JPH0518245A - Injection-in-cylinder type internal combustion engine - Google Patents

Injection-in-cylinder type internal combustion engine

Info

Publication number
JPH0518245A
JPH0518245A JP3173921A JP17392191A JPH0518245A JP H0518245 A JPH0518245 A JP H0518245A JP 3173921 A JP3173921 A JP 3173921A JP 17392191 A JP17392191 A JP 17392191A JP H0518245 A JPH0518245 A JP H0518245A
Authority
JP
Japan
Prior art keywords
wall surface
fuel
recess
fuel injection
bottom wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3173921A
Other languages
Japanese (ja)
Other versions
JP2940232B2 (en
Inventor
Tatsuo Kobayashi
辰夫 小林
Norihiko Nakamura
徳彦 中村
Kenichi Nomura
憲一 野村
Hiroaki Nihei
裕昭 仁平
Koichi Nakada
浩一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3173921A priority Critical patent/JP2940232B2/en
Publication of JPH0518245A publication Critical patent/JPH0518245A/en
Application granted granted Critical
Publication of JP2940232B2 publication Critical patent/JP2940232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To produce ignitable optimum air-fuel mixture around an ignition plug. CONSTITUTION:An ignition plug is arranged at the central part of the inner wall surface of a cylinder head, and a fuel injection valve 14 is arranged to the peripheral edge part of the inner wall surface of the cylinder head. A recessed part 15 demarcated by a pair of side wall surfaces 15b extended in a manner that it is gradually spread from below the ignition plug toward the fuel injection valve 14 side and an approximately flat bottom wall surface 15c is formed in the top surface of a piston 2. The side wall surface 15b of each recessed part is extended from an end part 15a of the recessed part, formed below the ignition plug, approximately straightly toward the fuel injection valve 14 side. The bottom wall surface 15c of the recessed part is formed in the shape of a waveform in cross section being the shape of a waveform formed in the flow direction of fuel. Fuel is obliquely injected from the fuel injection valve 14 toward the bottom wall surface 15c of the recessed part. The injected fuel colliding with the bottom wall surface 15c of the recessed part is pointed to the end part 15a of the recessed part below the ignition plug while it is caused to flow along one side wall surface 15b of the recessed part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder injection type internal combustion engine.

【0002】[0002]

【従来の技術】ピストン頂面上に凹部を形成すると共に
燃料噴射弁から凹部内に向けて燃料を噴射し、燃焼室内
にシリンダ軸線回りの旋回流を発生させてこの旋回流に
より点火栓の周りに着火可能な混合気を形成するように
した筒内噴射式内燃機関が公知である(実開平1−1240
42号公報参照)。
2. Description of the Related Art A recess is formed on the top surface of a piston and fuel is injected from a fuel injection valve into the recess to generate a swirl flow around the cylinder axis in the combustion chamber. A cylinder injection type internal combustion engine is known in which an air-fuel mixture that can be ignited is formed.
(See Japanese Patent Publication No. 42).

【0003】[0003]

【発明が解決しようとする課題】しかしながらこの筒内
噴射式内燃機関ではシリンダ軸線周りの旋回流を発生さ
せることが必須の要件であるのでシリンダ軸線回りの旋
回流を発生させない場合にはもはやこの噴射方法を採用
することができない。また、旋回流の強さは機関の運転
状態により変化するので点火栓周りの混合気の形成を全
面的に旋回流に依存しているとあらゆる機関の運転状態
に対して最適な混合気を点火栓の周りに形成するのは困
難であるという問題がある。
However, in this in-cylinder injection type internal combustion engine, it is an essential requirement to generate a swirl flow around the cylinder axis. Therefore, when the swirl flow around the cylinder axis is not generated, this injection is no longer necessary. The method cannot be adopted. Also, since the strength of the swirl flow changes depending on the engine operating conditions, if the formation of the air-fuel mixture around the spark plug is entirely dependent on the swirl flow, the optimum air-fuel mixture is ignited for all engine operating conditions. The problem is that it is difficult to form around the plug.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によればシリンダヘッド内壁面の中心部に点
火栓を配置し、シリンダヘッド内壁面の周縁部に燃料噴
射弁を配置し、点火栓の下方から燃料噴射弁側に向けて
次第に拡開しつつ延びる一対の側壁面とほぼ平坦をなす
底壁面とにより画定される凹部をピストン頂面上に形成
すると共に燃料噴射弁から凹部底壁面に向け斜めに燃料
を噴射して凹部底壁面に衝突した噴射燃料を凹部側壁面
に沿いつつ点火栓下方の凹部端部に向かわせ、各凹部側
壁面を凹部端部から燃料噴射弁側に向けてほぼまっすぐ
に延設し、凹部底壁面を燃料の流動方向に向けて波形を
なす波形断面形状に形成している。
In order to solve the above problems, according to the present invention, an ignition plug is arranged at the center of the inner wall surface of the cylinder head, and a fuel injection valve is arranged at the peripheral portion of the inner wall surface of the cylinder head. , A recess defined by a pair of side wall surfaces extending gradually from below the spark plug toward the fuel injection valve side and a substantially flat bottom wall surface is formed on the piston top surface, and the recess is formed from the fuel injection valve. The fuel is injected obliquely toward the bottom wall surface, and the injected fuel that collides with the bottom wall surface of the recess is directed toward the end of the recess below the spark plug along the side wall surface of the recess. Is formed so as to extend almost straight toward the fuel cell, and the bottom wall surface of the recess is formed in a corrugated cross-sectional shape that is corrugated in the fuel flow direction.

【0005】[0005]

【作用】凹部底壁面に衝突した噴射燃料は波形断面形状
をなす凹部底壁面に沿いつつ凹部側壁面に向けて進行す
る。このとき燃料の流動速度は波形断面形状を形成する
各凹凸面上を移動するにつれて次第に減速されていく。
この場合、燃料噴射弁により近い凹部底壁面部分に衝突
した噴射燃料部分ほどより多くの凹凸面上を移動するこ
とになるのでその流動速度がより大きく減速され、従っ
て凹部底壁面に沿い流れる各燃料が凹部側壁面に到達す
るまでには時間差を生ずる。更に、各凹部側壁面が凹部
端部から燃料噴射弁側に向けてほぼまっすぐに延設され
ていると凹部側壁面に沿って凹部端部に向かい始める燃
料の流動速度は凹部端部に近いほど速くなる。従って凹
部側壁面に沿い流れる各燃料が凹部端部に到達するまで
にも時間差を生ずる。斯くして凹部底壁面に向けて噴射
された各燃料が凹部底壁面および凹部側壁面に沿い流れ
て凹部端部に到達するまでにはかなりの量の時間差を生
じ、早期に凹部端部に到達した燃料によって点火栓周り
に可燃混合気が形成される。
The injected fuel that has collided with the bottom wall surface of the recess advances toward the side wall surface of the recess while following the bottom wall surface of the recess having a wavy cross section. At this time, the flow velocity of the fuel is gradually decelerated as it moves on each uneven surface forming the corrugated cross-sectional shape.
In this case, the injected fuel portion that collides with the bottom wall surface portion of the recess closer to the fuel injection valve moves on more uneven surfaces, so the flow velocity is slowed down more, and therefore each fuel flowing along the bottom wall surface of the recess There is a time lag in reaching the side wall surface of the recess. Further, if each recess side wall surface extends substantially straight from the recess end toward the fuel injection valve side, the flow velocity of the fuel that starts toward the recess end along the recess side wall surface becomes closer to the recess end. Get faster Therefore, there is a time lag until each fuel flowing along the side wall surface of the recess reaches the end of the recess. Thus, each fuel injected toward the bottom wall surface of the concave portion flows along the bottom wall surface of the concave portion and the side wall surface of the concave portion to reach the end portion of the concave portion with a considerable time difference, and reaches the end portion of the concave portion early. A combustible air-fuel mixture is formed around the spark plug by the generated fuel.

【0006】[0006]

【実施例】図2および図3を参照すると、1はシリンダ
ブロック、2はシリンダブロック1内で往復動するピス
トン、3はシリンダブロック1上に固定されたシリンダ
ヘッド、4はシリンダヘッド3の内壁面3aとピストン
2の頂面間に形成された燃焼室を夫々示す。シリンダヘ
ッド内壁面3a上には窪み部5が形成され、この窪み部
5の底壁面をなすシリンダヘッド内壁面部分3b上に一
対の給気弁6が配置される。一方、窪み部5を除くシリ
ンダヘッド内壁面部分3cは傾斜したほぼ平坦をなし、
このシリンダヘッド内壁面部分3c上に3個の排気弁7
が配置される。シリンダヘッド内壁面部分3bとシリン
ダヘッド内壁面部分3cは窪み部5の周壁8を介して互
いに接続されている。
2 and 3, 1 is a cylinder block, 2 is a piston that reciprocates in the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a cylinder head 3. The combustion chambers formed between the wall surface 3a and the top surface of the piston 2 are shown respectively. A hollow portion 5 is formed on the cylinder head inner wall surface 3a, and a pair of air supply valves 6 are arranged on the cylinder head inner wall surface portion 3b forming the bottom wall surface of the hollow portion 5. On the other hand, the inner wall surface portion 3c of the cylinder head excluding the recess 5 is inclined and substantially flat,
Three exhaust valves 7 are provided on the inner wall surface portion 3c of the cylinder head.
Are placed. The cylinder head inner wall surface portion 3b and the cylinder head inner wall surface portion 3c are connected to each other via the peripheral wall 8 of the recess 5.

【0007】この窪み部周壁8は給気弁6の周縁部に極
めて近接配置されかつ給気弁6の周縁部に沿って円弧状
に延びる一対のマスク壁8aと、給気弁6間に位置する
新気ガイド壁8bと、シリンダヘッド内壁面3aの周壁
と給気弁6間に位置する一対の新気ガイド壁8cとによ
り構成される。各マスク壁8aは最大リフト位置にある
給気弁6よりも下方まで燃焼室4に向けて延びており、
従って排気弁7側に位置する給気弁6周縁部と弁座9間
の開口は給気弁6の開弁期間全体に亙ってマスク壁8a
により閉鎖されることになる。また、各新気ガイド壁8
b,8cはほぼ同一平面内に位置しており、更にこれら
の新気ガイド壁8b,8cは両給気弁6の中心を結ぶ線
に対してほぼ平行に延びている。点火栓10はシリンダヘ
ッド内壁面3aの中心に位置するようにシリンダヘッド
内壁面部分3c上に配置されている。一方、排気弁7に
対しては排気弁7と弁座11間の開口を覆うマスク壁が設
けられておらず、従って排気弁7が開弁すると排気弁7
と弁座11間に形成される開口はその全体が燃焼室4内に
開口することになる。
The hollow peripheral wall 8 is located between the air supply valve 6 and a pair of mask walls 8a which are arranged very close to the peripheral edge of the air supply valve 6 and extend in an arc shape along the peripheral edge of the air supply valve 6. And a pair of fresh air guide walls 8c located between the peripheral wall of the cylinder head inner wall surface 3a and the air supply valve 6. Each mask wall 8a extends toward the combustion chamber 4 below the air supply valve 6 at the maximum lift position,
Therefore, the opening between the peripheral portion of the air supply valve 6 located on the exhaust valve 7 side and the valve seat 9 is the mask wall 8a over the entire opening period of the air supply valve 6.
Will be closed by. Also, each fresh air guide wall 8
b and 8c are located in substantially the same plane, and these fresh air guide walls 8b and 8c extend substantially parallel to the line connecting the centers of both air supply valves 6. The spark plug 10 is arranged on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7 is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11. Therefore, when the exhaust valve 7 opens, the exhaust valve 7
The entire opening formed between the valve seat 11 and the valve seat 11 opens in the combustion chamber 4.

【0008】シリンダヘッド3内には給気弁6に対して
給気ポート12が形成され、排気弁7に対して排気ポート
13が形成される。一方、両給気弁6の間のシリンダヘッ
ド内壁面3aの周縁部には燃料噴射弁14が配置され、こ
の燃料噴射弁14から燃料が燃焼室4内に向けて噴射され
る。図1、図2および図4に示されるようにピストン2
の頂面上には点火栓10の下方から燃料噴射弁14の先端部
の下方まで延びる凹部15が形成される。この凹部15は点
火栓10下方の凹部の端部15aから燃料噴射弁14側に向け
て次第に拡開しつつ延びる一対の側壁面15bと、ほぼ平
坦をなす底壁面15cとにより画定され、図2に示される
ように凹部端部15aは燃料噴射弁14と反対側に向けて凹
んだ凹状断面形状を有する。また、図1からわかるよう
に凹部端部15aは点火栓10と燃料噴射弁14とを含む垂直
平面K−K上に形成されており、各側壁面15bはこの垂
直平面K−Kに関して対称的な形状を有する。従って凹
部15は垂直平面K−Kに関して対称的な形状を有するこ
とになる。また図1、図2および図4からわかるように
凹部底壁面15c上には燃料噴射弁14側を中心にしてほぼ
円弧状に延びる溝20の列が凹部底壁面15cのほぼ全体に
亘って形成されている。これら溝20の列は垂直平面K−
Kに関して対称的な形状を有する。一方、燃料噴射弁14
からは図1に示されるように燃料が垂直平面K−Kに沿
い凹部底壁面15cに対して斜め方向に噴射される。図5
に示されるように各溝20の溝面21は噴射燃料の噴射軸線
Zに対して角度αをなす方向に延びており、この角度α
は90°、または90°よりも若干小さい角度に形成されて
いる。従って凹部底壁面15cは凹部底壁面15c上におけ
る燃料の流動方向に向けて波形をなす波形断面形状に形
成されている。また、図2に示されるようにピストン2
が上死点に達すると点火栓10に関し凹部15と反対側に位
置するピストン2の頂面部分とシリンダヘッド内壁面部
分3cとの間にはスキッシュエリア16が形成される。
An air supply port 12 is formed in the cylinder head 3 for the air supply valve 6 and an exhaust port for the exhaust valve 7.
13 is formed. On the other hand, a fuel injection valve 14 is arranged at the peripheral portion of the cylinder head inner wall surface 3 a between both air supply valves 6, and the fuel is injected from the fuel injection valve 14 into the combustion chamber 4. Piston 2 as shown in FIGS. 1, 2 and 4.
A recess 15 extending from below the spark plug 10 to below the tip of the fuel injection valve 14 is formed on the top surface of the fuel injection valve 14. The recess 15 is defined by a pair of side wall surfaces 15b extending gradually from the end 15a of the recess below the spark plug 10 toward the fuel injection valve 14 side and a substantially flat bottom wall surface 15c. As shown in FIG. 5, the recessed end 15a has a recessed cross-sectional shape that is recessed toward the side opposite to the fuel injection valve 14. Further, as can be seen from FIG. 1, the recess end portion 15a is formed on a vertical plane KK including the spark plug 10 and the fuel injection valve 14, and each side wall surface 15b is symmetrical with respect to this vertical plane KK. It has a unique shape. Therefore, the recess 15 has a symmetrical shape with respect to the vertical plane KK. As can be seen from FIGS. 1, 2 and 4, on the bottom wall surface 15c of the recess, a row of grooves 20 extending in an arc shape centering on the fuel injection valve 14 side is formed over substantially the entire bottom wall surface 15c of the recess. Has been done. The row of these grooves 20 has a vertical plane K-
It has a symmetrical shape with respect to K. Meanwhile, the fuel injection valve 14
1, the fuel is injected obliquely to the bottom wall surface 15c of the recess along the vertical plane KK as shown in FIG. Figure 5
As shown in FIG. 5, the groove surface 21 of each groove 20 extends in a direction forming an angle α with respect to the injection axis Z of the injected fuel.
Is formed at 90 ° or at an angle slightly smaller than 90 °. Therefore, the recess bottom wall surface 15c is formed in a corrugated cross-sectional shape that is corrugated in the fuel flow direction on the recess bottom wall surface 15c. In addition, as shown in FIG.
When reaches the top dead center, a squish area 16 is formed between the top surface portion of the piston 2 located on the opposite side of the recess 15 with respect to the spark plug 10 and the cylinder head inner wall surface portion 3c.

【0009】図6に示されるように図1から図5に示す
実施例では排気弁7が給気弁6よりも先に開弁し、排気
弁7が給気弁6よりも先に閉弁する。また、図6におい
てIl は機関低負荷運転時における燃料噴射時期を示し
ており、Im1およびIm2は機関中負荷運転時における燃
料噴射時期を示しており、Ih は機関高負荷運転時にお
ける燃料噴射時期を示している。図6から機関高負荷運
転時における燃料噴射Ih は排気弁7が閉弁する頃に行
われ、機関低負荷運転時における燃料噴射Ilは高負荷
運転時に比べてかなり遅い時期に行われることがわか
る。また、機関中負荷運転時には2回に分けて燃料噴射
Im1およびIm2が行われ、このとき第1回目の燃料噴射
Im1は機関高負荷運転時とほぼ同じ時期に行われ、第2
回目の燃料噴射Im2は機関低負荷運転時とほぼ同じ時期
に行われることがわかる。
As shown in FIG. 6, in the embodiment shown in FIGS. 1 to 5, the exhaust valve 7 opens before the intake valve 6 and the exhaust valve 7 closes before the intake valve 6. To do. Further, in FIG. 6, Il indicates the fuel injection timing during engine low load operation, Im 1 and Im 2 indicate fuel injection timing during engine medium load operation, and Ih indicates fuel injection during engine high load operation. The injection timing is shown. It can be seen from FIG. 6 that the fuel injection Ih during the engine high load operation is performed when the exhaust valve 7 is closed, and the fuel injection Il during the engine low load operation is performed considerably later than during the high load operation. .. Further, during the engine medium load operation, the fuel injections Im 1 and Im 2 are performed twice, and at this time, the first fuel injection Im 1 is performed at substantially the same time as during the engine high load operation.
It can be seen that the second fuel injection Im 2 is performed at almost the same time as during engine low load operation.

【0010】図7に示されるように給気弁6および排気
弁7が開弁すると給気弁6を介して燃焼室4内に空気が
流入する。このとき、排気弁7側の給気弁6の開口はマ
スク壁8aによって覆われているので空気はマスク壁8
aと反対側の給気弁6の開口から燃焼室4内に流入す
る。この空気は矢印Wで示すように給気弁6下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン2の頂面
に沿い進んで排気弁7下方のシリンダボア内壁面に沿い
上昇し、斯くして空気は燃焼室4内をループ状に流れる
ことになる。このループ状に流れる空気Wによって燃焼
室4内の既燃ガスが排気弁7を介して排出され、更にこ
のループ状に流れる空気Wによって燃焼室4内には垂直
面内で旋回する旋回流Xが発生せしめられる。次いでピ
ストン2が下死点BDCを過ぎて上昇を開始するとその
後燃料噴射弁14からの燃料噴射が開始される。
When the intake valve 6 and the exhaust valve 7 are opened as shown in FIG. 7, air flows into the combustion chamber 4 via the intake valve 6. At this time, since the opening of the air supply valve 6 on the exhaust valve 7 side is covered by the mask wall 8a, the air flows through the mask wall 8a.
It flows into the combustion chamber 4 from the opening of the air supply valve 6 on the opposite side to a. This air descends along the inner wall surface of the cylinder bore below the air supply valve 6 as shown by the arrow W, then advances along the top surface of the piston 2 and rises along the inner wall surface of the cylinder bore below the exhaust valve 7, thus Will flow in a loop in the combustion chamber 4. The burned gas in the combustion chamber 4 is discharged through the exhaust valve 7 by the air W flowing in the loop shape, and the swirling flow X swirling in the vertical plane in the combustion chamber 4 by the air W flowing in the loop shape. Is generated. Next, when the piston 2 passes the bottom dead center BDC and starts to rise, fuel injection from the fuel injection valve 14 is started thereafter.

【0011】次に図8から図11を参照して機関低負荷運
転時、機関中負荷運転時および機関高負荷運転時におけ
る燃料噴射方法について説明する。なお、図8は機関低
負荷運転時における燃料噴射Il および機関中負荷運転
時における第2回目の燃料噴射Im2を示しており、図9
は機関中負荷運転時における第1回目の燃料噴射Im1
よび機関高負荷運転時における燃料噴射Ih を示してい
る。
Next, the fuel injection method during engine low load operation, engine medium load operation and engine high load operation will be described with reference to FIGS. 8 to 11. Note that FIG. 8 shows the fuel injection Il during the engine low load operation and the second fuel injection Im 2 during the engine medium load operation.
Shows the first fuel injection Im 1 during the engine medium load operation and the fuel injection Ih during the engine high load operation.

【0012】図1および図8に示されるように機関低負
荷運転時および機関中負荷運転時の第2回目の燃料噴射
時には燃料は燃料噴射弁14から垂直平面K−Kに沿い凹
部底壁面15cに向けて斜めに噴射される。この噴射燃料
は凹部底壁面15c上に衝突した後凹部側壁面15bに沿い
つつ凹部端部15aに向けて進行する。次にこのときの噴
射燃料の挙動について図10を参照しつつ説明する。
As shown in FIGS. 1 and 8, during the second fuel injection during low engine load operation and medium engine load operation, the fuel flows from the fuel injection valve 14 along the vertical plane KK to the bottom wall surface 15c of the recess. It is jetted diagonally toward. The injected fuel collides with the bottom wall surface 15c of the recess and then advances toward the end 15a of the recess along the side wall surface 15b of the recess. Next, the behavior of the injected fuel at this time will be described with reference to FIG.

【0013】図10において鎖線Rは凹部底壁面15c上に
おける噴射燃料の衝突領域を示しており、矢印F1 ,F
2 は噴射燃料の代表的な2つの流れを示している。図10
に示されるように噴射燃料F1 ,F2 は凹部底壁面15c
上に衝突後も慣性力によって噴射方向に進行し、次いで
凹部側壁面15bまで進んだ後に凹部側壁面15bに沿いつ
つ凹部端部15aに向けて進行する。ところで各凹部側壁
面15bは凹部端部15aから燃料噴射弁14側に向けてほぼ
まっすぐに延びているので凹部側壁面15bに対する各噴
射燃料F1 ,F2 の入射角θ1 ,θ2 は噴射中心に近い
噴射燃料ほど小さくなり、従って凹部側壁面15bに沿っ
て進行を開始しはじめたときの各噴射燃料F1 ,F2
流動速度v1 ,v2 は噴射中心に近い噴射燃料ほど速く
なる。
In FIG. 10, the chain line R indicates the collision area of the injected fuel on the bottom wall surface 15c of the recess, and the arrows F 1 , F
2 shows two typical flows of the injected fuel. Figure 10
As shown in Fig. 5, the injected fuels F 1 and F 2 are
Even after the collision, it advances in the injection direction by the inertial force, then advances to the recess side wall surface 15b, and then advances toward the recess end 15a along the recess side wall surface 15b. By the way, since each recess side wall surface 15b extends substantially straight from the recess end 15a toward the fuel injection valve 14 side, the incident angles θ 1 , θ 2 of the injected fuels F 1 , F 2 to the recess side wall surface 15b are injected. The injected fuel nearer the center becomes smaller, and therefore the flow velocities v 1 , v 2 of the injected fuels F 1 , F 2 when starting to travel along the recess side wall surface 15b become faster as the injected fuel nearer the injection center. Become.

【0014】これに対して図11に示されるようにピスト
ン2′の頂面上に形成された凹部15′の輪郭形状を円形
とし、燃料噴射弁14′から凹部15′の平坦な底壁面15
c′上に燃料を噴射すると凹部側壁面15b′に対する各
噴射燃料F1 ′,F2 ′の入射角θ1 ′,θ2 ′は噴射
中心に近い噴射燃料ほど大きくなり、従って凹部側壁面
15b′に沿って進行を開始しはじめたときの噴射燃料F
1 ′,F2 ′の流動速度v1 ′,v2 ′は噴射中心に近
い噴射燃料ほど遅くなる。ところがこのようにv 1 ′>
2 ′なる関係があると各凹部側壁面15b′に沿って流
れる燃料又は混合気はほぼ同時期に凹部端部15a′に集
まり、次いでほぼ同時期に凹部端部15a′に沿って上昇
して点火栓10の周りに混合気を形成することになる。従
ってこの場合には常にほぼ全噴射燃料によって点火栓10
の周りに混合気が形成されることになり、従ってこのと
き点火栓10周りに形成される混合気の濃度は燃料噴射量
を制御する以外の方法によっては制御することができな
いことになる。斯くして例えば燃料噴射量が少いときに
点火栓10の周りに最適な混合気を形成しようとすると燃
料噴射量が増大したときには点火栓10周りに形成される
混合気は過濃となり、斯くして点火栓10による良好な着
火が得られないばかりでなく、たとえ着火したとしても
多量の未燃HC,COが発生することになる。
On the other hand, as shown in FIG.
The contour of the recess 15 'formed on the top surface of the ring 2'is circular.
From the fuel injection valve 14 'to the flat bottom wall 15 of the recess 15'.
When the fuel is injected onto c ',
Injection fuel F1′, F2Angle of incidence θ1′, Θ2′ Is a jet
The fuel injected closer to the center becomes larger, and therefore the side wall surface of the recess
Injection fuel F when starting to travel along 15b '
1′, F2′ Flow velocity v1′, V2′ Is close to the injection center
The slower the fuel injected, the slower it becomes. However, like this v 1′ >
v2If there is a relation of ', the flow along each recess side wall surface 15b'
The fuel or mixture to be collected is collected at the recess end 15a 'at substantially the same time.
Then rises along the concave end 15a 'at about the same time.
Then, the air-fuel mixture is formed around the spark plug 10. Servant
In this case, the spark plug 10 is
A mixture will be formed around the
The concentration of the air-fuel mixture formed around the spark plug 10 is the fuel injection amount.
Can not be controlled by any method other than controlling
It will be good. Thus, for example, when the fuel injection amount is small,
If you try to create an optimal mixture around the spark plug 10, it will burn.
When the fuel injection amount increases, it is formed around the spark plug 10.
The air-fuel mixture becomes rich, and thus the spark plug 10 provides good wear.
Not only does it not get a fire, even if it ignites
A large amount of unburned HC and CO will be generated.

【0015】これに対して図10に示されるようにv1
2 なる関係があると噴射燃料F2 が凹部端部15aに到
達しても噴射燃料F1 は依然として凹部端部15aに向け
て進行中であり、従って各噴射燃料F1 ,F2 が凹部端
部15aに到達するのに時間差を生ずることになる。この
ように各噴射燃料F1 ,F2 が凹部端部15aに到達する
のに時間差を生ずると点火栓10周りに形成される混合気
は時間を経過するにつれて次第に濃くなることになり、
従ってこの場合には燃料噴射量が一定であっても燃料噴
射から点火が行われるまでの時間を制御することによっ
て点火が行われるときに点火栓10周りに形成される混合
気の濃度を制御できることになる。云い換えると点火が
行われるときに点火栓10周りに最適な濃度の混合気が形
成されるように点火時期又は噴射時期を制御することに
よって点火が行われるときに点火栓10周りに常に最適な
混合気を形成できることになる。従って図10に示すよう
な形状の凹部15を用いると燃料噴射量によらずに点火栓
10による良好な着火を確保できることになる。
On the other hand, as shown in FIG. 10, v 1 <
With the relationship of v 2 , even if the injected fuel F 2 reaches the recess end 15a, the injected fuel F 1 is still proceeding toward the recess end 15a, so that the injected fuels F 1 and F 2 are recessed. There will be a time lag in reaching the end 15a. Thus, if there is a time lag in reaching each of the injected fuels F 1 and F 2 to the recess end portion 15a, the air-fuel mixture formed around the spark plug 10 will gradually become richer over time,
Therefore, in this case, it is possible to control the concentration of the air-fuel mixture formed around the spark plug 10 when ignition is performed by controlling the time from the fuel injection to the ignition even if the fuel injection amount is constant. become. In other words, by controlling the ignition timing or the injection timing so that an optimum concentration of air-fuel mixture is formed around the spark plug 10 when ignition is performed, there is always an optimum around the spark plug 10 when ignition is performed. A mixture can be formed. Therefore, when the recess 15 having the shape as shown in FIG. 10 is used, the spark plug does not depend on the fuel injection amount.
Good ignition by 10 can be secured.

【0016】また、上述のように凹部底壁面15c上には
溝20の列が形成されており、即ち凹部底壁面15cは凹部
底壁面15c上における燃料の流動方向に向けて波形をな
す波形断面形状に形成されている。従って、噴射燃料が
図10において鎖線Rで示されるように凹部底壁面15c上
に衝突した後凹部底壁面15cに沿いつつ凹部側壁面15b
に向けて進行するときに、燃料の流動速度は凹部底壁面
15cの各溝20上を移動するにつれて次第に減速されてい
く。このとき、衝突領域Rの中で燃料噴射弁14により近
い領域において凹部底壁面15cと衝突した噴射燃料ほど
より多くの溝20上を移動することになるのでその流動速
度がより大きく減速されることになる。従って凹部底壁
面15cに沿い流れる各燃料が凹部側壁面15bに到達する
までにも時間差を生ずることになる。このように凹部底
壁面15cに沿い流れる各燃料が凹部側壁面15bに到達す
るのに時間差を生じ、更に上述のように凹部側壁面15b
に沿い流れる各燃料が凹部端部15aに到達するのにも時
間差を生ずるので、図10において鎖線Rで示されるよう
に凹部底壁面15c上に衝突した各噴射燃料が凹部底壁面
15cおよび凹部側壁面15bに沿い流れて凹部端部15aに
到達するのにかなりの量の時間差を生ずることになる。
斯くして、点火時期または噴射時期を制御することによ
って点火が行われるときに点火栓10周りに常に最適な濃
度の混合気を形成することが正確かつ容易に行えること
になる。
Further, as described above, the rows of the grooves 20 are formed on the recess bottom wall surface 15c, that is, the recess bottom wall surface 15c has a corrugated cross section which is corrugated in the fuel flow direction on the recess bottom wall surface 15c. It is formed in a shape. Therefore, the injected fuel collides with the bottom wall surface 15c of the recess as shown by the chain line R in FIG.
As the fuel flows toward the
As it moves on each groove 20 of 15c, it is gradually decelerated. At this time, since the injected fuel that has collided with the recess bottom wall surface 15c in the region closer to the fuel injection valve 14 in the collision region R moves on the groove 20 more, the flow velocity thereof is greatly reduced. become. Therefore, there is a time lag until each fuel flowing along the recess bottom wall surface 15c reaches the recess side wall surface 15b. Thus, there is a time lag in reaching each fuel flowing along the recess bottom wall surface 15c to the recess side wall surface 15b.
Since there is a time lag for each fuel flowing along to reach the recess end portion 15a, each injected fuel colliding with the recess bottom wall surface 15c as indicated by the chain line R in FIG.
There will be a considerable amount of time lag in flowing along 15c and the side wall surface 15b of the recess to reach the end 15a of the recess.
Thus, by controlling the ignition timing or the injection timing, it is possible to accurately and easily form the air-fuel mixture having the optimum concentration around the spark plug 10 when the ignition is performed.

【0017】上述したように噴射燃料は慣性力によって
凹部底壁面15c上を点火栓10の下方に向けて流れる。と
ころで図7に示されるように燃焼室4内に発生した旋回
流Xはピストン2が上昇するにつれて減衰しつつ旋回半
径が次第に小さくなり、ピストン2が上死点に近づくと
図8に示されるように凹部底壁面15cに沿う旋回流Xと
なる。従って、噴射燃料はこの旋回流Xによっても点火
栓10の下方に向かう力が与えられる。また、ピストン2
が更に上死点に近づくと図8において矢印Sで示すよう
にスキッシュエリア16からスキッシュ流が噴出し、この
スキッシュ流Sも凹部底壁面15cに沿って進む。従って
噴射燃料はこのスキッシュ流Sによっても点火栓10の下
方に向かう力が与えられる。また、凹部底壁面15cに沿
い点火栓10の下方に向かう燃料は旋回流Xおよびスキッ
シュ流Sによって気化せしめられ、斯くして点火栓10の
周りに集まる混合気は十分に気化せしめられることにな
る。
As mentioned above, the injected fuel flows downward on the spark plug 10 on the bottom wall surface 15c of the recess due to the inertial force. By the way, as shown in FIG. 7, the swirling flow X generated in the combustion chamber 4 is attenuated as the piston 2 rises, and the swirling radius becomes gradually smaller. As the piston 2 approaches the top dead center, as shown in FIG. A swirling flow X is formed along the bottom wall surface 15c of the recess. Accordingly, the swirling flow X also gives the injected fuel a downward force on the spark plug 10. Also, piston 2
When the squish flow approaches the top dead center, a squish flow is ejected from the squish area 16 as shown by an arrow S in FIG. 8, and the squish flow S also advances along the recess bottom wall surface 15c. Therefore, the squish flow S also gives the injected fuel a downward force on the spark plug 10. Further, the fuel flowing downward of the spark plug 10 along the bottom wall surface 15c of the recess is vaporized by the swirling flow X and the squish flow S, and thus the air-fuel mixture gathering around the spark plug 10 is sufficiently vaporized. ..

【0018】また、上述のように燃料噴射弁14から噴射
された燃料は図10に示す衝突領域Rにおいて図5に示さ
れるように凹部底壁面15cの各溝面21上にほぼ垂直に衝
突する。このように噴射燃料が各溝面21上にほぼ垂直に
衝突することにより、衝突した燃料の微粒化および霧化
が促進される。更に凹部底壁面15cに沿い流れる燃料の
一部が隣り合う溝面21間の段差部で凹部底壁面15cから
剥離され、これにより燃料の霧化が更に促進される。ま
た各溝20の角部では熱が逃げにくいのでこれら角部は特
に高温を呈する。従って燃料はこれら角部上を移動する
ときに角部から熱を受け、これによっても燃料の気化が
促進される。また、上述のように凹部底壁面15cに沿う
旋回流Xおよびスキッシュ流Sには溝20の列により小さ
な乱れが発生せしめられ、この空気の乱れによって燃料
と空気とのミキシングが促進される。斯くして点火栓10
の周りに集まる混合気は良好に気化せしめられることに
なる。
Further, as described above, the fuel injected from the fuel injection valve 14 collides with each groove surface 21 of the bottom wall surface 15c of the recess substantially vertically in the collision area R shown in FIG. 10 as shown in FIG. .. In this way, the injected fuel collides with each groove surface 21 substantially vertically, so that atomization and atomization of the colliding fuel are promoted. Further, a part of the fuel flowing along the bottom wall surface 15c of the recess is separated from the bottom wall surface 15c of the recess at the step between the adjacent groove surfaces 21, thereby further promoting atomization of the fuel. Further, since heat is difficult to escape at the corners of each groove 20, these corners exhibit a particularly high temperature. Therefore, the fuel receives heat from the corners as it moves over these corners, which also promotes vaporization of the fuel. Further, as described above, the swirl flow X and the squish flow S along the bottom wall surface 15c of the recess are slightly disturbed by the rows of the grooves 20, and the turbulence of the air promotes the mixing of fuel and air. Thus the spark plug 10
The air-fuel mixture that gathers around the is well vaporized.

【0019】一方、機関高負荷運転時および機関中負荷
運転時の第1回目の燃料噴射時には図9に示されるよう
にピストン2が低い位置にあるときに燃料噴射が開始さ
れる。従ってこのときには噴射燃料がピストン2の頂面
の広い領域に亘って衝突するために燃料は燃焼室4内に
良好に分散せしめられる。機関中負荷運転時にはこの第
1回目の燃料噴射Im1によって燃焼室4内に稀薄な混合
気が形成され、この稀薄混合気は第2回目の燃料噴射I
m2により点火栓10周りに形成された混合気が着火源とな
って燃焼せしめられる。これに対して機関高負荷運転時
には図9に示すように噴射された燃料により燃焼室4内
に形成された混合気が点火栓10により着火せしめられ
る。
On the other hand, at the time of the first fuel injection during engine high load operation and engine medium load operation, fuel injection is started when the piston 2 is in the low position as shown in FIG. Therefore, at this time, the injected fuel collides with a wide area of the top surface of the piston 2, so that the fuel is well dispersed in the combustion chamber 4. During the engine medium load operation, the first fuel injection Im 1 forms a lean air-fuel mixture in the combustion chamber 4, and the lean air-fuel mixture causes the second fuel injection I 1.
Due to m 2, the air-fuel mixture formed around the spark plug 10 becomes an ignition source and is burned. On the other hand, during engine high load operation, the air-fuel mixture formed in the combustion chamber 4 is ignited by the spark plug 10 by the injected fuel as shown in FIG.

【0020】図12から図19に第2実施例を示す。この実
施例では各給気弁6近傍のシリンダヘッド内壁面3aの
周縁部に一対の燃料噴射弁、即ち第1燃料噴射弁14aと
第2燃料噴射弁14bとが配置され、図12からわかるよう
にこれら燃料噴射弁14a,14bからはシリンダ軸線方向
に向けて燃料が噴射される。図15に示されるようにこの
実施例においても機関低負荷運転時、中負荷運転時およ
び高負荷運転時における燃料噴射時期は図1から図6に
示される実施例と同様であるが、この実施例では機関低
負荷運転時における燃料噴射Il および機関中負荷運転
時における第2回目の燃料噴射Im2は図16に示されるよ
うに第1燃料噴射弁14aにより行われ、機関中負荷運転
時における第1回目の燃料噴射Im1は図17に示されるよ
うに第2燃料噴射弁14bにより行われ、機関高負荷運転
時における燃料噴射Ih1およびIh2は図18に示されるよ
うに第1燃料噴射弁14aおよび第2燃料噴射弁14b(図
18には図示していない)の双方により行われる。
A second embodiment is shown in FIGS. 12 to 19. In this embodiment, a pair of fuel injection valves, that is, a first fuel injection valve 14a and a second fuel injection valve 14b, are arranged in the peripheral portion of the cylinder head inner wall surface 3a near each air supply valve 6, as can be seen from FIG. In addition, fuel is injected from these fuel injection valves 14a, 14b in the cylinder axis direction. As shown in FIG. 15, in this embodiment as well, the fuel injection timing during engine low load operation, medium load operation and high load operation is the same as that of the embodiment shown in FIGS. 1 to 6, but this embodiment In the example, the fuel injection Il during the engine low load operation and the second fuel injection Im 2 during the engine medium load operation are performed by the first fuel injection valve 14a as shown in FIG. The first fuel injection Im 1 is performed by the second fuel injection valve 14b as shown in FIG. 17, and the fuel injections Ih 1 and Ih 2 during engine high load operation are the first fuel injection as shown in FIG. Injection valve 14a and second fuel injection valve 14b (Fig.
(Not shown in 18).

【0021】この実施例では機関低負荷運転時および機
関中負荷運転時の第2回目の燃料噴射時には燃料は第1
燃料噴射弁14aから凹部底壁面15cに向けて斜めに噴射
され、この噴射燃料は凹部底壁面15c上に衝突した後凹
部側壁面15bに沿いつつ凹部端部15aに向けて進行す
る。この実施例においても各凹部側壁面15bは凹部端部
15aから燃料噴射弁14側に向けてほぼまっすぐに延びて
いるので図19に示されるように凹部側壁面15bに対する
各噴射燃料F1 ,F2 の入射角θ1 ,θ2 は噴射中心に
近い噴射燃料ほど小さくなり、従って凹部側壁面15bに
沿って進行を開始しはじめたときの各噴射燃料F1 ,F
2 の流動速度v1 ,v2 は噴射中心に近い噴射燃料ほど
速くなる。従って各噴射燃料F1 ,F2 が凹部端部15a
に到達するのに時間差を生ずることになり、斯くして点
火が行われるときに点火栓10周りに最適な濃度の混合気
を形成できることになる。
In this embodiment, the fuel is the first fuel during the second fuel injection during the engine low load operation and the engine medium load operation.
The fuel is injected obliquely from the fuel injection valve 14a toward the recess bottom wall surface 15c, and the injected fuel collides with the recess bottom wall surface 15c and then advances toward the recess end portion 15a along the recess side wall surface 15b. Also in this embodiment, the side wall surface 15b of each recess is the end of the recess.
Since it extends almost straight from 15a toward the fuel injection valve 14 side, as shown in FIG. 19, the incident angles θ 1 and θ 2 of the respective injected fuels F 1 and F 2 to the recess side wall surface 15b are close to the injection center. The injected fuel becomes smaller, and therefore each injected fuel F 1 , F when starting to travel along the recess side wall surface 15b
2 flow velocity v 1, v 2 becomes faster as the injected fuel closer to the injection center. Therefore, the respective injected fuels F 1 and F 2 are
There will be a time lag in reaching the temperature, and thus an optimum concentration of air-fuel mixture can be formed around the spark plug 10 when ignition is performed.

【0022】なお、これまで本発明を筒内噴射式2サイ
クル機関に適用した場合について説明してきたが本発明
を筒内噴射式4サイクル機関にも適用することができ
る。
Although the present invention has been described so far as applied to a cylinder injection type two-cycle engine, the present invention can also be applied to a cylinder injection type four-cycle engine.

【0023】[0023]

【発明の効果】ピストン頂面に形成された凹部内に燃料
を噴射するようにした場合において点火が行われるとき
に点火栓周りに常に最適な濃度の混合気を形成すること
ができる。
As described above, when fuel is injected into the concave portion formed on the top surface of the piston, the air-fuel mixture having the optimum concentration can be always formed around the spark plug when ignition is performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】ピストン頂面の平面図である。FIG. 1 is a plan view of a top surface of a piston.

【図2】2サイクル機関の側面断面図である。FIG. 2 is a side sectional view of a two-cycle engine.

【図3】シリンダヘッドの底面図である。FIG. 3 is a bottom view of a cylinder head.

【図4】ピストン頂部の斜視図である。FIG. 4 is a perspective view of the top of the piston.

【図5】凹部底壁面の一部を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a part of a bottom wall surface of a recess.

【図6】給排気弁の開弁時期と燃料噴射時期を示す線図
である。
FIG. 6 is a diagram showing a valve opening timing of a supply / exhaust valve and a fuel injection timing.

【図7】掃気行程時を示す2サイクル機関の側面断面図
である。
FIG. 7 is a side sectional view of a two-cycle engine showing a scavenging stroke.

【図8】低負荷運転時の燃料噴射および中負荷運転時の
第2回目の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 8 is a side sectional view of a two-cycle engine showing fuel injection during low load operation and second fuel injection during medium load operation.

【図9】中負荷運転時の第1回目の燃料噴射および高負
荷運転時の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 9 is a side cross-sectional view of the two-stroke engine showing the first fuel injection during medium load operation and the fuel injection during high load operation.

【図10】図1と同様のピストン頂面の平面図である。FIG. 10 is a plan view of the piston top surface similar to FIG. 1.

【図11】好ましくない例を示すピストン頂面の平面図で
ある。
FIG. 11 is a plan view of a piston top surface showing an unfavorable example.

【図12】別の実施例を示すピストン頂面の平面図であ
る。
FIG. 12 is a plan view of a piston top surface showing another embodiment.

【図13】2サイクル機関の側面断面図である。FIG. 13 is a side sectional view of a two-cycle engine.

【図14】シリンダヘッドの底面図である。FIG. 14 is a bottom view of the cylinder head.

【図15】給排気弁の開弁時期と燃料噴射時期を示す線図
である。
FIG. 15 is a diagram showing a valve opening timing of a supply / exhaust valve and a fuel injection timing.

【図16】低負荷運転時の燃料噴射および中負荷運転時の
第2回目の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 16 is a side sectional view of a two-cycle engine showing fuel injection during low load operation and second fuel injection during medium load operation.

【図17】中負荷運転時の第1回目の燃料噴射を示す2サ
イクル機関の側面断面図である。
FIG. 17 is a side cross-sectional view of the two-cycle engine showing the first fuel injection during medium load operation.

【図18】高負荷運転時の燃料噴射を示す2サイクル機関
の側面断面図である。
[Fig. 18] Fig. 18 is a side cross-sectional view of a two-cycle engine showing fuel injection during high-load operation.

【図19】図12と同様のピストン頂面の平面図である。FIG. 19 is a plan view of the piston top surface similar to FIG.

【符号の説明】[Explanation of symbols]

2…ピストン 3…シリンダヘッド 10…点火栓 14…燃料噴射弁 15…凹部 15a…凹部端部 15b…凹部側壁面 15c…凹部底壁面 20…溝 2 ... Piston 3 ... Cylinder head 10 ... Spark plug 14 ... Fuel injection valve 15 ... Recess 15a ... Recess end 15b ... Recess side wall surface 15c ... Recess bottom wall surface 20 ... Groove

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02P 13/00 301 A 8923−3G (72)発明者 仁平 裕昭 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中田 浩一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location F02P 13/00 301 A 8923-3G (72) Inventor Hiroaki Nihira 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation Stock In-house (72) Inventor Koichi Nakata 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつ延びる一対の側壁面とほぼ平坦をなす底壁
面とにより画定される凹部をピストン頂面上に形成する
と共に該燃料噴射弁から該凹部底壁面に向け斜めに燃料
を噴射して凹部底壁面に衝突した噴射燃料を凹部側壁面
に沿いつつ点火栓下方の凹部端部に向かわせ、各凹部側
壁面を該凹部端部から燃料噴射弁側に向けてほぼまっす
ぐに延設し、該凹部底壁面を燃料の流動方向に向けて波
形をなす波形断面形状に形成した筒内噴射式内燃機関。
Claims: 1. An ignition plug is arranged at the center of the inner wall surface of the cylinder head, and a fuel injection valve is arranged at the peripheral edge of the inner wall surface of the cylinder head. From below the ignition plug to the fuel injection valve side. A recess defined by a pair of side wall surfaces that gradually expand toward each other and a bottom wall surface that is substantially flat is formed on the piston top surface, and fuel is obliquely injected from the fuel injection valve toward the recess bottom wall surface. Then, the injected fuel colliding with the bottom wall surface of the recess is directed toward the end of the recess below the spark plug along the side wall surface of the recess, and each side wall surface of the recess is extended substantially straight from the end of the recess toward the fuel injection valve. And a cylinder injection internal combustion engine in which the bottom wall surface of the recess is formed in a corrugated cross-sectional shape that is corrugated toward the fuel flow direction.
JP3173921A 1991-07-15 1991-07-15 In-cylinder internal combustion engine Expired - Fee Related JP2940232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173921A JP2940232B2 (en) 1991-07-15 1991-07-15 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173921A JP2940232B2 (en) 1991-07-15 1991-07-15 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0518245A true JPH0518245A (en) 1993-01-26
JP2940232B2 JP2940232B2 (en) 1999-08-25

Family

ID=15969547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173921A Expired - Fee Related JP2940232B2 (en) 1991-07-15 1991-07-15 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2940232B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771138A1 (en) * 1997-11-14 1999-05-21 Renault Direct injection IC engine for vehicles
US6470850B1 (en) 1998-07-10 2002-10-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP3295003B1 (en) 2015-05-12 2021-11-17 Wärtsilä Finland Oy A piston for a four-stroke internal combustion engine and a four-stroke internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541846B2 (en) * 2004-11-18 2010-09-08 日立オートモティブシステムズ株式会社 In-cylinder injection engine
JP4500790B2 (en) * 2006-09-01 2010-07-14 日立オートモティブシステムズ株式会社 Direct injection engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771138A1 (en) * 1997-11-14 1999-05-21 Renault Direct injection IC engine for vehicles
US6470850B1 (en) 1998-07-10 2002-10-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP3295003B1 (en) 2015-05-12 2021-11-17 Wärtsilä Finland Oy A piston for a four-stroke internal combustion engine and a four-stroke internal combustion engine

Also Published As

Publication number Publication date
JP2940232B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5259348A (en) Direct injection type engine
US6269790B1 (en) Combustion chamber for DISI engines with exhaust side piston bowl
JPS6145044B2 (en)
JP2940232B2 (en) In-cylinder internal combustion engine
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JP2841791B2 (en) Fuel injection type internal combustion engine
JP2936804B2 (en) In-cylinder internal combustion engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JP2936798B2 (en) In-cylinder internal combustion engine
JP2936803B2 (en) In-cylinder internal combustion engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JP2867772B2 (en) In-cylinder internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JP2936805B2 (en) In-cylinder internal combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine
JPH04112904A (en) Combustion chamber of 2-cycle internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JPH0526047A (en) Cylinder fuel injection type two-cycle internal combustion engine
JPH05248244A (en) Cylinder injection type internal combustion engine
JPH05256137A (en) Inter-cylinder injection type internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPH0510136A (en) Cylinder injection type internal combustion engine
JP2874689B2 (en) In-cylinder internal combustion engine
JPH0565850A (en) Internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees