JPH05179961A - Intra-cylinder injection type internal combustion engine - Google Patents

Intra-cylinder injection type internal combustion engine

Info

Publication number
JPH05179961A
JPH05179961A JP34632091A JP34632091A JPH05179961A JP H05179961 A JPH05179961 A JP H05179961A JP 34632091 A JP34632091 A JP 34632091A JP 34632091 A JP34632091 A JP 34632091A JP H05179961 A JPH05179961 A JP H05179961A
Authority
JP
Japan
Prior art keywords
fuel
groove
fuel injection
injected
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34632091A
Other languages
Japanese (ja)
Inventor
Koichi Nakada
浩一 中田
Kenichi Nomura
憲一 野村
Tatsuo Kobayashi
辰夫 小林
Hiroaki Nihei
裕昭 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34632091A priority Critical patent/JPH05179961A/en
Publication of JPH05179961A publication Critical patent/JPH05179961A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To restrain generation of unburnt HC and insure stable combustion by constituting the engine so that fuel injected to a cylinder except a first recessed groove is collected around an ignition plug without dispersing it in the whole combustion chamber at increasing a fuel injection quantity CONSTITUTION:Concerning a first recessed groove 15 formed on the top face of a piston 2, a second recessed groove 16 spaced from the first recessed groove 15 and extended along the contour of the first recessed groove 15 is formed on the opposite side of a fuel injection valve 14. At a small injection quantity, the fuel injected from the fuel injection valve 14 and colliding against the bottom wall 15c of the first recessed groove 15 is advanced toward the end part 15a of the first recessed groove under an ignition plug 10 along the side wall 15b of the first recessed groove. Further the engine is constituted in such a way that when the fuel injection quantity is increased, fuel injection timing is advanced, a part of fuel is injected into the first recessed groove 15 but remaining fuel is injected into the second recessed groove 16, so as to collect the mixture formed by fuel injected into the second recessed groove 16 around the ignition plug 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder injection type internal combustion engine.

【0002】[0002]

【従来の技術】シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつほぼまっすぐに延びる一対の側壁面とほぼ
平坦をなす底壁面とにより画定される凹溝をピストン頂
面上に形成し、燃料噴射量が少ないときには燃料噴射弁
から凹溝の底壁面に向け斜めに燃料を噴射して凹溝の底
壁面に衝突した噴射燃料を凹溝の側壁面に沿いつつ点火
栓下方の凹溝端部に向かわせ、燃料噴射量が増大したと
きには燃料噴射時期を早めて一部の燃料を凹溝内に噴射
すると共に残りの燃料を凹溝周りのピストン頂面に向け
て噴射するようにした筒内噴射式内燃機関が本出願人に
より既に提案されている(特願平3−150642号参
照)。
2. Description of the Related Art A spark plug is arranged at the center of the inner wall surface of a cylinder head, and a fuel injection valve is arranged at the peripheral portion of the inner wall surface of the cylinder head. The fuel plug gradually expands from below the spark plug toward the fuel injection valve side. While forming a concave groove on the top surface of the piston that is defined by a pair of side wall surfaces that extend substantially straight and a bottom surface that is substantially flat.When the fuel injection amount is small, the concave groove extends from the fuel injection valve toward the bottom wall surface of the concave groove. The fuel injected into the groove is directed toward the end of the groove below the spark plug along the side wall surface of the groove, and the fuel injection timing is advanced when the fuel injection amount increases. The present applicant has already proposed a cylinder injection type internal combustion engine that injects the fuel in the groove into the groove and injects the remaining fuel toward the top surface of the piston around the groove (Japanese Patent Application No. Hei. 3-150642).

【0003】この筒内噴射式内燃機関では燃料噴射量が
少ないときには全燃料を凹溝内に噴射して混合気を点火
栓周りに形成し、燃料噴射量が増大したときには一部の
燃料を凹溝内に噴射してこの燃料により点火栓周りに混
合気を形成すると共に、残りの燃料を凹溝周りのピスト
ン頂面に衝突させてこの燃料により燃焼室内に均一混合
気を形成し、この均一混合気を点火栓周りに形成された
混合気の着火火炎を火種として着火せしめるようにして
いる。
In this cylinder injection type internal combustion engine, when the fuel injection amount is small, all the fuel is injected into the concave groove to form the air-fuel mixture around the spark plug, and when the fuel injection amount increases, a part of the fuel is depressed. The fuel is injected into the groove to form an air-fuel mixture around the spark plug, and the remaining fuel collides with the piston top surface around the groove to form a uniform air-fuel mixture in the combustion chamber. The air-fuel mixture is ignited by using the ignition flame of the air-fuel mixture formed around the spark plug as the ignition source.

【0004】[0004]

【発明が解決しようとする課題】ところでこの筒内噴射
内燃機関では凹溝周りのピストン頂面に衝突せしめられ
る燃料の割合は噴射量が増大するほど多くなる。この場
合、高負荷運転時のように燃料噴射量が多いときには均
一混合気の空燃比が比較的大きくなるので燃焼室内全体
の混合気が良好に燃焼せしめられる。しかしながら燃料
噴射量がそれほど多くないときには均一混合気の空燃比
がかなり大きくなり、即ちかなり稀薄となり、斯くして
均一混合気が良好に燃焼せしめられないために多量の未
燃HCが発生すると共に燃焼が不安定になるという問題
がある。
By the way, in this in-cylinder injection internal combustion engine, the proportion of fuel colliding with the piston top surface around the concave groove increases as the injection amount increases. In this case, when the fuel injection amount is large, such as during high load operation, the air-fuel ratio of the homogeneous air-fuel mixture becomes relatively large, so that the air-fuel mixture in the entire combustion chamber can be burned well. However, when the fuel injection amount is not so large, the air-fuel ratio of the homogeneous air-fuel mixture becomes considerably large, that is, it becomes considerably lean, so that the homogeneous air-fuel mixture cannot be satisfactorily combusted, so that a large amount of unburned HC is generated and combustion occurs. Is unstable.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、シリンダヘッド内壁面の中心部に
点火栓を配置し、シリンダヘッド内壁面の周縁部に燃料
噴射弁を配置し、点火栓の下方から燃料噴射弁側に向け
て次第に拡開しつつほぼまっすぐに延びる一対の側壁面
とほぼ平坦をなす底壁面とにより画定される第1凹溝を
ピストン頂面上に形成すると共に第1凹溝に関して燃料
噴射弁と反対側のピストン頂面上に第1凹溝から間隔を
隔てて第1凹溝の輪郭に沿って延びる第2凹溝を形成
し、燃料噴射量が少ないときには燃料噴射弁から第1凹
溝の底壁面に向け斜めに燃料を噴射して第1凹溝の底壁
面に衝突した噴射燃料を第1凹溝の側壁面に沿いつつ点
火栓下方の第1凹溝端部に向かわせ、燃料噴射量が増大
したときには燃料噴射時期を早めて一部の燃料を第1凹
溝内に噴射すると共に残りの燃料を第2凹溝内に噴射さ
せて第2凹溝内に噴射された燃料により形成される混合
気が点火栓の周りに集まるようにしている。
In order to solve the above problems, according to the present invention, an ignition plug is arranged at the center of the inner wall surface of the cylinder head, and a fuel injection valve is arranged at the peripheral portion of the inner wall surface of the cylinder head. Then, a first groove is formed on the top surface of the piston, which is defined by a pair of side wall surfaces that extend substantially straight while gradually expanding from below the spark plug toward the fuel injection valve side and a bottom wall surface that is substantially flat. With respect to the first groove, a second groove extending along the contour of the first groove is formed on the piston top surface on the side opposite to the fuel injection valve at a distance from the first groove. When the amount is small, the fuel is obliquely injected from the fuel injection valve toward the bottom wall surface of the first groove, and the injected fuel that collides with the bottom wall surface of the first groove is along the side wall surface of the first groove and is located below the spark plug. 1 When the fuel injection amount increases toward the end of the groove, By advancing the timing, a part of the fuel is injected into the first groove and the remaining fuel is injected into the second groove so that the air-fuel mixture formed by the fuel injected into the second groove forms an ignition plug. I try to gather around.

【0006】[0006]

【作用】燃料噴射量が増大せしめられたときに第1凹溝
以外に噴射された燃料が燃焼室内全体に拡散せしめられ
ることなく点火栓の周りに集められる。
When the fuel injection amount is increased, the fuel injected into the portion other than the first groove is collected around the spark plug without being diffused in the entire combustion chamber.

【0007】[0007]

【実施例】図2および図3を参照すると、1はシリンダ
ブロック、2はシリンダブロック1内で往復動するピス
トン、3はシリンダブロック1上に固定されたシリンダ
ヘッド、4はシリンダヘッド3の内壁面3aとピストン
2の頂面間に形成された燃焼室を夫々示す。シリンダヘ
ッド内壁面3a上には凹溝5が形成され、この凹溝5の
底壁面をなすシリンダヘッド内壁面部分3b上に一対の
給気弁6が配置される。一方、凹溝5を除くシリンダヘ
ッド内壁面部分3cは傾斜したほぼ平坦をなし、このシ
リンダヘッド内壁面部分3c上に3個の排気弁7が配置
される。シリンダヘッド内壁面部分3bとシリンダヘッ
ド内壁面部分3cは凹溝5の周壁8を介して互いに接続
されている。
2 and 3, 1 is a cylinder block, 2 is a piston that reciprocates in the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a cylinder head 3. The combustion chambers formed between the wall surface 3a and the top surface of the piston 2 are shown respectively. A concave groove 5 is formed on the cylinder head inner wall surface 3a, and a pair of air supply valves 6 are arranged on the cylinder head inner wall surface portion 3b forming the bottom wall surface of the groove 5. On the other hand, the cylinder head inner wall surface portion 3c excluding the groove 5 is inclined and substantially flat, and three exhaust valves 7 are arranged on the cylinder head inner wall surface portion 3c. The cylinder head inner wall surface portion 3b and the cylinder head inner wall surface portion 3c are connected to each other through the peripheral wall 8 of the groove 5.

【0008】この凹溝周壁8は給気弁6の周縁部に極め
て近接配置されかつ給気弁6の周縁部に沿って円弧状に
延びる一対のマスク壁8aと、給気弁6間に位置する新
気ガイド壁8bと、シリンダヘッド内壁面3aの周壁と
給気弁6間に位置する一対の新気ガイド壁8cとにより
構成される。各マスク壁8aは最大リフト位置にある給
気弁6よりも下方まで燃焼室4に向けて延びており、従
って排気弁7側に位置する給気弁6周縁部と弁座9間の
開口は給気弁6の開弁期間全体に亙ってマスク壁8aに
より閉鎖されることになる。また、各新気ガイド壁8
b,8cはほぼ同一平面内に位置しており、更にこれら
の新気ガイド壁8b,8cは両給気弁6の中心を結ぶ線
に対してほぼ平行に延びている。点火栓10はシリンダ
ヘッド内壁面3aの中心に位置するようにシリンダヘッ
ド内壁面部分3c上に配置されている。一方、排気弁7
に対しては排気弁7と弁座11間の開口を覆うマスク壁
が設けられておらず、従って排気弁7が開弁すると排気
弁7と弁座11間に形成される開口はその全体が燃焼室
4内に開口することになる。
The concave groove peripheral wall 8 is disposed between the air supply valve 6 and a pair of mask walls 8a which are arranged very close to the peripheral edge of the air supply valve 6 and extend in an arc shape along the peripheral edge of the air supply valve 6. And a pair of fresh air guide walls 8c located between the peripheral wall of the cylinder head inner wall surface 3a and the air supply valve 6. Each mask wall 8a extends toward the combustion chamber 4 below the air supply valve 6 at the maximum lift position, so that the opening between the peripheral edge of the air supply valve 6 on the exhaust valve 7 side and the valve seat 9 is formed. The air supply valve 6 is closed by the mask wall 8a for the entire opening period. Also, each fresh air guide wall 8
b and 8c are located in substantially the same plane, and these fresh air guide walls 8b and 8c extend substantially parallel to the line connecting the centers of both air supply valves 6. The spark plug 10 is arranged on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7
However, a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11 is not provided. Therefore, when the exhaust valve 7 is opened, the opening formed between the exhaust valve 7 and the valve seat 11 is entirely It will open into the combustion chamber 4.

【0009】シリンダヘッド3内には給気弁6に対して
給気ポート12が形成され、排気弁7に対して排気ポー
ト13が形成される。一方、両給気弁6の間のシリンダ
ヘッド内壁面3aの周縁部には燃料噴射弁14が配置さ
れ、この燃料噴射弁14から燃料が燃焼室4内に向けて
噴射される。図1および図2に示されるようにピストン
2の頂面上には点火栓10の下方から燃料噴射弁14の
先端部の下方まで延びる第1の凹溝15が形成される。
この第1凹溝15は点火栓10下方の凹溝端部15aか
ら燃料噴射弁14側に向けて次第に拡開しつつほぼまっ
すぐに延びる一対の側壁面15bと、ほぼ平坦をなす底
壁面15cとにより画定され、図2に示されるように凹
溝端部15aは燃料噴射弁14と反対側に向けて凹んだ
凹状断面形状を有する。また、図1からわかるように凹
溝端部15aは点火栓10と燃料噴射弁14とを含む垂
直平面K−K上に形成されており、各側壁面15bはこ
の垂直平面K−Kに関して対称的な形状を有する。従っ
て第1凹溝15は垂直平面K−Kに関して対称的な形状
を有することになる。
In the cylinder head 3, an air supply port 12 is formed for the air supply valve 6 and an exhaust port 13 is formed for the exhaust valve 7. On the other hand, a fuel injection valve 14 is arranged at the peripheral edge of the cylinder head inner wall surface 3 a between both air supply valves 6, and fuel is injected from the fuel injection valve 14 into the combustion chamber 4. As shown in FIGS. 1 and 2, a first groove 15 extending from below the spark plug 10 to below the tip of the fuel injection valve 14 is formed on the top surface of the piston 2.
The first concave groove 15 is formed by a pair of side wall surfaces 15b extending substantially straight from the concave groove end portion 15a below the spark plug 10 toward the fuel injection valve 14 side and extending substantially straight, and a substantially flat bottom wall surface 15c. As defined and shown in FIG. 2, the groove end 15 a has a concave cross-sectional shape that is recessed toward the side opposite to the fuel injection valve 14. Further, as can be seen from FIG. 1, the concave groove end portion 15a is formed on a vertical plane KK including the spark plug 10 and the fuel injection valve 14, and each side wall surface 15b is symmetrical with respect to the vertical plane KK. It has a unique shape. Therefore, the first groove 15 has a symmetrical shape with respect to the vertical plane KK.

【0010】一方、図1および図2に示されるように第
1凹溝15に関して燃料噴射弁14と反対側のピストン
2の頂面上には第2凹溝16が形成される。この第2凹
溝16は第1凹溝15から間隔を隔てて第1凹溝15の
輪郭に沿って延びており、従ってこの第2凹溝16も凹
溝端部16aから燃料噴射弁14側に向けて次第に拡開
しつつほぼまっすぐに延びる一対の側壁面16bを有し
ている。この第2凹溝16も垂直平面K−Kに関して対
称的な形状を有しており、更に凹溝端部16aの壁面は
湾曲面から形成されている。また、図2に示されるよう
にピストン2が上死点に達すると第2凹溝16に関し第
1凹溝15と反対側に位置するピストン2の頂面部分と
シリンダヘッド内壁面部分3cとの間にはスキッシュエ
リア17が形成される。
On the other hand, as shown in FIGS. 1 and 2, a second concave groove 16 is formed on the top surface of the piston 2 opposite to the fuel injection valve 14 with respect to the first concave groove 15. The second groove 16 extends along the contour of the first groove 15 at a distance from the first groove 15. Therefore, the second groove 16 also extends from the groove end 16a to the fuel injection valve 14 side. It has a pair of side wall surfaces 16b that gradually extend toward each other and extend substantially straight. The second groove 16 also has a symmetrical shape with respect to the vertical plane KK, and the wall surface of the groove end 16a is formed by a curved surface. Further, as shown in FIG. 2, when the piston 2 reaches the top dead center, the top surface portion of the piston 2 and the cylinder head inner wall surface portion 3c located on the opposite side of the first groove 15 with respect to the second groove 16 are separated from each other. A squish area 17 is formed between them.

【0011】図4(A)に示されるように図1から図3
に示す実施例では排気弁7が給気弁6よりも先に開弁
し、排気弁7が給気弁6よりも先に閉弁する。また、図
4(A)においてIl は機関低負荷運転時における燃料
噴射時期を示しており、Im は機関中負荷運転時におけ
る燃料噴射時期を示しており、Ih は機関高負荷運転時
における燃料噴射時期を示している。図4(A)から機
関高負荷運転時における燃料噴射Ih は排気弁7が閉弁
する頃に行われ、機関中負荷運転時における燃料噴射I
m は高負荷運転時に比べて遅い時期に行われ、機関低負
荷運転時における燃料噴射Il は中負荷運転時に比べて
更に遅い時期に行われることがわかる。
1 to 3 as shown in FIG.
In the embodiment shown in (1), the exhaust valve 7 opens before the air supply valve 6 and the exhaust valve 7 closes before the air supply valve 6. Further, in FIG. 4 (A), I 1 indicates the fuel injection timing during engine low load operation, I m indicates the fuel injection timing during engine medium load operation, and I h indicates engine high load operation. Shows the fuel injection timing in. Figure 4 is a fuel injection I h at engine high load operation from (A) is performed around the closing the exhaust valve 7, fuel injection I during in the engine load operation
It can be seen that m is performed later than during high load operation, and fuel injection I l during engine low load operation is performed later than during medium load operation.

【0012】また、図4(B)は燃料噴射量と燃料噴射
時期との関係を示しており、図4(B)におけるIl
m ,Ih は図4(A)に代表的に示したIl ,Im
h を表わしている。図4(B)からわかるように低負
荷運転から中負荷運転のように比較的噴射量が少ないと
きには燃料噴射量が増大するにつれて噴射時期が早めら
れ、高負荷運転時になると燃料噴射時期が大巾に早めら
れる。
Further, FIG. 4 (B) shows the relationship between the fuel injection amount and the fuel injection timing, and I l ,
I m and I h are I l and I m , which are typically shown in FIG.
It represents I h . As can be seen from FIG. 4B, when the injection amount is relatively small, such as from low load operation to medium load operation, the injection timing is advanced as the fuel injection amount increases, and at high load operation, the fuel injection timing greatly varies. Be accelerated.

【0013】図5に示されるように給気弁6および排気
弁7が開弁すると給気弁6を介して燃焼室4内に空気が
流入する。このとき、排気弁7側の給気弁6の開口はマ
スク壁8aによって覆われているので空気はマスク壁8
aと反対側の給気弁6の開口から燃焼室4内に流入す
る。この空気は矢印Wで示すように給気弁6下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン2の頂面
に沿い進んで排気弁7下方のシリンダボア内壁面に沿い
上昇し、斯くして空気は燃焼室4内をループ状に流れる
ことになる。このループ状に流れる空気Wによって燃焼
室4内の既燃ガスが排気弁7を介して排出され、更にこ
のループ状に流れる空気Wによって燃焼室4内には垂直
面内で旋回する旋回流Xが発生せしめられる。次いでピ
ストン2が下死点BDCを過ぎて上昇を開始するとその
後燃料噴射弁14からの燃料噴射が開始される。
When the intake valve 6 and the exhaust valve 7 are opened as shown in FIG. 5, air flows into the combustion chamber 4 via the intake valve 6. At this time, since the opening of the air supply valve 6 on the exhaust valve 7 side is covered by the mask wall 8a, the air flows through the mask wall 8a.
It flows into the combustion chamber 4 from the opening of the air supply valve 6 on the opposite side to a. This air descends along the inner wall surface of the cylinder bore below the air supply valve 6 as shown by the arrow W, then advances along the top surface of the piston 2 and rises along the inner wall surface of the cylinder bore below the exhaust valve 7, thus Will flow in a loop in the combustion chamber 4. The burned gas in the combustion chamber 4 is discharged through the exhaust valve 7 by the air W flowing in the loop shape, and the swirling flow X swirling in the vertical plane in the combustion chamber 4 by the air W flowing in the loop shape. Is generated. Next, when the piston 2 passes the bottom dead center BDC and starts to rise, the fuel injection from the fuel injection valve 14 is started thereafter.

【0014】次に図6から図10を参照して機関低負荷
運転時、機関中負荷運転時および機関高負荷運転時にお
ける燃料噴射方法について説明する。なお、図6は機関
低負荷運転時における燃料噴射Il を示しており、図7
から図9は機関中負荷運転時における燃料噴射Im を示
しており、図10は機関高負荷運転時における燃料噴射
h を示している。
Next, referring to FIG. 6 to FIG. 10, a fuel injection method during engine low load operation, engine medium load operation and engine high load operation will be described. It should be noted that FIG. 6 shows the fuel injection I l during engine low load operation.
9 to FIG. 9 show the fuel injection I m during the engine medium load operation, and FIG. 10 shows the fuel injection I h during the engine high load operation.

【0015】図1および図6に示されるように機関低負
荷運転時には燃料は燃料噴射弁14から垂直平面K−K
に沿い凹溝底壁面15cに向けて斜めに噴射される。こ
の噴射燃料は凹溝底壁面15c上に衝突した後凹溝側壁
面15bに沿いつつ凹溝端部15aに向けて進行する。
次にこのときの噴射燃料の挙動について図11を参照し
つつ説明する。
As shown in FIGS. 1 and 6, during engine low load operation, fuel is injected from the fuel injection valve 14 into the vertical plane KK.
Is obliquely jetted toward the bottom wall surface 15c of the groove. The injected fuel collides with the bottom wall surface 15c of the groove and then travels toward the end 15a of the groove along the side wall surface 15b of the groove.
Next, the behavior of the injected fuel at this time will be described with reference to FIG.

【0016】図11において鎖線Rは凹溝底壁面15c
上における噴射燃料の衝突領域を示しており、矢印
1 ,F2 は噴射燃料の代表的な2つの流れを示してい
る。図11に示されるように噴射燃料F1 ,F2 は凹溝
底壁面15c上に衝突後も慣性力によって噴射方向に進
行し、次いで凹溝側壁面15bまで進んだ後に凹溝側壁
面15bに沿いつつ凹溝端部15aに向けて進行する。
ところで各凹溝側壁面15bは凹溝端部15aから燃料
噴射弁14側に向けてほぼまっすぐに延びているので凹
溝側壁面15bに対する各噴射燃料F1 ,F2 の入射角
θ1 ,θ2 は噴射中心に近い噴射燃料ほど小さくなり、
従って凹溝側壁面15bに沿って進行を開始しはじめた
ときの各噴射燃料F1 ,F2 の流動速度υ1 ,υ2 は噴
射中心に近い噴射燃料ほど速くなる。
In FIG. 11, the chain line R indicates the bottom wall surface 15c of the groove.
The above shows the collision area of the injected fuel, and arrows F 1 and F 2 show two typical flows of the injected fuel. As shown in FIG. 11, the injected fuels F 1 and F 2 proceed in the injection direction by the inertial force even after the collision on the groove bottom wall surface 15c, then proceed to the groove side wall surface 15b, and then to the groove side wall surface 15b. It advances toward the concave groove end portion 15a while following it.
By the way, since each recess groove side wall surface 15b extends almost straight from the recess groove end portion 15a toward the fuel injection valve 14 side, the incident angles θ 1 , θ 2 of the respective injected fuels F 1 , F 2 with respect to the recess groove side wall surface 15b. Becomes smaller as the injected fuel is closer to the injection center,
Therefore, the flow velocities ν 1 and ν 2 of the injected fuels F 1 and F 2 when starting to move along the groove side wall surface 15b become faster as the injected fuel is closer to the injection center.

【0017】これに対して図12に示されるようにピス
トン2′の頂面上に形成された凹溝15′の輪郭形状を
円形とし、燃料噴射弁14′から凹溝15′の平坦な底
壁面15c′上に燃料を噴射すると凹溝側壁面15b′
に対する各噴射燃料F1 ′,F2 ′の入射角θ1 ′,θ
2 ′は噴射中心に近い噴射燃料ほど大きくなり、従って
凹溝側壁面15b′に沿って進行を開始しはじめたとき
の噴射燃料F1 ′,F 2 ′の流動速度υ1 ′,υ2 ′は
噴射中心に近い噴射燃料ほど遅くなる。ところがこのよ
うにυ1 ′>υ2 ′なる関係があると各凹溝側面15
b′に沿って流れる燃料又は混合気はほぼ同時期に凹溝
端部15a′に集まり、次いでほぼ同時期に凹溝端部1
5a′に沿って上昇して点火栓10の周りに混合気を形
成することになる。従ってこの場合には常にほぼ全噴射
燃料によって点火栓10の周りに混合気が形成されるこ
とになり、従ってこのとき点火栓10周りに形成される
混合気の濃度は燃料噴射量を制御する以外の方法によっ
ては制御することができないことになる。斯くして例え
ば燃料噴射量が少ないときに点火栓10の周りに最適な
混合気を形成しようとすると燃料噴射量が増大したとき
には点火栓10周りに形成される混合気は過濃となり、
斯くして点火栓10による良好な着火が得られないばか
りでなく、たとえ着火したとしても多量の未燃HC,C
Oが発生することになる。
On the other hand, as shown in FIG.
The contour shape of the concave groove 15 'formed on the top surface of the tongue 2'
It is circular and has a flat bottom from the fuel injection valve 14 'to the concave groove 15'.
When fuel is injected onto the wall surface 15c ', the groove side wall surface 15b'
Fuel injection F for1′, F2Angle of incidence θ1′, Θ
2′ Becomes larger as the injected fuel is closer to the injection center, so
When starting to move along the groove side wall surface 15b '
Fuel injection F1′, F 2′ Flow velocity υ1′, Υ2′ Is
The fuel injected closer to the center of injection is slower. But this is
Sea urchin1′ > υ2'If there is a relationship, each concave groove side surface 15
The fuel or air-fuel mixture flowing along b'is recessed at approximately the same time.
Collected at the end 15a ', and then at the same time, the groove end 1
5a ′ and rises to form a mixture around the spark plug 10.
Will be completed. Therefore, in this case, almost all injection is always performed.
The fuel forms an air-fuel mixture around the spark plug 10.
Therefore, at this time, the spark plug 10 is formed around the spark plug 10.
The concentration of the air-fuel mixture can be adjusted by a method other than controlling the fuel injection amount.
Will be out of control. Thus an analogy
For example, when the fuel injection amount is small, it is most suitable around the spark plug 10.
When the fuel injection amount increases when trying to form a mixture
The air-fuel mixture formed around the spark plug 10 becomes rich,
Thus, good ignition cannot be obtained by the spark plug 10.
Not a large amount of unburned HC, C even if it ignites
O will be generated.

【0018】これに対して図11に示されるようにυ1
<υ2 なる関係があると噴射燃料F 2 が凹溝端部15a
に到達しても噴射燃料F1 は依然として凹溝端部15a
に向けて進行中であり、従って各噴射燃料F1 ,F2
凹溝端部15aに到達するのに時間差を生ずることにな
る。このように各噴射燃料F1 ,F2 が凹溝端部15a
に到達するのに時間差を生ずると点火栓10周りに形成
される混合気は時間を経過するにつれて次第に濃くなる
ことになり、従ってこの場合には燃料噴射量が一定であ
っても燃料噴射から点火が行われるまでの時間を制御す
ることによって点火が行われるときに点火栓10周りに
形成される混合気の濃度を制御できることになる。云い
換えると点火が行われるときに点火栓10周りに最適な
濃度の混合気が形成されるように点火時期又は噴射時期
を制御することによって点火が行われるときに点火栓1
0周りに常に最適な混合気を形成できることになる。従
って図11に示すような形状の凹溝15を用いると燃料
噴射量によらずに点火栓10による良好な着火を確保で
きることになる。
On the other hand, as shown in FIG.1
2If there is a relationship such as 2Is the groove end 15a
Fuel F1Is still the groove end 15a
Is in progress, and therefore each injected fuel F1, F2But
There will be a time lag in reaching the groove end 15a.
It In this way, each injected fuel F1, F2Is the groove end 15a
Form around spark plug 10 when there is a time lag in reaching
The air-fuel mixture is gradually thickened over time
Therefore, in this case, the fuel injection amount is constant.
Control the time from fuel injection to ignition
Around the spark plug 10 when ignition is performed by
It is possible to control the concentration of the air-fuel mixture formed. Say
Optimum around the spark plug 10 when ignited by changing
Ignition timing or injection timing so that a mixture with a certain concentration is formed
When the ignition is performed by controlling the spark plug 1
The optimum mixture can be always formed around 0. Servant
Therefore, if a groove 15 having a shape as shown in FIG.
Ensure good ignition with spark plug 10 regardless of injection quantity
I will be able to do it.

【0019】上述したように噴射燃料は慣性力によって
凹溝底壁面15c上を点火栓10の下方に向けて流れ
る。ところで図5に示されるように燃焼室4内に発生し
た旋回流Xはピストン2が上昇するにつれて減衰しつつ
旋回半径が次第に小さくなり、ピストン2が上死点に近
づくと図6に示されるように凹溝底壁面15cに沿う旋
回流Xとなる。従って、噴射燃料はこの旋回流Xによっ
ても点火栓10の下方に向かう力が与えられる。また、
ピストン2が更に上死点に近づくと図6において矢印S
で示すようにスキッシュエリア17からスキッシュ流が
噴出し、このスキッシュ流Sも凹溝底壁面15cに沿っ
て進む。従って噴射燃料はこのスキッシュ流Sによって
も点火栓10の下方に向かう力が与えられる。また、凹
溝底壁面15cに沿い点火栓10の下方に向かう燃料は
旋回流Xおよびスキッシュ流Sによって気化せしめら
れ、斯くして点火栓10の周りに集まる混合気は十分に
気化せしめられることになる。
As described above, the injected fuel flows downward on the spark plug 10 on the bottom wall surface 15c of the groove due to the inertial force. By the way, as shown in FIG. 5, the swirling flow X generated in the combustion chamber 4 attenuates as the piston 2 rises, and the swirling radius gradually decreases. As the piston 2 approaches the top dead center, as shown in FIG. A swirl flow X is formed along the bottom wall surface 15c of the groove. Accordingly, the swirling flow X also gives a force to the injected fuel toward the lower side of the spark plug 10. Also,
When the piston 2 further approaches the top dead center, the arrow S in FIG.
As shown by, the squish flow jets out from the squish area 17, and the squish flow S also advances along the bottom wall surface 15c of the concave groove. Therefore, the injected fuel is also given a force directed downward of the spark plug 10 by this squish flow S. Further, the fuel flowing downward of the spark plug 10 along the bottom wall surface 15c of the groove is vaporized by the swirling flow X and the squish flow S, and thus the air-fuel mixture collected around the spark plug 10 is sufficiently vaporized. Become.

【0020】一方、燃料噴射量が増大したときに全噴射
燃料を第1凹溝15内に噴射すると一部の燃料が十分に
気化せず、スモークが発生する危険性がある。そこで燃
料噴射量が増大せしめられたときには一部の燃料のみが
第1凹溝15内に噴射されるように噴射時期が早められ
る。このときには図7および図8に示されるように一部
の燃料が第1凹溝15内に噴射され、残りの燃料が第2
凹溝15内に噴射される。このとき図9においてG1
示されるように第1凹溝15内に噴射された燃料によっ
て点火栓10の周りに混合気が形成され、この混合気G
1 が点火栓10によって着火せしめられる。
On the other hand, if all the injected fuel is injected into the first groove 15 when the fuel injection amount is increased, there is a risk that some of the fuel will not be sufficiently vaporized and smoke will be generated. Therefore, when the fuel injection amount is increased, the injection timing is advanced so that only a part of the fuel is injected into the first groove 15. At this time, as shown in FIGS. 7 and 8, a part of the fuel is injected into the first groove 15 and the remaining fuel is the second fuel.
It is injected into the groove 15. At this time, an air-fuel mixture is formed around the spark plug 10 by the fuel injected into the first groove 15 as indicated by G 1 in FIG.
1 is ignited by the spark plug 10.

【0021】一方、図7および図8に示されるように第
2凹溝16内に噴射された燃料は側壁面16bに沿い流
れて凹溝端部16aに達し、次いで凹溝端部16aに沿
って上昇する。従って図9においてG2 で示されるよう
に第2凹溝16内に噴射された燃料によって混合気G1
の周りに混合気G2 が形成され、この混合気G2 は混合
気G1 の着火火炎が火種となって燃焼せしめられる。こ
のように燃料噴射量が増量せしめられたときには第1凹
溝15以外に噴射された燃料が燃焼室4内に拡散される
ことになく燃焼室4内の限られた領域内に混合気G2
形成するのでこの混合気G2 は極度に稀薄になることは
なく、斯くしてこの混合気G2 は良好に燃焼せしめられ
ることになる。従って多量の未燃HCが発生するのを抑
制することができると共に安定した燃焼を確保できるこ
とになる。
On the other hand, as shown in FIGS. 7 and 8, the fuel injected into the second groove 16 flows along the side wall surface 16b to reach the groove end 16a, and then rises along the groove end 16a. To do. Therefore, as shown by G 2 in FIG. 9, the air-fuel mixture G 1 is mixed by the fuel injected into the second groove 16.
An air-fuel mixture G 2 is formed around the air-fuel mixture, and the air-fuel mixture G 2 is combusted by the ignition flame of the air-fuel mixture G 1 serving as a seed. When the fuel injection amount is increased in this way, the fuel injected into the combustion chamber 4 other than the first concave groove 15 is not diffused into the combustion chamber 4 and the mixture gas G 2 Therefore, the air-fuel mixture G 2 does not become extremely lean, and thus the air-fuel mixture G 2 is satisfactorily combusted. Therefore, generation of a large amount of unburned HC can be suppressed and stable combustion can be secured.

【0022】一方、機関高負荷運転時の燃料噴射時には
図10に示されるようにピストン2が低い位置にあると
きに燃料噴射が開始される。従ってこのときには噴射燃
料がピストン2の頂面の広い領域に亘って衝突するため
に燃料は燃焼室4内に良好に分散せしめられ、斯くして
燃焼室4内には均一混合気が形成される。機関高負荷運
転時には燃料噴射量が多く、従ってこのとき形成される
均一混合気は極度に稀薄になることがないので良好に燃
焼せしめられることになる。
On the other hand, at the time of fuel injection during engine high load operation, fuel injection is started when the piston 2 is at a low position as shown in FIG. Therefore, at this time, since the injected fuel collides with the piston 2 over a wide area of the top surface, the fuel is well dispersed in the combustion chamber 4, and thus a uniform air-fuel mixture is formed in the combustion chamber 4. .. During engine high load operation, the fuel injection amount is large, and therefore the homogeneous mixture formed at this time does not become extremely lean, so that it can be combusted well.

【0023】図13から図22に第2実施例を示す。こ
の実施例では図13から図15に示すように各給気弁6
近傍のシリンダヘッド内壁面3aの周縁部に一対の燃料
噴射弁、即ち第1燃料噴射弁14aと第2燃料噴射弁1
4bとが配置され、図13からわかるようにこれら燃料
噴射弁14a,14bからはシリンダ軸線方向に向けて
燃料が噴射される。図16に示されるようにこの実施例
においても機関低負荷運転時、中負荷運転時および高負
荷運転時における燃料噴射時期は図1から図4に示され
る実施例と同様であるが、この実施例では機関低負荷運
転時における燃料噴射Il および機関中負荷運転時にお
ける燃料噴射Im は第1燃料噴射弁14aにより行わ
れ、機関高負荷運転時における燃料噴射Ih1およびIh2
は第1燃料噴射弁14aおよび第2燃料噴射弁14bの
双方により行われる。
A second embodiment is shown in FIGS. 13 to 22. In this embodiment, as shown in FIGS. 13 to 15, each air supply valve 6
A pair of fuel injection valves, that is, the first fuel injection valve 14a and the second fuel injection valve 1 are provided on the peripheral portion of the inner wall surface 3a of the cylinder head in the vicinity.
4b are arranged, and as can be seen from FIG. 13, fuel is injected from these fuel injection valves 14a, 14b in the cylinder axis direction. As shown in FIG. 16, in this embodiment as well, the fuel injection timing at the time of engine low load operation, medium load operation and high load operation is the same as that of the embodiment shown in FIGS. In the example, the fuel injection I l during the engine low load operation and the fuel injection I m during the engine medium load operation are performed by the first fuel injection valve 14a, and the fuel injections I h1 and I h2 during the engine high load operation are performed.
Is performed by both the first fuel injection valve 14a and the second fuel injection valve 14b.

【0024】この実施例では機関低負荷運転時には図1
7に示されるように燃料が第1燃料噴射弁14aから凹
溝底壁面15cに向けて斜めに噴射され、この噴射燃料
は凹溝底壁面15c上に衝突した後凹溝側壁面15bに
沿いつつ凹溝端部15aに向けて進行する。この実施例
においても各凹溝側壁面15bは凹溝端部15aから燃
料噴射弁14側に向けてほぼまっすぐに延びているので
図23に示されるように凹溝側壁面15bに対する各噴
射燃料F1 ,F2 の入射角θ1 ,θ2 は噴射中心に近い
噴射燃料ほど小さくなり、従って凹溝側壁面15bに沿
って進行を開始しはじめたときの各噴射燃料F1 ,F2
の流動速度υ1 ,υ2 は噴射中心に近い噴射燃料ほど速
くなる。従って各噴射燃料F1 ,F2 が凹溝端部15a
に到達するのに時間差を生ずることになり、斯くして点
火が行われるときに点火栓10周りに最適な濃度の混合
気を形成できることになる。
In this embodiment, FIG.
7, fuel is obliquely injected from the first fuel injection valve 14a toward the groove bottom wall surface 15c, and the injected fuel collides with the groove bottom wall surface 15c, and then along the groove side wall surface 15b. It advances toward the groove end 15a. Also in this embodiment, since each groove side wall surface 15b extends almost straight from the groove end 15a toward the fuel injection valve 14 side, each injected fuel F 1 to the groove side wall surface 15b as shown in FIG. , the incident angle theta 1 of F 2, theta 2 becomes smaller as the injected fuel near the injection center, therefore the injected fuel F 1 when started to start traveling along the recessed groove side wall 15b, F 2
The flow velocities υ 1 and υ 2 of are faster as the injected fuel is closer to the injection center. Therefore, the respective injected fuels F 1 and F 2 will be
There will be a time lag in reaching the temperature, and thus an optimum concentration of air-fuel mixture can be formed around the spark plug 10 when ignition is performed.

【0025】一方、この実施例においても燃料噴射量が
増大したときには燃料噴射時期が早められ、斯くしてこ
のときには図18および図19に示されるように一部の
燃料が第1凹溝15内に噴射され、残りの燃料が第2凹
溝16内に噴射される。従ってこのときには図20に示
されるように第1凹溝15内に噴射された燃料によって
点火栓10の周りに混合気G1 が形成され、第2凹溝1
6内に噴射された燃料によって混合気G1 の周りに混合
気G2 が形成される。
On the other hand, also in this embodiment, when the fuel injection amount is increased, the fuel injection timing is advanced, and at this time, therefore, as shown in FIGS. 18 and 19, a part of the fuel is in the first groove 15. And the remaining fuel is injected into the second groove 16. Therefore, at this time, as shown in FIG. 20, the fuel mixture injected into the first groove 15 forms the air-fuel mixture G 1 around the spark plug 10, and the second groove 1
Due to the fuel injected into the fuel cell 6, a gas mixture G 2 is formed around the gas mixture G 1 .

【0026】一方、機関高負荷運転時には図21および
図22に示されるようにピストン2が低い位置にあると
きに第1燃料噴射弁14aと第2燃料噴射弁14bの双
方から燃料が噴射され、これら噴射燃料によって燃焼室
4内には均一混合気が形成される。なお、これまで本発
明を筒内噴射式2サイクル機関に適用した場合について
説明してきたが本発明を筒内噴射式4サイクル機関にも
適用することができる。
On the other hand, during engine high load operation, fuel is injected from both the first fuel injection valve 14a and the second fuel injection valve 14b when the piston 2 is in the low position as shown in FIGS. A uniform air-fuel mixture is formed in the combustion chamber 4 by these injected fuels. Although the present invention has been described so far as applied to a cylinder injection two-cycle engine, the present invention can also be applied to a cylinder injection four-cycle engine.

【0027】[0027]

【発明の効果】燃料噴射量が増大して第1凹溝以外に燃
料が噴射されたときであっても良好な燃焼を得ることが
でき、斯くして未燃HCの発生を抑制できると共に安定
した燃焼を確保することができる。
[Effects of the Invention] Even when the fuel injection amount is increased and fuel is injected into a portion other than the first concave groove, good combustion can be obtained, thus suppressing the generation of unburned HC and stabilizing it. Combustion can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】ピストン頂面の平面図である。FIG. 1 is a plan view of a top surface of a piston.

【図2】2サイクル機関の側面断面図である。FIG. 2 is a side sectional view of a two-cycle engine.

【図3】シリンダヘッドの底面図である。FIG. 3 is a bottom view of a cylinder head.

【図4】給排気弁の開弁期間と燃料噴射時期を示す線図
である。
FIG. 4 is a diagram showing a valve opening period of a supply / exhaust valve and a fuel injection timing.

【図5】掃気行程時を示す2サイクル機関の側面断面図
である。
FIG. 5 is a side sectional view of a two-cycle engine showing a scavenging stroke.

【図6】低負荷運転時の燃料噴射を示す2サイクル機関
の側面断面図である。
FIG. 6 is a side sectional view of a two-cycle engine showing fuel injection during low load operation.

【図7】中負荷運転時の燃料噴射を示す2サイクル機関
の側面断面図である。
FIG. 7 is a side sectional view of a two-cycle engine showing fuel injection during medium load operation.

【図8】中負荷運転時の燃料噴射を示すピストンの平面
図である。
FIG. 8 is a plan view of a piston showing fuel injection during medium load operation.

【図9】中負荷運転時の圧縮行程末期を示す2サイクル
機関の側面断面図である。
FIG. 9 is a side cross-sectional view of the two-cycle engine showing the final stage of the compression stroke during medium load operation.

【図10】高負荷運転時の燃料噴射を示す2サイクル機
関の側面断面図である。
FIG. 10 is a side sectional view of a two-cycle engine showing fuel injection during high load operation.

【図11】図1と同様のピストン頂面の平面図である。11 is a plan view of the piston top surface similar to FIG. 1. FIG.

【図12】好ましくない例を示すピストン頂面の平面図
である。
FIG. 12 is a plan view of the piston top surface showing an unfavorable example.

【図13】別の実施例を示すピストン頂面の平面図であ
る。
FIG. 13 is a plan view of a piston top surface showing another embodiment.

【図14】2サイクル機関の側面断面図である。FIG. 14 is a side sectional view of a two-cycle engine.

【図15】シリンダヘッドの底面図である。FIG. 15 is a bottom view of the cylinder head.

【図16】給排気弁の開弁期間と燃料噴射時期を示す線
図である。
FIG. 16 is a diagram showing a valve opening period of a supply / exhaust valve and a fuel injection timing.

【図17】低負荷運転時の燃料噴射を示す2サイクル機
関の側面断面図である。
FIG. 17 is a side sectional view of a two-cycle engine showing fuel injection during low load operation.

【図18】中負荷運転時の燃料噴射を示す2サイクル機
関の側面断面図である。
FIG. 18 is a side cross-sectional view of a two-cycle engine showing fuel injection during medium load operation.

【図19】中負荷運転時の燃料噴射を示すピストンの平
面図である。
FIG. 19 is a plan view of the piston showing fuel injection during medium load operation.

【図20】中負荷運転時の圧縮行程末期を示す2サイク
ル機関の側面断面図である。
FIG. 20 is a side cross-sectional view of the two-cycle engine showing the final stage of the compression stroke during medium load operation.

【図21】高負荷運転時の燃料噴射を示す2サイクル機
関の側面断面図である。
FIG. 21 is a side sectional view of a two-cycle engine showing fuel injection during high load operation.

【図22】高負荷運転時の燃料噴射を示す2サイクル機
関の側面断面図である。
FIG. 22 is a side sectional view of a two-cycle engine showing fuel injection during high load operation.

【図23】図11と同様のピストン頂面の平面図であ
る。
23 is a plan view of the piston top surface similar to FIG. 11. FIG.

【符号の説明】[Explanation of symbols]

2…ピストン 10…点火栓 14,14a,14b…燃料噴射弁 15…第1凹溝 15a…凹溝端部 15b…凹溝側壁面 15c…凹溝底壁面 16…第2凹溝 2 ... Piston 10 ... Spark plug 14, 14a, 14b ... Fuel injection valve 15 ... 1st concave groove 15a ... concave groove end part 15b ... concave groove side wall surface 15c ... concave groove bottom wall surface 16 ... 2nd concave groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仁平 裕昭 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Nihira 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつほぼまっすぐに延びる一対の側壁面とほぼ
平坦をなす底壁面とにより画定される第1凹溝をピスト
ン頂面上に形成すると共に該第1凹溝に関して燃料噴射
弁と反対側のピストン頂面上に該第1凹溝から間隔を隔
てて該第1凹溝の輪郭に沿って延びる第2凹溝を形成
し、燃料噴射量が少ないときには燃料噴射弁から該第1
凹溝の底壁面に向け斜めに燃料を噴射して第1凹溝底壁
面に衝突した噴射燃料を第1凹溝の側壁面に沿いつつ点
火栓下方の第1凹溝端部に向かわせ、燃料噴射量が増大
したときには燃料噴射時期を早めて一部の燃料を第1凹
溝内に噴射すると共に残りの燃料を第2凹溝内に噴射さ
せて第2凹溝内に噴射された燃料により形成される混合
気が点火栓の周りに集まるようにした筒内噴射式内燃機
関。
1. A spark plug is arranged at the center of the inner wall surface of the cylinder head, and a fuel injection valve is arranged at the peripheral portion of the inner wall surface of the cylinder head. The spark plug gradually expands from below the spark plug toward the fuel injection valve side. While forming a first recessed groove defined on the piston top surface by a pair of side wall surfaces extending substantially straight and a bottom wall surface that is substantially flat, the piston top surface opposite to the fuel injection valve with respect to the first recessed groove. A second groove is formed above the first groove so as to be spaced from the first groove and extends along the contour of the first groove, and when the fuel injection amount is small, the second groove is formed from the fuel injection valve.
The fuel is obliquely injected toward the bottom wall surface of the groove, and the injected fuel that collides with the bottom surface of the first groove is directed toward the end of the first groove below the spark plug along the side wall surface of the first groove. When the injection amount increases, the fuel injection timing is advanced to inject a part of the fuel into the first concave groove and the remaining fuel into the second concave groove to cause the fuel injected into the second concave groove. An in-cylinder injection internal combustion engine in which the air-fuel mixture that is formed gathers around the spark plug.
JP34632091A 1991-12-27 1991-12-27 Intra-cylinder injection type internal combustion engine Pending JPH05179961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34632091A JPH05179961A (en) 1991-12-27 1991-12-27 Intra-cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34632091A JPH05179961A (en) 1991-12-27 1991-12-27 Intra-cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05179961A true JPH05179961A (en) 1993-07-20

Family

ID=18382611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34632091A Pending JPH05179961A (en) 1991-12-27 1991-12-27 Intra-cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05179961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045249A1 (en) * 1998-03-04 1999-09-10 Audi Ag Internal combustion engine with direct fuel injection
EP0930427A3 (en) * 1998-01-17 2000-04-05 Audi Ag Internal combustion engine and method for its mixture preparation
KR20030017405A (en) * 2001-08-24 2003-03-03 도요다 지도샤 가부시끼가이샤 In-cylinder injection type spark-ignitioninternal combustion engine
JP2004190587A (en) * 2002-12-12 2004-07-08 Toyota Motor Corp Engine with a plurality of recessed portions at piston top

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930427A3 (en) * 1998-01-17 2000-04-05 Audi Ag Internal combustion engine and method for its mixture preparation
WO1999045249A1 (en) * 1998-03-04 1999-09-10 Audi Ag Internal combustion engine with direct fuel injection
KR20030017405A (en) * 2001-08-24 2003-03-03 도요다 지도샤 가부시끼가이샤 In-cylinder injection type spark-ignitioninternal combustion engine
US6651612B2 (en) 2001-08-24 2003-11-25 Toyota Jidosha Kabushiki Kaisha In-cylinder injection type spark-ignition internal combustion engine
JP2004190587A (en) * 2002-12-12 2004-07-08 Toyota Motor Corp Engine with a plurality of recessed portions at piston top

Similar Documents

Publication Publication Date Title
JP3163906B2 (en) In-cylinder injection spark ignition engine
JPH01219311A (en) Injection engine in spark ignition cylinder
JPS5813737B2 (en) Combustion chamber structure of internal combustion engine
JPS6145044B2 (en)
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JP2940232B2 (en) In-cylinder internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JP2841791B2 (en) Fuel injection type internal combustion engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JP2936804B2 (en) In-cylinder internal combustion engine
JP2936798B2 (en) In-cylinder internal combustion engine
JP2936803B2 (en) In-cylinder internal combustion engine
JPS59231120A (en) Three-valve head type internal-combustion engine
JP2936805B2 (en) In-cylinder internal combustion engine
JP2867772B2 (en) In-cylinder internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPH0526047A (en) Cylinder fuel injection type two-cycle internal combustion engine
JPH05179960A (en) Intra-cylinder injection type internal combustion engine
JPH05248244A (en) Cylinder injection type internal combustion engine
JPH07122407B2 (en) Engine combustion chamber structure
JPH082429Y2 (en) Cylinder injection internal combustion engine