4, except that the amount was 4 g and the tartaric acid was 342 g. The obtained composition was used as a carrier R-4. In the carrier R-4, the addition molar ratio of tartaric acid to titania, the TiO 2 / Al 2 O 3 molar ratio, and the BE after firing
Table 1 shows the T specific surface area.

【0027】比較例5 実施例4において用いたチタニアゾルの添加量を276
gとした以外は実施例4と同条件で担体を調製した。得
られた組成物を担体R−5とした。担体R−5におい
て、酒石酸のチタニアに対するモル比、TiO2/Al2
3モル比、焼成後のBET比表面積を表1に示す。
Comparative Example 5 The addition amount of the titania sol used in Example 4 was 276.
A carrier was prepared under the same conditions as in Example 4 except that g was used. The obtained composition was used as a carrier R-5. In carrier R-5, the molar ratio of tartaric acid to titania, TiO 2 / Al 2
Table 1 shows the O 3 molar ratio and the BET specific surface area after firing.

【0028】[0028]

【表1】 担 TiO2/Al23 ハイドロオキシカルボン酸 BET比表面積 体 モル比 /TiO2モル比 m2/g ─────────────────────────────────── 1 A 0.55 1.0 267 2 B 0.19 1.0 299 実3 C 1.53 1.0 200 4 D 0.26 0.5 245 施5 E 0.26 1.8 270 6 F 0.26 0.5 231 例7 G 0.26 0.5 222 8 H 0.26 0.5 256 ─────────────────────────────────── 比1 R−1 0.54 − 121 2 R−2 0.20 − 170 較3 R−3 0.26 − 132 4 R−4 2.3 0.5 168 例5 R−5 0.26 2.2 129 ───────────────────────────────────[Table 1] TiO 2 / Al 2 O 3 hydroxycarboxylic acid BET specific surface area body molar ratio / TiO 2 molar ratio m 2 / g ──────────────────── ──────────────── ─ 1 A 0.55 1.0 267 2 B 0.19 1.0 299 Actual 3 C 1.53 1.0 200 200 4 D 0.260 .5 245 Application 5 E 0.26 1.8 270 6 F 0.26 0.5 231 Example 7 G 0.26 0.5 222 2 8 H 0.26 0.5 256 256 ────────── ────────────────────────── Ratio 1 R-1 0.54-121 2 R-2 0.20-170 Comparison 3 R-3 0.26-132 4 R-4 2.3 0.5 168 Example 5 R-5 0.26 2.2 129 ─────────────────────── ─────────────

【0029】[0029]

【発明の効果】本発明によれば、高比表面積のアルミナ
・チタニア複合触媒担体を製造することが出来る。
According to the present invention, an alumina / titania composite catalyst carrier having a high specific surface area can be produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナに対してチタニアのモル比が
2.0以下で、且つ前記チタニアに対してハイドロオキ
シカルボン酸のモル比が0.2〜2.0となるように、チ
タンのハイドロオキシカルボン酸塩及び/又はチタンの
酸化物、水酸化物のゾルとハイドロオキシカルボン酸
を、アルミニウムの酸化物及び/又は水酸化物に添加し
て混練し、焼成することを特徴とするアルミナ・チタニ
ア複合触媒担体の製造方法。
1. Hydroxy titanium, so that the molar ratio of titania to alumina is 2.0 or less, and the molar ratio of hydroxycarboxylic acid to titania is 0.2 to 2.0. Alumina / titania characterized by adding sol of carboxylate and / or titanium oxide or hydroxide and hydroxycarboxylic acid to aluminum oxide and / or hydroxide, kneading and firing Method for producing composite catalyst carrier.
【請求項2】 前記ハイドロオキシカルボン酸の炭素数
が6以下であることを特徴とする請求項1記載のアルミ
ナ・チタニア複合触媒担体の製造方法。
2. The method for producing an alumina / titania composite catalyst carrier according to claim 1, wherein the hydroxycarboxylic acid has 6 or less carbon atoms.
JP2205892A 1992-01-10 1992-01-10 Production of alumina titania composite catalyst carrier Pending JPH05184921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2205892A JPH05184921A (en) 1992-01-10 1992-01-10 Production of alumina titania composite catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2205892A JPH05184921A (en) 1992-01-10 1992-01-10 Production of alumina titania composite catalyst carrier

Publications (1)

Publication Number Publication Date
JPH05184921A true JPH05184921A (en) 1993-07-27

