JPH05182918A - Vapor growing method - Google Patents

Vapor growing method

Info

Publication number
JPH05182918A
JPH05182918A JP31892A JP31892A JPH05182918A JP H05182918 A JPH05182918 A JP H05182918A JP 31892 A JP31892 A JP 31892A JP 31892 A JP31892 A JP 31892A JP H05182918 A JPH05182918 A JP H05182918A
Authority
JP
Japan
Prior art keywords
film
hydrogen peroxide
organic silane
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31892A
Other languages
Japanese (ja)
Other versions
JP2539126B2 (en
Inventor
Kanji Ishihara
幹士 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4000318A priority Critical patent/JP2539126B2/en
Publication of JPH05182918A publication Critical patent/JPH05182918A/en
Application granted granted Critical
Publication of JP2539126B2 publication Critical patent/JP2539126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress generation of particles on a surface of a material to be processed and to grow a film with an excellent step coverage by using hydrogen peroxide as an oxidizer in the case of a CVD using organic silane as material gas. CONSTITUTION:Hydrogen peroxide 1 is contained in a quartz bubbler 4a, vaporized in the bubbler 4a with N2 gas as carrier gas, and guided into a reaction vessel 6 via a flow control valve 5a. Organic silane 2 is contained in a quartz bubbler 4b, vaporized in the bubbler 4a with N2 gas as carrier gas, and guided into the vessel 6 via a flow control valve 5b. A heater 7 is disposed in the vessel 6, and a temperature of material 8 to be processed in the vessel 6 is controlled to 400 deg.C or lower. Thus, the organic silane can be reacted at a low temperature such as 400 deg.C or lower, and generation of particles on the surface of the material to be processed is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、LSI等の半導体装
置における半導体素子と金属配線間、もしくは金属配線
同士の間に形成する層間絶縁材料や保護膜等を成膜させ
る気相成長方法に関し、特に原料ガスに有機シランを用
いてCVDを行う際に、反応温度を有利に低下し得る方
法を提案しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for forming an interlayer insulating material, a protective film or the like formed between a semiconductor element and a metal wire or between metal wires in a semiconductor device such as an LSI, In particular, it is intended to propose a method capable of advantageously lowering the reaction temperature when performing CVD using organosilane as a source gas.

【0002】[0002]

【従来の技術】従来、有機シラン系ガスを原材料に用い
てCVD法を行う場合には、かかる有機シランが700 ℃
以上の高温の反応温度でなければ分解反応も酸化反応も
起こさないことから、有機シラン系を用いた低温CVD
法は不可能とされていた。CVDの際の反応温度を低下
させることは、半導体装置の製造時においても、また製
品特性においても多大なメリットがあることから、反応
温度を低下させるべく研究開発が進められ、特開昭61-7
7695号公報には、オゾンの酸化力を利用して有機シラン
を反応させ、400 ℃程度の低温で電子デバイスの保護膜
等を成長させることが提案されている。
2. Description of the Related Art Conventionally, when a CVD method is carried out using an organic silane-based gas as a raw material, such an organic silane is 700 ° C.
Since a decomposition reaction and an oxidation reaction do not occur unless the reaction temperature is higher than the above, low temperature CVD using an organic silane system.
The law was considered impossible. Since lowering the reaction temperature during CVD has great merit in manufacturing semiconductor devices and in product characteristics, research and development have been advanced to lower the reaction temperature. 7
Japanese Patent No. 7695 proposes that organic silane is reacted by utilizing the oxidizing power of ozone to grow a protective film or the like of an electronic device at a low temperature of about 400 ° C.

【0003】[0003]