Family

ID=12072315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2205892A Pending JPH05184921A (en) 1992-01-10 1992-01-10 Production of alumina titania composite catalyst carrier

Country Status (1)

Country Link
JP (1) JPH05184921A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037289A (en) * 1995-09-15 2000-03-14 Rhodia Chimie Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
WO2011040224A1 (en) * 2009-09-30 2011-04-07 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
WO2011122387A1 (en) 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US9061265B2 (en) 2010-06-25 2015-06-23 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
US9359270B2 (en) 2012-08-07 2016-06-07 Velocys Technologies Limited Treating of catalyst support
US9381501B2 (en) 2011-02-07 2016-07-05 Velocys Technologies Limited Catalysts
JP2021511954A (en) * 2018-01-22 2021-05-13 サゾル ジャーマニー ゲーエムベーハー Carrier and manufacturing method of catalyst containing uniformly distributed titanium dioxide
CN114425313A (en) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 Titanium dioxide-aluminum oxide composite oxide and preparation and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362121B1 (en) * 1995-09-15 2002-03-26 Rhodia Chimie Substrate with a photocatalytic coating based on titanium dioxide and organic dispersions based on titanium dioxide
US6037289A (en) * 1995-09-15 2000-03-14 Rhodia Chimie Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
WO2011040224A1 (en) * 2009-09-30 2011-04-07 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
US9067191B2 (en) 2009-09-30 2015-06-30 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
WO2011122387A1 (en) 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US9776180B2 (en) 2010-03-30 2017-10-03 Chiyoda Corporation Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US9463452B2 (en) 2010-03-30 2016-10-11 Chiyoda Corporation Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US9061265B2 (en) 2010-06-25 2015-06-23 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
US9523040B2 (en) 2011-02-07 2016-12-20 Velocys Technologies Limited Catalysts
US9381501B2 (en) 2011-02-07 2016-07-05 Velocys Technologies Limited Catalysts
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US10071370B2 (en) 2012-07-19 2018-09-11 Chiyoda Corporation Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US9359270B2 (en) 2012-08-07 2016-06-07 Velocys Technologies Limited Treating of catalyst support
JP2021511954A (en) * 2018-01-22 2021-05-13 サゾル ジャーマニー ゲーエムベーハー Carrier and manufacturing method of catalyst containing uniformly distributed titanium dioxide
CN114425313A (en) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 Titanium dioxide-aluminum oxide composite oxide and preparation and application thereof
CN114425313B (en) * 2020-10-14 2023-09-29 中国石油化工股份有限公司 Titanium dioxide-aluminum oxide composite oxide and preparation and application thereof

Similar Documents

Publication Publication Date Title
EP1145763B1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
NL8006474A (en) PROCESS FOR HYDROGENATING HEAVY HYDROCARBON OILS, CATALYSTS FOR THIS PROCESS, AND PROCESS FOR PREPARING SUCH CATALYSTS.
JPH05184921A (en) Production of alumina titania composite catalyst carrier
EP0659718B1 (en) Method for producing a cycloolefin
KR102410768B1 (en) A naphtha reforming catalyst and preparation method thereof
KR100819630B1 (en) A new aluminum trihydroxide phase and catalysts made therefrom
JP3246739B2 (en) Hydrogenation catalyst
JPH06104568B2 (en) Method for producing alumina having large pores
AU2016225128C1 (en) Hydrocarbon synthesis catalyst, its preparation process and its use
JP2556340B2 (en) Process for producing hydrogenated catalyst prepared from hydrogel and produced catalyst
MX2008002612A (en) Process for producing high porosity boehmite aluminas.
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
CN110935460B (en) High-selectivity hydrodesulfurization catalyst and preparation method thereof
CN100340638C (en) Preparation method of hydrocarbon hydrotreatment catalyst
JP2004074148A (en) Carrier containing titanium, its production method, hydrogen treating catalyst for hydrocarbon oil, and hydrogen treating method using it
JP4673966B2 (en) Hydrocarbon oil hydrotreating catalyst production method and hydrocarbon oil hydrotreating method
JP4644351B2 (en) Metal compound-supported refractory inorganic oxide support and hydrotreating catalyst using the support
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
JPH06154610A (en) Catalyst for residual oil having high metal content, method for its production and process for its use
JP2001310133A (en) Catalyst for hydrodesulfurizatin and denitrification of hydrocarbon oil and its production method
CN106925337B (en) Hydrodesulfurization modification catalyst and preparation method thereof
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method
JPH03281595A (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JPH09276712A (en) Catalyst for hydrogenation and metal removal of heavy oil and its production