【発明が解決しようとする課題】上掲特開昭61-77695号
公報に開示されたような、オゾンの酸化力によって有機
シランを低温で反応させる方法では、TEOS濃度に対
する活性な酸素原子の濃度が高いほど、より低温で有機
シランを反応させることが可能になる。しかしながらオ
ゾンが分解し、酸素原子が生成する温度が400 ℃程度以
上であるために、反応温度を400 ℃以下にはできず、40
0 ℃より下げた場合には膜中に多くの未反応物が残ると
いう問題があった。またTEOS濃度に対する活性な酸
素原子の濃度を高くすべく、オゾン濃度を高くしようと
しても、オゾンは、酸素の一部を無声放電又は紫外線照
射により生成させるから、オゾン変換効率が数%程度と
低く、したがってTEOS濃度に対するオゾン濃度を相
対的に高くするには、TEOS濃度を逆に下げなければ
ならず、成膜速度を大きくできないという問題もあっ
た。
In the method of reacting an organic silane at a low temperature by the oxidizing power of ozone, as disclosed in Japanese Patent Laid-Open No. 61-77695, the concentration of active oxygen atom relative to the TEOS concentration is increased. The higher is the lower temperature, it becomes possible to react the organosilane at a lower temperature. However, because the temperature at which ozone is decomposed and oxygen atoms are generated is about 400 ° C or higher, the reaction temperature cannot be lowered to 400 ° C or lower.
When the temperature is lower than 0 ° C, there is a problem that a large amount of unreacted substances remain in the film. Further, even if an attempt is made to increase the ozone concentration in order to increase the concentration of active oxygen atoms with respect to the TEOS concentration, ozone produces a part of oxygen by silent discharge or ultraviolet irradiation, so that the ozone conversion efficiency is as low as about several percent. Therefore, in order to relatively increase the ozone concentration with respect to the TEOS concentration, the TEOS concentration must be lowered, and there is also a problem that the film formation rate cannot be increased.

【0004】この発明は、上述した問題点を有利に解決
するもので、400 ℃以下の低温で有機シランを反応させ
ることを可能にして被処理物表面にパーティクルの発生
が少なく、ステップカバリッジにも優れた被膜を成長さ
せ得る気相成長方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and enables organic silane to be reacted at a low temperature of 400 ° C. or less, so that the generation of particles on the surface of the object to be treated is reduced and the step coverage is improved. Another object is to propose a vapor phase growth method capable of growing an excellent film.

【0005】[0005]

【課題を解決するための手段】発明者らは、鋭意研究を
重ねた結果、有機シランを原料ガスに用いるCVDの際
に、酸化剤として過酸化水素を用いることが、上記の問
題を解決するために特に有利に適合することを見出し、
この発明に至ったのである。
As a result of intensive studies, the inventors of the present invention solve the above problems by using hydrogen peroxide as an oxidant in CVD using organic silane as a source gas. Finds a particularly advantageous fit for,
This led to the invention.

【0006】ところで過酸化水素に関しては有機アルミ
ニウム(トリメチルアルミニウム)と150 ℃の低温で反
応させ、電子デバイスの保護膜等を成長させることがで
きるようになったことが報告されている(Low-Temperatu
re Growth of Thin Films ofAl2O3 by Seqential Surfa
ce Chemical Reaction of trimethyaluminium andH2O
2 , Jia-Fa Fan etal,Japanese Journal of Applied Ph
ysics,Vol 30,No.6B,June,1991,pp.L1139-1141 参照)
。しかしながら有機シランと過酸化水素とを低温で反
応させて被処理物表面に被膜を成長させた例は今までな
かった。
By the way, it has been reported that hydrogen peroxide can be reacted with organoaluminum (trimethylaluminum) at a low temperature of 150 ° C. to grow a protective film or the like for electronic devices (Low-Temperatu).
re Growth of Thin Films of Al 2 O 3 by Seqential Surfa
ce Chemical Reaction of trimethyaluminium and H 2 O
2 , Jia-Fa Fan etal, Japanese Journal of Applied Ph
(See ysics, Vol 30, No.6B, June, 1991, pp.L1139-1141)
. However, heretofore, there has been no example in which an organic silane and hydrogen peroxide are reacted at a low temperature to grow a coating film on the surface of an object to be treated.

【0007】すなわちこの発明は、有機シランを主原料
として、CVD法により被処理物表面に被膜を形成させ
る気相成長方法において、酸化剤として過酸化水素を含
有する雰囲気中で行うことを特徴とする気相成長方法で
ある。
That is, the present invention is characterized in that it is carried out in an atmosphere containing hydrogen peroxide as an oxidant in a vapor phase growth method of forming a film on the surface of an object to be treated by a CVD method using organic silane as a main raw material. This is a vapor phase growth method.

【0008】ここに400 ℃以下の温度で行うことが、製
造コスト、製品安定性の観点から有利である。
It is advantageous to carry out the treatment at a temperature of 400 ° C. or lower from the viewpoint of production cost and product stability.

【0009】[0009]

【作用】この発明においては、有機シラン系(例えばテ
キラエトキシシランSi(OC2H5)4)を用いる。
In the present invention, an organic silane type (eg, tequilaethoxysilane Si (OC 2 H 5 ) 4 ) is used.

【0010】この発明に従い、有機シランに過酸化水素
ガスを混入させることで、電子デバイスに利用可能な膜
質を維持しつつ400 ℃以下という低温で成膜することが
可能になる。
According to the present invention, by mixing a hydrogen peroxide gas with an organic silane, it becomes possible to form a film at a low temperature of 400 ° C. or lower while maintaining the film quality that can be used for an electronic device.

【0011】かかる過酸化水素ガスの作用は次のとおり
である。 (1) 有機シランに過酸化水素ガスを混入させることによ
って、過酸化水素が酸化剤として作用し、有機シランの
酸化反応が400 ℃以下でも進行できる。上記の有機シラ
ンの酸化反応の反応速度は、過酸化水素ガスやオゾンガ
スが分解し生成する活性な酸素原子の濃度に依存し、濃
度が高いほど反応速度が大きくなる。そして、図1に反
応温度(CVD温度と同一)を変化させた際に、過酸化
水素及びオゾンから生成する酸素原子の生成確率を示す
ように、活性な酸素原子の濃度は温度に依存し400 ℃以
下、特に300 ℃以下では過酸化水素ガスの方がオゾンガ
スよりも分解し易く活性な酸素原子を生成し易い。
The action of such hydrogen peroxide gas is as follows. (1) By mixing hydrogen peroxide gas into the organic silane, hydrogen peroxide acts as an oxidizing agent, and the oxidation reaction of the organic silane can proceed even at 400 ° C or lower. The reaction rate of the above-mentioned organic silane oxidation reaction depends on the concentration of active oxygen atoms generated by decomposition of hydrogen peroxide gas or ozone gas, and the higher the concentration, the higher the reaction rate. Then, as shown in FIG. 1, when the reaction temperature (the same as the CVD temperature) is changed, the concentration of active oxygen atoms depends on the temperature, as shown by the probability of generation of oxygen atoms generated from hydrogen peroxide and ozone. Below ℃, especially below 300 ℃, hydrogen peroxide gas is more likely to decompose than ozone gas to generate active oxygen atoms.

【0012】(2) 過酸化水素は常温で液体(融点:−1.
7 ℃、沸点:152 ℃)であるから、蒸気圧を制御するこ
とで望みの濃度、特に高濃度の過酸化水素ガスが得られ
る。これに対して酸化剤にオゾンを利用する場合には数
モル%しか得られないのは前述したとおりである。した
がって、オゾンよりも高濃度の酸化剤を供給でき、高濃
度の活性な酸素原子を供給できる。
(2) Hydrogen peroxide is a liquid at room temperature (melting point: -1.
Since the temperature is 7 ° C and the boiling point is 152 ° C), hydrogen peroxide gas of the desired concentration, especially high concentration, can be obtained by controlling the vapor pressure. On the other hand, when ozone is used as the oxidant, only a few mol% is obtained as described above. Therefore, it is possible to supply an oxidizing agent having a higher concentration than ozone, and it is possible to supply a high concentration of active oxygen atoms.

【0013】(3) 有機シラン系を原料とし、SiO2の薄膜
を従来法によりオゾンを酸化剤に用いて成膜すると、膜
組成がストイキオメトリー(化学量論的組成)よりも酸
素が過剰になったが、過酸化水素を酸化剤に用いると、
膜組成がストイキオメトリーになり、比誘電率は小さく
なり、耐圧は大きくなった。これは、膜の生成に至る反
応が二つの反応からなっているためで、一つはテトラエ
トキシシランSi(OC2H5)4のO−Cボンドが活性な酸素原
子によって切られる酸化反応であり、もう一つは、活性
な酸素原子がSi原子から酸素原子を引き抜く反応であ
る。この後者の反応により膜組成は決定される。この発
明では、オゾンより高濃度の酸化剤を供給でき、高濃度
の活性な酸素原子を供給できるので後者の反応を進める
ことができる。
(3) When a thin film of SiO 2 is formed by a conventional method using an organic silane as a raw material and ozone is used as an oxidant, the film composition has excess oxygen than stoichiometry (stoichiometric composition). However, when hydrogen peroxide is used as an oxidant,
The film composition became stoichiometric, the relative permittivity decreased, and the breakdown voltage increased. This is because the reaction leading to the formation of the film consists of two reactions. One is an oxidation reaction in which the O—C bond of tetraethoxysilane Si (OC 2 H 5 ) 4 is cut by an active oxygen atom. The other is the reaction of active oxygen atoms withdrawing oxygen atoms from Si atoms. The film composition is determined by this latter reaction. In the present invention, it is possible to supply an oxidizing agent having a higher concentration than ozone and to supply a high concentration of active oxygen atoms, so that the latter reaction can proceed.

【0014】(4) オゾンの酸化剤に用いた場合と同様、
反応は主として被処理物の表面で起こる表面反応であ
り、より低温化が可能になったことからステップカバレ
ッジはさらに優れたものになった。また表面反応である
ことから、気相中で粒子が成長することもないのでピン
ホールのない被膜が得られる。
(4) As in the case of being used as an ozone oxidant,
The reaction is a surface reaction that mainly occurs on the surface of the object to be treated, and the step coverage has been further improved because the temperature can be lowered. Further, since it is a surface reaction, particles do not grow in the gas phase, so that a pinhole-free coating film can be obtained.

【0015】以上の作用により、電子デバイスに利用可
能な膜質を維持しつつ400 ℃以下の低温で成膜すること
が容易にできるようになった。
With the above operation, it becomes possible to easily form a film at a low temperature of 400 ° C. or lower while maintaining the film quality that can be used for electronic devices.

【0016】図2には有機シランの導入量を一定(100cc
/min) として、過酸化水素の導入量を種々変化させて、
SiO2膜を300 ℃で生成し、得られた膜の比誘電率を調べ
た結果をグラフで示す。Siを熱酸化した場合、比誘電率
は3.9 であり、有機シランとオゾン熱分解による場合
は、4.8 であった。これに対して有機シランと過酸化水
素を用いる場合は、過酸化水素量を500sccm から5000sc
cmに増加させると比誘電率は4.8 から4.0 まで減少し
た。これにより過酸化水素の混入量を増やすことで膜質
が熱酸化膜に近づくということがわかる。
In FIG. 2, the amount of organosilane introduced is constant (100 cc).
/ min), variously changing the amount of hydrogen peroxide introduced,
An SiO 2 film is formed at 300 ° C., and the relative permittivity of the obtained film is examined. The relative permittivity was 3.9 when Si was thermally oxidized and 4.8 when it was decomposed with organosilane and ozone. On the other hand, when using organic silane and hydrogen peroxide, the amount of hydrogen peroxide should be changed from 500sccm to 5000sc.
The dielectric constant decreased from 4.8 to 4.0 with increasing cm. From this, it is understood that the film quality approaches the thermal oxide film by increasing the amount of hydrogen peroxide mixed.

【0017】ここに有機シランに対する過酸化水素の導
入割合は、有機シラン1に対して20〜100 程度とするこ
とが望ましい。
Here, the introduction ratio of hydrogen peroxide to the organic silane is preferably about 20 to 100 relative to 1 of the organic silane.

【0018】また反応の際の圧力は、 76 〜 760 torr
程度とするのが好ましい。
The pressure during the reaction is 76 to 760 torr.
It is preferably about the same.

【0019】図3にこの発明を実施するのに好適な装置
の一例を模式で示す。過酸化水素1は石英バブラー4a
内に収容され、N2ガスをキャリアガスとして石英バブラ
ー4a 内で気化され、流量制御弁5a を経由して反応容
器6内に導入される。有機シラン2は石英バブラー4b
内に収容され、N2ガスをキャリアガスとして石英バブラ
ー4b 内で気化され、流量制御弁5b を経由して反応容
器6内に導入される。反応容器6と流量制御弁5c を介
して導通する石英バブラー4c は、有機りん3を収容す
るためのものであって、PSG膜を成膜させる場合に用
いられる。SiO2膜を成膜させる場合には、使用すること
はない。また流量制御弁5d を具備するN2ラインは、反
応速度の制御と被膜の膜厚均一生の制御のために配設さ
れる。反応容器6にはヒータ7が配設され、反応容器6
内の被処理物8の温度を、好ましくは400 ℃以下に制御
する。また反応容器6には排気ポンプ9が配設され、反
応容器6内の圧力を制御可能にする。
FIG. 3 schematically shows an example of an apparatus suitable for carrying out the present invention. Hydrogen peroxide 1 is a quartz bubbler 4a
It is housed inside, is vaporized in the quartz bubbler 4a by using N 2 gas as a carrier gas, and is introduced into the reaction vessel 6 via the flow rate control valve 5a. Organosilane 2 is a quartz bubbler 4b
It is housed inside, is vaporized in the quartz bubbler 4b using N 2 gas as a carrier gas, and is introduced into the reaction vessel 6 via the flow rate control valve 5b. The quartz bubbler 4c, which communicates with the reaction vessel 6 through the flow rate control valve 5c, is for accommodating the organic phosphorus 3 and is used when a PSG film is formed. It is not used when forming a SiO 2 film. Further, the N 2 line equipped with the flow rate control valve 5d is provided for controlling the reaction rate and the film thickness uniformity of the coating. The reaction container 6 is provided with a heater 7
The temperature of the object 8 to be treated therein is preferably controlled to 400 ° C. or lower. Further, an exhaust pump 9 is provided in the reaction container 6 so that the pressure inside the reaction container 6 can be controlled.

【0020】[0020]

【実施例】実施例1 過酸化水素を80℃、流量5000 cc /minで反応容器内に導
入した。またテトラエトキシシランは80℃、流量50 cc
/minで反応容器内に導入した。キャリアガスはN2ガスで
あり、何れも流量10リットル/分であった。反応容器中
の被処理物を400 ℃に加熱して760 torrでSiO2被膜を成
長させたところ、比誘電率4.0 のSiO2膜が1400Å/分で
得られた。次に被処理物の温度を300 度に加熱し、他の
条件は同一で成膜させたところ、比誘電率4.0 のSiO2
が1400Å/分で得られた。さらに被処理物の温度を200
度に加熱し、他の条件は同一で成膜させたところ、比誘
電率4.8 のSiO2膜が600 Å/分で得られた。いずれもス
テップカバレッジは良好で、パーティクルの発生は殆ど
見られなかった。
EXAMPLES Example 1 Hydrogen peroxide was introduced into a reaction vessel at 80 ° C. and a flow rate of 5000 cc / min. Also, tetraethoxysilane has a flow rate of 50 cc at 80 ° C.
It was introduced into the reaction vessel at a flow rate of / min. The carrier gas was N 2 gas, and all had a flow rate of 10 liters / minute. Was an object to be processed in the reaction vessel is grown SiO 2 film by heating at 760 torr to 400 ° C., SiO 2 film having a relative dielectric constant 4.0 was obtained at 1400 Å / min. Next, when the temperature of the object to be treated was heated to 300 ° C. and other conditions were the same, a SiO 2 film with a relative dielectric constant of 4.0 was obtained at 1400 Å / min. Furthermore, the temperature of the object to be processed is set to 200
The film was heated under the same conditions and deposited under the other conditions, and a SiO 2 film with a relative dielectric constant of 4.8 was obtained at 600 Å / min. In all cases, the step coverage was good, and almost no particles were observed.

【0021】実施例2 被処理物を300 ℃に加熱し、さらに有機りんを流量20 c
c/min で反応容器に導入した以外は上記と同じ条件でC
VDを行ったところ、PSG膜が1000Å/分で得られ
た。ステップカバレッジは良好で、パーティクルの発生
は殆ど見られなかった。
Example 2 The object to be treated was heated to 300 ° C., and organic phosphorus was added at a flow rate of 20 c.
C under the same conditions as above except that it was introduced into the reaction vessel at c / min
When VD was performed, a PSG film was obtained at 1000Å / min. The step coverage was good, and almost no particles were observed.

【0022】[0022]

【発明の効果】この発明は、有機シランを反応させて被
処理物表面に被膜を成長させる気相成長方法において、
過酸化水素を有機シランに混入させることにより、400
℃以下の低温、特に300 ℃でも、LSIの配線間の層間
絶縁材料に利用可能な膜が容易に形成できるようになっ
た。
The present invention provides a vapor phase growth method for reacting an organic silane to grow a film on the surface of an object to be treated.
By mixing hydrogen peroxide with organic silane, 400
It became possible to easily form a film that can be used as an interlayer insulating material between wirings of LSI even at a low temperature of ℃ or less, especially at 300 ℃.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、反応温度を変化させた際に、過酸化水
素及びオゾンから分解生成する酸素原子の生成確率を示
すグラフである。
FIG. 1 is a graph showing the generation probability of oxygen atoms decomposed from hydrogen peroxide and ozone when the reaction temperature is changed.

【図2】図2は、過酸化水素の導入量を変化させたとき
の比誘電率を、オゾンを導入した成膜した場合と過酸化
水素を導入して成膜した場合とで比較して示すグラフで
ある。
FIG. 2 compares the relative dielectric constants when the amount of hydrogen peroxide introduced is changed between the case of forming a film in which ozone is introduced and the case of forming a film in which hydrogen peroxide is introduced. It is a graph shown.

【図3】図3は、この発明を実施するのに好適な装置の
一例の模式図である。
FIG. 3 is a schematic view of an example of an apparatus suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 過酸化水素 2 有機シラン 6 反応容器 7 ヒータ 8 被処理物 9 排気ポンプ 1 hydrogen peroxide 2 organic silane 6 reaction vessel 7 heater 8 object to be treated 9 exhaust pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機シランを主原料として、CVD法に
より被処理物表面に被膜を形成させる気相成長方法にお
いて、 酸化剤として過酸化水素を含有する雰囲気中で行うこと
を特徴とする気相成長方法。
1. A vapor phase growth method for forming a film on a surface of an object to be processed by a CVD method using organic silane as a main raw material, which is performed in an atmosphere containing hydrogen peroxide as an oxidizing agent. Growth method.
JP4000318A 1992-01-06 1992-01-06 Vapor growth method Expired - Fee Related JP2539126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000318A JP2539126B2 (en) 1992-01-06 1992-01-06 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000318A JP2539126B2 (en) 1992-01-06 1992-01-06 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH05182918A true JPH05182918A (en) 1993-07-23
JP2539126B2 JP2539126B2 (en) 1996-10-02

Family

ID=11470563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000318A Expired - Fee Related JP2539126B2 (en) 1992-01-06 1992-01-06 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2539126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811849A (en) * 1995-09-21 1998-09-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing process thereof
JP2004327639A (en) * 2003-04-24 2004-11-18 Hitachi Kokusai Electric Inc Semiconductor raw material, method for manufacturing semiconductor device, method and apparatus for processing substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811849A (en) * 1995-09-21 1998-09-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing process thereof
US5937322A (en) * 1995-09-21 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor manufacturing process with oxide film formed on an uneven surface pattern
JP2004327639A (en) * 2003-04-24 2004-11-18 Hitachi Kokusai Electric Inc Semiconductor raw material, method for manufacturing semiconductor device, method and apparatus for processing substrate

Also Published As

Publication number Publication date
JP2539126B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US6475564B1 (en) Deposition of a siloxane containing polymer
KR100323628B1 (en) Deposition of silicon dioxide and silicon oxynitride using bis(tertiarybutylamino)silane
EP0440154B1 (en) Two step process for forming an oxide layer over a stepped surface of a semiconductor wafer
US5290736A (en) Method of forming interlayer-insulating film using ozone and organic silanes at a pressure above atmospheric
KR101042133B1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
US6974780B2 (en) Semiconductor processing methods of chemical vapor depositing SiO2 on a substrate
US7972663B2 (en) Method and apparatus for forming a high quality low temperature silicon nitride layer
US5354387A (en) Boron phosphorus silicate glass composite layer on semiconductor wafer
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US20110136347A1 (en) Point-of-use silylamine generation
EP1717848A1 (en) Method for producing silicon oxide film
KR20090009989A (en) Metalloamide and aminosilane precursors for cvd formation of dielectric thin films
EP0421203B1 (en) An integrated circuit structure with a boron phosphorus silicate glass composite layer on semiconductor wafer and improved method for forming same
JPH06132276A (en) Method for forming semiconductor film
US5382550A (en) Method of depositing SiO2 on a semiconductor substrate
JPH03286531A (en) Formation of silicon oxide film
JPH048511B2 (en)
US5459108A (en) Normal pressure CVD process for manufacture of a semiconductor device through reaction of a nitrogen containing organic source with ozone
JPH0219189B2 (en)
CN112969817B (en) High temperature atomic layer deposition of silicon-containing films
JP2539126B2 (en) Vapor growth method
US5849644A (en) Semiconductor processing methods of chemical vapor depositing SiO2 on a substrate
JP2918300B2 (en) Silicon dioxide film and method of manufacturing the same
TWI761838B (en) Compositions and methods using same for thermal deposition silicon-containing films
US8420170B2 (en) Methods of forming glass on a substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees